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Abstract. The Wiener index of a graph is the sum of all pairwise distances of vertices of

the graph. In this paper we characterize the trees which minimize the Wiener index among

all trees of given order and maximum degree and the trees which maximize the Wiener

index among all trees of given order that have only vertices of two di�erent degrees.
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1 Terminology and Introduction

All graphs in this paper will be �nite, simple and undirected and we will use standard

graph-theoretical terminology. For a graph G = (V (G); E(G)), the order will be denoted

by n(G) = jV (G)j and the neighbourhood of a vertex v 2 V (G) will be denoted by NG(v).

The degree dG(v) of a vertex v 2 V (G) in the graph G is jNG(v)j. A vertex of degree one

is an endvertex. The maximum degree maxv2V (G) dG(v) of a graph G is denoted by �(G).

The subgraph of G induced by a set X � V (G) is denoted by G[X].

The distance dG(u; v) between two vertices u; v 2 V (G) in the graph G is the minimum

number of edges on a path in G from u to v or1 if no such path exists. The distance sum

1Corresponding author. Supported by a post-doctoral DONET grant.
2This research was supported in part by the NSF grant DMS 0072187.
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�G(u) of G with respect to a vertex u 2 V (G) is de�ned as �G(u) =
P

v2V (G) dG(u; v) and

the distance sum �(G) of G or Wiener index of G is de�ned as

�(G) =
1

2

X

u2V (G)

X

v2V (G)

dG(u; v) =
1

2

X

u2V (G)

�G(u):

The average distance �d(G) of a graph G is �(G)

(n(G)

2 )
.

The Wiener index and the average distance rank among those graph-theoretical parameters

that are of most interest to other sciences. In fact, it was the chemist H. Wiener who in 1947

proposed � in [19] and [20] as a measure for the degree of molecular branching which seems

to be related to many physical and chemical properties of molecules. There are numerous

publications on the average distance �d and the Wiener index � both in mathematical and

chemical journals. See for example [1], [2], [7], [8], [9], [10], [12], [16], [18], and [21] for

theoretical and [3], [6], [11] and [17] for algorithmical and computational aspects. A recent

and very comprehensive survey about the Wiener index is [5].

Chemists are often interested in the Wiener index of certain trees which represent

molecular structures. Entringer, Jackson and Snyder [9] proved that among all trees of a

given order n the Wiener index is maximized by the path Pn and minimized by the star

K1;n�1. Since every atom has a certain valency, chemists are also often interested in graphs

with restricted degrees=valencies. It is therefore not a really satisfactory answer to say

that stars minimize the Wiener index, since their maximum degree grows arbitrarily. This

motivates the central problem that we consider in this paper.

Problem 1.1 What trees minimize the Wiener index among all trees of given order n and

maximum degree at most �?

Clearly Problem 1.1 is only interesting if the maximum degree is at least 3. We will settle

Problem 1.1 in section two. Our answer to Problem 1.1 will lead us to trees which (with

one possible exception) have only vertices of degrees 1 and �. For these we solve the

following opposite problem in section three.

Problem 1.2 What trees maximize the Wiener index among all trees of given order n

whose vertices are either endvertices or of maximum degree �?

Once again, this question is only interesting if the maximum degree is at least 3.
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2 Trees with minimum Wiener Index

We de�ne a class of trees which will be the extremal trees for Problem 1.1.

De�nition 2.1 Let � � 3 and R 2 f�� 1;�g. For every n the family T (R;�) of trees

has a unique member T of order n up to isomorphism which we now de�ne together with

a natural plane embedding.

Let M0(R;�) = 1 and M1(R;�) = 1+R, and let Mk(R;�) = 1+R+R(�� 1)+ :::+

R(�� 1)k�1 for k � 2. Let

Mk(R;�) � n < Mk+1(R;�) (1)

for some k � 0. Let n �Mk(R;�) = m(� � 1) + r for some 0 � r < � � 1, if k � 1;

and r = n� 1 for k = 0. Let T be the tree of order n embedded in the plane such that (see

Figure 1)

(i) all vertices of T lie on some line R� fig for 0 � i � k + 1,

(ii) there is a unique vertex on line R�f0g which has exactly minfn� 1; Rg neighbours

that lie on line R� f1g,

(iii) for 1 � j � k � 1 every vertex on line R � fjg has a unique neighbour on line

R� fj � 1g and �� 1 neighbours on line R� fj + 1g,

(iv) if v1; v2; :::; vm+1 are the m+1 leftmost vertices on line R�fkg such that vi lies left

of vj for i < j, then each of v1; v2; :::; vm has �� 1 neighbours on line R � fk + 1g

and vm+1 has r neighbours on line R� fk + 1g.
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R� f2gu uu u u u

...
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u

u u
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:::
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u
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Figure 1

Our main result in this section is the following.

Theorem 2.2 Let T be a tree of order n and maximum degree at most � (� � 3). Then

�(T ) � �(T 0) for all trees T 0 of order n and maximum degree at most �
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In fact, Theorem 2.2 has been veri�ed by a computer search for all chemical trees, i.e.

trees of maximum degree 4, of order up to 21 in [15]. The trees in T (4; 4) represent alkanes

which are called dendrimers and whose Wiener index has been studied in [4] and [13].

In the proof of Theorem 2.2 we may assume n > 1 +� by [9], i.e. k � 1 in (1). In the

proof of Theorem 2.2 we will consider the centroid of a tree. For some tree T and a vertex

v 2 V (T ), a branch of T at v is a maximal subtree of T that contains v as an endvertex.

The weight bw(B) of a branch B is the number of edges in B and the branchweight bw(v)

of v 2 V (T ) is the maximum weight of a branch at v. The centroid C(T ) of a tree T is

the set of vertices of T of minimum branchweight. We need the following properties of the

centroid of a tree.

Theorem 2.3 (Jordan [14]) If T is a tree, then either C(T ) = fcg and bw(c) � n�1
2

or

C(T ) = fc1; c2g, c1c2 2 E(T ) and bw(c1) = bw(c2) =
n
2
.

Furthermore, we need the following property of the trees in T (R;�).

Lemma 2.4 Let T 2 T (R;�) have order n and let Mk(R;�) < n < Mk+1(R;�) for

some k � 1. Let T 0 arise from the tree T0 in T (R;�) of order Mk(R;�) by attaching

n�Mk(R;�) endvertices that lie on the line R� fk + 1g to the vertices of T0 that lie on

the line R� fkg.

Then either �(T ) < �(T 0) or T and T 0 are isomorphic.

Proof: We assume that T 0 is such that it has minimum distance sum among all trees that

satisfy the assumption of Lemma 2.4 and show that T and T 0 are isomorphic.

Let v 2 V (T0) � V (T 0). The vertex v lies on line R � fig for some 0 � i � k. Let Tv
denote the maximal subtree of T 0 that contains v and has only vertices on lines R � fjg

for j � i. We say that Tv is full (empty) if all vertices of Tv on line R � fkg have degree

� (1, respectively).

Claim. Let v 2 V (T0) � V (T 0) lie on line R�fig for some 0 � i � k� 1. Let v1; v2; :::; vl
be the neighbours of v on line R � fi + 1g. Then at most one of the trees Tv1 ; Tv2 ; :::; Tvl
is neither full nor empty.

Proof of the Claim: We assume for contradiction that the claim does not hold for the vertex

v 2 V (T0) � V (T 0) that lies on line R�fig for some 0 � i � k� 1 and that i is maximum

under this condition, i.e. the claim holds for all vertices on lines R � fjg for j > i. We

may assume furthermore that Tv1 and Tv2 are neither full nor empty and that Tv1 has at

least as many vertices on line R� fk + 1g as Tv2 . Let Vi denote the set of vertices of Tvi
on line R� fk + 1g for i = 1; 2.

Let x and y be two vertices in V (Tv1) or in V (Tv2) that lie both on line R�fjg for some

i+ 2 � j � k. If Tx is full (empty) and Ty is not full (empty), then we assume that x lies

left (right) of y. Thus, for � = 1; 2 there is at most one vertex in V (Tv� ) on line R�fkg of

degree 6= 1;� and for two vertices x; y 2 V (Tv� ) on line R� fkg we have dT (x) � dT (y),

if x lies left of y.
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Let V� denote the vertices of Tv� on line R� fk + 1g for � = 1; 2 and let

p = minf(�� 1)k�i � jV1j; jV2jg:

Since Tv1 and Tv2 are neither full nor empty, we have 1 � jV2j � jV1j < (��1)k�i and hence

p � 1. For q = d
p

��1
e let y1; y2; : : : ; yq (and z1; z2; : : : ; zq, respectively) be the rightmost

(leftmost, respectively) q vertices in V (Tv1) (V (Tv2)) on line R � fkg. Furthermore, let

x1; x2; : : : ; xp be the p leftmost vertices in V2 and let T 00 be the tree with vertex set V (T 0)

and edge set (see Figure 2)

(E(T 0) n fxjzdj=(��1)e j 1 � j � pg) [ fxjydj=(��1)e j 1 � j � pg:
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Figure 2

Going from T 0 to T 00 the sum of the distances between all pairs of vertices in V (T ) n

fx1; x2; : : : ; xpg and for every 1 � � � p the sum of the distances from x� to all vertices in

(V (T ) n (V1 [ V2)) [ fx1; x2; : : : ; xpg remain unchanged. This implies that

�(T 0)� �(T 00) =
X

x2fx1;x2;:::;xpg

y2V1[V2nfx1;x2;:::;xpg

(dT 0(x; y)� dT 00(x; y)):

The tree T 00[V (Tv1) [ fx1; x2; : : : ; xpg] contains a tree T �
v2
�= Tv2 as a subgraph such that

fx1; x2; : : : ; xpg � V (T �
v2
). Let V �

1
= V1 n V (T

�
v2
). Note that V �

1
6= ; and that V �

1
= V1 if

p = jV2j. Thus, X

x2fx1;x2;:::;xpg

y2(V1nV
�
1
)[V2nfx1;x2;:::;xpg

(dT 0(x; y)� dT 00(x; y)) = 0

and

�(T 0)� �(T 00) =
X

x2fx1;x2;:::;xpg

y2V �
1

(dT 0(x; y)� dT 00(x; y))

�
X

x2fx1;x2;:::;xpg

y2V �
1

(2(k + 1� i)� 2(k � i)) > 0

which is a contradiction to the choice of T 0 and the claim is proved.

2
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If we now embed T 0 in the plane in the same way as Tv1 and Tv2 at the beginning of the

proof of the claim, then it is easy to see that T and T 0 are isomorphic and the proof of

Lemma 2.4 is complete.

2

Our next theorem will imply Theorem 2.2. We need some more terminology. Let T be

some tree and let u, v and w be vertices in T . We say that v separates u and w, if v lies

on the unique path in T from u to w. Let v be some vertex of T . If C(T ) 6= fvg, then let

Tv denote the subtree of T that contains v and all vertices u of T such that v separates u

from all vertices in the centroid C(T ) of T . If C(T ) = fvg, then let Tv = T .

Theorem 2.5 Let T be a tree of order n and maximum degree at most � (� � 3). Let

�(T ) � �(T 0) for all trees T 0 of order n and maximum degree at most �.

Then Tv 2 T (� � 1;�) if C(T ) 6= fvg and Tv 2 T (�;�) if C(T ) = fvg for all

v 2 V (T ).

Proof: If n � 1 + �, then Theorem 2.5 follows from the cited result of [9]. Hence we may

assume n > 1 + � and k � 1 in (1). We will prove Theorem 2.5 by induction on the

maximum distance h(Tv) of v to an endvertex in Tv. If C(T ) 6= fvg, then let R = � � 1

and if C(T ) = fvg, then let R = �. If h(Tv) 2 f0; 1g, then the result is trivial. Now let

h(Tv) � 2.

Claim. Let P : v = x1x2:::x� be a path in Tv such that x1 2 C(T ), x2 62 C(T ). Then

dT (xj) = � for all 1 � j � � � 2.

Proof of the Claim: We assume that dT (xj) < � for some 1 � j � � � 2. Let Vj+2 =

V (Txj+2), Vj+1 = V (Txj+1) n Vj+2 and Vj = V (T ) n (Vj+1 [ Vj+2). By the de�nition of the

centroid and the tree Tv we have jVjj > jVj+1j. Let T
0 be the tree with vertex set V (T ) and

edge set (E(T ) n fxj+1xj+2g)[ fxjxj+2g. We have �(T )� �(T 0) = jVj+2j(jVjj � jVj+1j) > 0

which is a contradiction. This completes the proof of the claim.

2

Case 1. There exist two endvertices l1 and l2 in Tv such that dT (v; l2) � dT (v; l1) + 2.

Let l1 (l2) have minimum (maximum) distance d1 (d2) from v among all endvertices in

Tv. By induction, the vertices l1 and l2 cannot lie in a proper subtree of Tv that does not

contain v. Therefore, let v1 and v2 be two di�erent neighbours of v in Tv such that vi
separates li and v for i = 1; 2. By induction, Tvi 2 T (�� 1;�) for i = 1; 2. Let u be the

neighbour of v2 that separates l2 and v2. We assume that Tv1 and Tv2 are embedded in the

plane similarly as in De�nition 2.1 such that v1 and v2 lie on the line R � f0g, u lies on

the line R� f1g, l1 lies on the line R� fd1 � 1g, l2 lies on the line R� fd2 � 1g and the

vertices in V (Tv1) and V (Tv2) lie on the lines R� fjg for 0 � j � d1 and 0 � j � d2 � 1,

respectively. Without loss of generality let l2 be the vertex of Tv2 lying rightmost on line

R� fd2 � 1g.
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Let V3 = V (Tv2)nV (Tu). By the de�nition of the centroid and of the tree Tv, we have that

jV (Tu)j+ jV3j = jV (Tv2)j � bw(v) � bw(v2) = jV (T ) n V (Tv2)j:

First, we assume that jV (Tv1)j < jV (Tu)j. This implies that jV3j < jV (T ) n (V (Tv1) [

V (Tv2))j. Let T
0 be the tree with vertex set V (T ) and edge set E(T 0) = (E(T )nfv2u; vv1g)[

fuv; v1v2g. We obtain

�(T )� �(T 0) = (jV (Tu)j � jV (Tv1)j) � (jV (T ) n (V (Tv1) [ V (Tv2))j � jV3j) > 0

which is a contradiction. Hence jV (Tv1)j � jV (Tu)j. Since Tv1 ; Tv2 2 T
0(��1;�), we have

that

1 +
d2�3X

i=0

(�� 1)i � jV (Tu)j � jV (Tv1)j <
d1X

i=0

(�� 1)i

which implies that d1 > d2 � 3. Since d1 � d2 � 2, we obtain d = d1 = d2 � 2.

Analogously as in the proof of Lemma 2.4 we want to construct a new tree T 0 such that

�(T ) > �(T 0). For i = 1; 2 let Vi be the set of vertices of Tvi on line R�fd� 1+ ig. Note,

that Tv1 � V1 �= Tu � V2. By the choice of l2, we obtain

V2 � V (Tu); jV1j � jV2j; and jV3j � 1 +
d�1X

i=0

(�� 2)(�� 1)i:

Let p = minf(�� 1)d � jV1j; jV2jg. Since 1 � jV2j � jV1j < (�� 1)d, we have p � 1. For

q = d
p

��1
e let y1, y2,..., yq (and z1, z2,..., zq, respectively) be the rightmost (leftmost) q

vertices of Tv1 (Tv2) on line R � fd � 1g (R � fdg). Furthermore, let x1, x2,..., xp be the

p leftmost vertices in V2. Let T
0 be the tree with vertex set V (T ) and edge set

E(T 0) = (E(T ) n fxjzdj=(��1)e j 1 � j � pg) [ fxjydj=(��1)e j 1 � j � pg:

Going from T to T 0 the sum of the distances between all pairs of vertices in V (T ) n

fx1; x2; :::; xpg and between all pairs of vertices in fx1; x2; :::; xpg remain unchanged. This

implies

�(T )� �(T 0) =
X

x2fx1;x2;:::;xpg

y2V (T )nfx1;x2;:::;xpg

(dT (x; y)� dT 0(x; y)):

For x 2 fx1; x2; :::; xpg, y 2 V (T ) n (V (Tv1) [ V (Tv2)) and y0 2 V3 we have dT (x; y) �

dT 0(x; y) = 1 and dT (x; y
0)� dT 0(x; y0) = �1.

If fvg 6= C(T ), then jV (T ) n (V (Tv1) [ V (Tv2))j > jV (T ) n V (Tv)j � jV (Tv)j > jV3j in view

of the de�nition of the centroid and the tree Tv. If fvg = C(T ), then we obtain

jV (T ) n (V (Tv1) [ V (Tv2))j � 1 +
d�1X

i=0

(�� 2)(�� 1)i � jV3j:

7



Thus, in both cases we obtain

X

x2fx1;x2;:::;xpg

y2V (T )n(V (Tv1
)[V (Tu))

(dT (x; y)� dT 0(x; y)) = p � jV (T ) n (V (Tv1) [ V (Tv2))j � p � jV3j � 0:

Now, it remains to consider

X

x2fx1;x2;:::;xpg

y2V (Tv1
)[V (Tu)

(dT (x; y)� dT 0(x; y)):

The tree T 0[V (Tv1) [ fx1; x2; :::; xpg] contains a tree T �
u
�= Tu as a subgraph such that

fx1; x2; :::; xpg � V (T �
u ). Let V �

1
= V1 n V (T

�
u ). Note that V �

1
6= ; and that V �

1
= V1 if

p = jV2j. Thus, X

x2fx1;x2;:::;xpg

y2(V (Tv1
)[V (Tu))nV

�
1

(dT (x; y)� dT 0(x; y)) = 0

and X

x2fx1;x2;:::;xpg

y2V �
1

(dT (x; y)� dT 0(x; y)) � p � jV �
1
j � ((2d+ 1)� (2d� 2)) > 0:

Hence, we obtain

�(T )� �(T 0) �
X

x2fx1;x2;:::;xpg

y2V (Tv1
)[V (Tu)

(dT (x; y)� dT 0(x; y))

=
X

x2fx1;x2;:::;xpg

y2V �
1

(dT (x; y)� dT 0(x; y)) > 0:

which is a contradiction to the choice of T . This completes the proof in this case.

Case 2. The distance of any two endvertices in Tv from v di�ers by at most one.

Let Mk(R;�) � jV (Tv)j < Mk+1(R;�) for some k � 1. The above claim implies that the

tree T arises from the tree T0 in T (R;�) of order Mk(R;�) by attaching n �Mk(R;�)

endvertices that lie on the line R�fk+1g to the vertices of T0 that lie on the line R�fkg.

By the Lemma 2.4, we obtain that desired result. This completes the proof in this case

and the proof of the theorem is complete.

2

Now we come to the proof of Theorem 2.2.

Proof of Theorem 2.2: If jC(T )j = 1, then Theorem 2.5 immediately implies Theorem

2.2. Now let C(T ) = fc1; c2g. By Theorem 2.3, the trees Tc1 and Tc2 both have exactly
n
2
vertices and by Theorem 2.5, Tc1 ; Tc2 2 T (�� 1;�). This implies that Tc1 and Tc2 are

isomorphic. It follows that jV (Tc1)j = jV (Tc2)j = Mk(�� 1;�) for some k � 0, otherwise

8



Lemma 2.4 would provide a tree, which is better than the optimal. This implies that

T 2 T (�;�) and the proof is complete.

2

If T 2 T (�;�) has order n = Mk(�;�) for some k � 1, then a tedious but straightforward

calculation yields

�d(T ) =
2 � [(�� 1)2k(k�(�� 2)� 2� + 1) + (�� 1)k2�� 1]

(�� 2) � [�(�� 1)2k � (� + 2)(�� 1)k + 2]

= (1 + o(1)) � 2k (�!1)

= (1 + o(1)) � log
��1

1

�
((�� 2)n+ 2) (�!1):

At the end of this section we want to mention another extremal property of the trees in

T (�;�). For a graph G let ~�(G) = minf�G(v)jv 2 V (G)g: The straightforward proof is

left to the reader.

Proposition 2.6 Let T be a tree of order n and maximum degree � � 3. If ~�(T ) � ~�(T 0)

for all trees T 0 of order n and maximum degree �, then T 2 T (�;�).

3 Trees with maximum Wiener Index

A tree is a caterpillar if the deletion of its endvertices produces a path. A caterpillar of

order n whose vertices are either endvertices or of degree � will be denoted by C(n;�)

(note that n � 2 mod (� � 1)). Let x(n;�) denote an endvertex of C(n;�) such that

the neighbour of x(n;�) has at most one neighbour of degree �. The following theorem

settles Problem 1.2.

Theorem 3.1 Let T be a tree of order n such that dT (x) 2 f1;�g for all x 2 V (T ) and

some � � 3.

a) Let x 2 V (T ) be such that �T (x) = maxf�T (y)jy 2 V (T )g: Then

�T (x) � �C(n;�)(x(n;�))

with equality if and only if there is an isomorphism between T and C(n;�) that maps

x on x(n;�).

b) �(T ) � �(C(n;�)) with equality if and only if T and C(n;�) are isomorphic.

Proof: a) The proof of this part is straightforward and we leave it to the reader.

b) We assume that T maximizes the Wiener index among all trees of order n whose

vertices are either endvertices or of maximum degree. Furthermore, we assume that T is

a counterexample of minimum order, i.e. T 6�= C(n;�) and the conclusion of the theorem

holds for all orders < n.
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This implies that there is a vertex x 2 V (T ) of maximum degree such that for some

k � 3 the vertices y1; y2; :::; yk are the neighbours of x of maximum degree. For 1 � i � k

let Vi be the vertex set of the component of T [V (T ) n fxg] that contains yi and let Ti =

T [Vi [ fxg].

We assume that for some 1 � i � k there is no isomorphism between Ti and C(n(Ti);�)

that maps x on x(n(Ti);�). Let T 0 be a tree on the vertex set of T such that

T 0[V (T ) n Vi] �= T [V (T ) n Vi]

and there is an isomorphism between T 0
i = T 0[Vi [ fxg] and C(n(Ti);�) that maps x on

x(n(Ti);�). We have

�(T ) = �(Ti) + �(T [V (T ) n Vi]) + jVij � �T [V (T )nVi](x) + jV (T ) n (Vi [ fxg)j � �Ti(x)

and

�(T 0) = �(T 0
i ) + �(T [V (T ) n Vi]) + jVij � �T [V (T )nVi](x) + jV (T ) n (Vi [ fxg)j � �T 0

i
(x):

Therefore

�(T )� �(T 0) = �(Ti)� �(T 0
i ) + jV (T ) n (Vi [ fxg)j � (�Ti(x)� �T 0

i
(x)):

If Ti 6�= C(n(Ti);�), then �(T 0
i ) > �(Ti), since T is a minimum counterexample. Further-

more, by part a), �T 0
i
(x) > �Ti(x) and we have �(T 0) > �(T ) which is a contradiction. If

Ti �= C(n(Ti);�), then �(T 0
i ) = �(Ti). Furthermore, by part a), �T 0

i
(x) > �Ti(x) and we

have �(T 0) > �(T ) which again is a contradiction.

Hence for all 1 � i � k there is an isomorphism between Ti and C(n(Ti);�) that maps

x on x(n(Ti);�).

Now let z be an endvertex of T in V2 such that the neighbour of z has at most one neighbour

of maximum degree. Let the tree T 0 (see Figure 3 for an example of the construction) have

vertex set V (T ) and edge set

E(T 0) = (E(T ) n fay1ja 2 NT (y1) n fxgg) [ fazja 2 NT (y1) n fxgg:

t t t t t

t

t

t

t t t

ttttt

t

t

t

tT z

xy1

y2

t t t t t

t

t

t

t t t

ttttt

t

t

t

tT 0 z

xy1

y2

Figure 3

In view of the structure of the trees C(n(Ti);�) it is now trivial to see that again �(T 0) >

�(T ) which is a contradiction and the proof is complete. 2

Acknowledgement. An earlier version of this paper contained Theorem 2.2 as a con-

jecture together with several partial results. Independently of us, F. Jelen and E. Triesch

found a di�erent proof for Theorem 2.2.
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