Counting rooted spanning forests in complete multipartite graphs

László A. Székely ${ }^{1}$
Department of Mathematics
University of South Carolina
Columbia, SC 29208

Abstract

Jin and Liu discovered an elegant formula for the number of rooted spanning forests in the complete bipartite graph $K_{a_{1}, a_{2}}$, with b_{1} roots in the first vertex class and b_{2} roots in the second vertex class. We give a simple proof to their formula, and a generalization for complete m-partite graphs, using the multivariate Lagrange inverse.

Y. Jin and C. Liu [3] give a formula for $f(m, l ; n, k)$, the number of spanning forests of the labelled complete bipartite graph $K_{n, m}$, where in the forest every tree is rooted, there are k roots in the first vertex class (among the n vertices) and l roots in the second vertex class (among the m vertices), and the trees in the forest are not ordered. They discovered the elegant formula

$$
\begin{equation*}
f(m, l ; n, k)=\binom{m}{l}\binom{n}{k} n^{m-l-1} m^{n-k-1}(k m+l n-l k) . \tag{1}
\end{equation*}
$$

The goal of the present note is generalization of (1) from complete bipartite to complete multipartite graphs, through a simple proof using the multivariate Lagrange inverse.

Let $f\left(a_{1}, b_{1} ; \ldots ; a_{m}, b_{m}\right)$ denote the number of spanning forests of the labelled complete multipartite graph $K_{a_{1}, a_{2}, \ldots, a_{m}}$, where in the forest every tree is rooted, there are b_{i} roots in the $i^{t h}$ vertex class for $i=1,2, \ldots, m$, and the trees in the forest are not ordered. Let $w_{i}\left(t_{1}, \ldots, t_{m}\right)$ denote the multivariate exponential generating function (EGF) of the numbers $f\left(a_{1}, 0 ; \ldots ; a_{i}, 1 ; \ldots ; a_{m}, 0\right)$ (the number of rooted spanning trees of the complete multipartite graph $K_{a_{1}, a_{2}, \ldots, a_{m}}$, if the root has to be in the $i^{t h}$ class), i.e.

$$
\begin{equation*}
w_{i}\left(t_{1}, \ldots, t_{m}\right)=\sum_{a_{1}=0}^{\infty} \ldots \sum_{a_{i}=1}^{\infty} \ldots \sum_{a_{m}=0}^{\infty} f\left(a_{1}, 0 ; \ldots ; a_{i}, 1 ; \ldots ; a_{m}, 0\right) \prod_{k=1}^{m} \frac{t_{k}^{a_{k}}}{a_{k}!} \tag{2}
\end{equation*}
$$

[^0]The key identity for our argument is

$$
\begin{equation*}
t_{i} e^{\left(w_{1}+w_{2}+\ldots+w_{m}\right)-w_{i}}=w_{i} \quad \text { for } \quad i=1,2, \ldots, m \tag{3}
\end{equation*}
$$

The proof of formula (3) is based on the following combinatorial decomposition. Given a rooted spanning tree of the complete multipartite graph $K_{a_{1}, a_{2}, \ldots, a_{m}}$, where the root is in the $i^{t h}$ class, remove the root vertex from the tree to obtain a spanning forest of $K_{a_{1}, a_{2}, \ldots, a_{i}-1, \ldots, a_{m}}$, and mark the former neighbors of the eliminated root vertex as roots in the forest. This decomposition establishes a bijection between the following two sets:
the set of rooted spanning trees of the complete multipartite graph $K_{a_{1}, a_{2}, \ldots, a_{m}}$, where the root is in the $i^{\text {th }}$ vertex class, and
the set of some ordered pairs, where the first entry of the ordered pair is one of the vertices of the $i^{\text {th }}$ vertex class, the second element of the ordered pair is a rooted spanning forest of $K_{a_{1}, a_{2}, \ldots, a_{i}-1, \ldots, a_{m}}$, where the vertex from the first entry is removed from the $i^{\text {th }}$ vertex class, and the trees of the forest are not ordered.
Now $t_{i} e^{\left(w_{1}+w_{2}+\ldots+w_{m}\right)-w_{i}}$ is the EGF of the set of ordered pairs in question, according to the Exponential Formula; and w_{i} is the same EGF by the bijection. Set $\Phi_{i}\left(w_{1}, w_{2}, \ldots, w_{m}\right)=e^{\left(w_{1}+w_{2}+\ldots+w_{m}\right)-w_{i}}$.

According to the multiplication rule of EGF's, $\prod_{k=1}^{m} w_{k}^{b_{k}}$ is the multivariate exponential generating function of the number of rooted spanning forests of complete m-partite graphs, with b_{k} roots in the $k^{t h}$ vertex class, where the trees rooted in the same part are ordered; hence

$$
\begin{equation*}
f\left(a_{1}, b_{1} ; \ldots ; a_{m}, b_{m}\right)=\frac{a_{1}!a_{2}!\cdots a_{m}!}{b_{1}!b_{2}!\cdots b_{m}!}\left[t_{1}^{a_{1}} t_{2}^{a_{2}} \cdots t_{m}^{a_{m}}\right] \prod_{k=1}^{m} w_{k}^{b_{k}} \tag{4}
\end{equation*}
$$

According to Part 1 of Theorem 1.2.9 (Multivariate Lagrange Formula) from [2], (3) implies

$$
\begin{align*}
{\left[t_{1}^{a_{1}} t_{2}^{a_{2}} \cdots t_{m}^{a_{m}}\right] \prod_{k=1}^{m} w_{k}^{b_{k}} } & =\left[\lambda_{1}^{a_{1}} \cdots \lambda_{m}^{a_{m}}\right]\left\{\operatorname{det}\left|\delta_{i j}-\frac{\lambda_{j}}{\Phi_{i}} \cdot \frac{\partial \Phi_{i}}{\partial \lambda_{j}}\right|\right. \tag{5}\\
& \left.\times \lambda_{1}^{b_{1}} \cdots \lambda_{m}^{b_{m}} \prod_{k=1}^{m} e^{a_{i}\left(w_{1}+\ldots+w_{m}\right)-a_{i} w_{i}}\right\} \tag{6}
\end{align*}
$$

where Φ_{i} is a short-hand notation for $\Phi_{i}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$. Observe that $\frac{\lambda_{j}}{\Phi_{i}} \cdot \frac{\partial \Phi_{i}}{\partial \lambda_{j}}=$ $\left(1-\delta_{i j}\right) \lambda_{j}$, and the for the determinant in (5) we have the well-known evaluation

$$
\begin{equation*}
\operatorname{det}\left|\delta_{i j}-\left(1-\delta_{i j}\right) \lambda_{j}\right|=\left(\lambda_{1}+1\right) \cdots\left(\lambda_{m}+1\right)\left(1-\frac{\lambda_{1}}{\lambda_{1}+1}-\ldots-\frac{\lambda_{m}}{\lambda_{m}+1}\right) \tag{7}
\end{equation*}
$$

(see for example Exercise 225 in [1]). Now (7) is easily rewritten as

$$
\begin{equation*}
1-\sum_{j=2}^{m}(j-1) \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{j} \leq m} \lambda_{i_{1}} \lambda_{i_{2}} \cdots \lambda_{i_{j}} \tag{8}
\end{equation*}
$$

and (8) is rewritten as

$$
\begin{equation*}
\sum_{l_{1}=0}^{1} \sum_{l_{2}=0}^{1} \ldots \sum_{l_{m}=0}^{1}\left(1-l_{1}-l_{2}-\ldots-l_{m}\right)\left(\lambda_{1}\right)_{l_{1}}\left(\lambda_{2}\right)_{l_{2}} \cdots\left(\lambda_{m}\right)_{l_{m}} \tag{9}
\end{equation*}
$$

where $(x)_{t}$ stands for the falling factorial, $(x)_{0}=1$ and $(x)_{1}=x$. Introducing the notation $A=a_{1}+a_{2}+\ldots+a_{m}$ and using (9), we find that (5) and (6) are equal to

$$
\begin{gather*}
{\left[\lambda_{1}^{a_{1}-b_{1}} \lambda_{2}^{a_{2}-b_{2}} \cdots \lambda_{m}^{a_{m}-b_{m}}\right] \sum_{l_{1}=0}^{1} \sum_{l_{2}=0}^{1} \ldots \sum_{l_{m}=0}^{1}\left(1-l_{1}-l_{2}-\ldots-l_{m}\right)} \\
\quad \times\left(\lambda_{1}\right)_{l_{1}}\left(\lambda_{2}\right)_{l_{2}} \cdots\left(\lambda_{m}\right)_{l_{m}} e^{\left(A-a_{1}\right) \lambda_{1}} e^{\left(A-a_{2}\right) \lambda_{2}} \cdots e^{\left(A-a_{m}\right) \lambda_{m}} \\
=\left(\prod_{k=1}^{m} \frac{\left(A-a_{k}\right)^{a_{k}-b_{k}-1}}{\left(a_{k}-b_{k}\right)!}\right) \sum_{l_{1}=0}^{1} \sum_{l_{2}=0}^{1} \ldots \sum_{l_{m}=0}^{1}\left(1-l_{1}-l_{2}-\ldots-l_{m}\right) \tag{10}\\
\times\left(\prod_{j=1}^{m}\left(A-a_{j}\right)^{1-l_{j}}\left(a_{j}-b_{j}\right)_{l_{j}}\right) . \tag{11}
\end{gather*}
$$

Combining (10), (11), and (4), we obtain the main result:
Theorem 1

$$
\begin{gather*}
f\left(a_{1}, b_{1} ; \ldots ; a_{m}, b_{m}\right)=\left(\prod_{k=1}^{m}\binom{a_{k}}{b_{k}}\left(A-a_{k}\right)^{a_{k}-b_{k}-1}\right) \tag{12}\\
\times \sum_{l_{1}=0}^{1} \sum_{l_{2}=0}^{1} \ldots \sum_{l_{m}=0}^{1}\left(1-l_{1}-l_{2}-\ldots-l_{m}\right)\left(\prod_{j=1}^{m}\left(A-a_{j}\right)^{1-l_{j}}\left(a_{j}-b_{j}\right)_{l_{j}}\right) . \tag{13}
\end{gather*}
$$

For the case $m=2$, formula (12), (13) specializes to the formula of Jin and Liu (1), and formula (12), (13) yields a closed formula for every fixed m. Note that for the case $m=2$ we do not even have to evaluate the determinant in general, since for $m=2$ simply

$$
\operatorname{det}\left|\delta_{i j}-\left(1-\delta_{i j}\right) \lambda_{j}\right|=1-\lambda_{1} \lambda_{2}
$$

References

[1] D. K. Faddeev, I. S. Sominskii, Problems in higher algebra, translated by J. L. Brenner, W. H. Freeman and Co., San Francisco-London, 1965.
[2] I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley \& Sons, New York, 1983.
[3] Y. Jin and C. Liu, Enumeration for spanning forests of complete bipartite graphs, to appear in Ars Combinatoria.

[^0]: ${ }^{1}$ Research partially supported by the NSF Grant 0072187 and the Hungarian NSF Grant T 032455.

