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Abstract

The function lattice, or generalized Boolean algebra, is the set of
f-tuples with the ith coordinate an integer between 0 and a bound
n;. Two f-tuples t-intersect if they have at least ¢ common nonzero
coordinates. We prove a Hilton—Milner type theorem for systems of
t-intersecting /-tuples.
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1 Introduction

Let t, ¢, and n; < ny < --- < ny be positive integers. Denote by Fy(ny, ..., ny)
the set of all /-tuples

{k=(k1,.. k) : 0<hki<m; 1<i</{}.

The support of an (-tuple k is the set of the non-zero coordinates: supp(k) =
{i:k; #0}. We can define a partial ordering on Fy(ny,...,n,) by j < k if
supp(j) C supp(k) and for all i@ € supp(j) we have j; = k;. This par-
tially ordered set is called the function lattice (see for example [5]). An-
other frequently used name is generalized Boolean algebra, because the case
ny = ng = 1, i.e., when all n; are equal to 1, is just the case of (characteristic
vectors of) set systems on an (-element underlying set.

We say that two /-tuples j and k are t-intersecting if there are at least
t different integers ¢ € supp(j) N supp(k) such that j; = k;, or, with other
words, if there is an /-tuple t with support of size t such that t < k and t < j.
Denote by my(ni,...,ng) the maximum cardinality of ¢-intersecting ¢-tuples
in Fy(ny,...,ne) and by M;(ny, ..., ne) the set of all t-intersecting families with
this cardinality. The problems to determine the value my(ny,...,ny) and to
describe the structures of the families in My(n,...,ny), have a very long
and notable history even in the case n, > 1, and this is the case we are
concentrating on in this note.

We start with the history of the case ¢ = 1. C. Berge (1974, [4]) de-
termined my(ny,...,ny) and My(ny,...,ny) when all (-tuples have (-element
supports. Different proofs of Berge’s result were given by Hsieh (1975, [19]),
by Livingston (1979, [21]) in the case when ny = n,. The first result for set
systems with uniform support size different from ¢, but with n; = ny, is due
to Frankl (published in 1983, [9]). Moreover, Engel (1984, [10]) handled the
case with n; = ny, when the supports of the /-tuples are arbitrary. In fact,
Engel proved a Bollobds-type inequality (in the spirit of [8]) for the set of
intersecting /-tuples; a simpler proof of this last result is due to P. L. Erdés,
U. Faigle and W. Kern (1992, [12]). In 2001 C. Bey gave a complete solution
to the t = 1 case, for arbitrary n;’s and any uniform support size (2001, [6]),
using his general weighted intersection theorem. This case shows interest-
ing connections to the complete intersection theorem of R. Ahlswede and L.
Khachatrian ([2]).

For arbitrary values of ¢, the first result is due to D. Kleitman (1966 [20])
in the case when ny; = n, = 2, and all supports are of size £. Then P. Frankl
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and Z. Firedi handled the case t > 15, all supports are of size ¢, and n; =
ne (1980, [14]), using Frankl’s version of the Erdés-Ko-Rado theorem (see
[11]). Later A. Moon generalized this result for cross t-intersecting families
(1982, [22]). The paper by Deza and Frankl (1983, [9]) also contains the
solution for the case when all supports are of the same size k and n, =
ny, for ¢ large enough as a function of k and t. H-D. Gronau proved the
first result for t-intersecting families with ¢-element supports in the case of
non-equal n;’s (1983, [16]). R. Ahlswede and L. Khachatrian (1998, [3]),
and independently P. Frankl and N. Tokushige (1998, [15]), solved the ¢-
intersecting problem for arbitrary ¢ for /-tuples with full support, applying
Ahlswede and Khachatrian’s seminal complete intersection theorem for set
systems (1997, [2]). Finally C. Bey (1999, [5]) determined all parameters
(, k,t,n, for which “fixing ¢ coordinates” yields the solution to the intersection
problem.

All these results can be summarized in the following structural way: un-
der some conditions for the parameter values, the (often unique) optimal
t-intersecting family consists of all /-tuples that are greater or equal than
a fixed (-tuple t with support size t. In the literature such set systems are
called trivially t-intersecting families. As it is well known in the theory of ¢-
intersecting set systems, there is a long-standing effort to solve the nontrivial
t-intersection problem: what is the size and the structure of the maximum
t-intersecting families where the total intersection of the sets has less then
t elements. The first such result is due to A. J. H. Hilton and E. C. Mil-
ner (1967, [18]). The complete solution is again due to R. Ahlswede and L.
Khachatrian (1996, [1]).

As far as these authors are aware, the only t-intersection result known
for the function lattice Fy(n,...,ny) is due to C. Bey and K. Engel (2000,
[7]) [Example 10, 11 and Lemma 18]: this is the complete solution to the
non-trivial ¢-intersection problem in the case of equal n;’s.

The goal of this paper is to prove a more general non-trivial ¢-intersection
result for the subset of the function lattice Fy(ny, ..., ny) consisting of ¢-tuples
with a fixed size k of the support, for some parameter values t < k < £
and ny < no < --- < ny. The result is based on a Hilton—Milner type
theorem for poset series, proved by the authors (2000, [13]). The proof of
this latter uses the so-called kernel method, introduced by A. Hajnal and
B. Rothschild (1973, [17]), therefore all of our results are valid only from
a threshold for the parameters. We note that, perhaps surprisingly, the



application of [13] is not for the natural partial order of Fy(ny,...,ny). We
shall investigate families of intersecting chains in the natural partial order of
F¢(n1,...,ne) in a forthcoming paper. Of course, a direct application of the
kernel method may yield similar results, but citing [13] saves a lot of work.
We admit that the methods of [7] are likely to allow generalization to the
case of different n;’s.

In Section 2 we recall the necessary details from [13], while in Section 3
we reformulate the t-intersection problem of the function lattice and apply
for it the method described in Section 2.

2 Non-trivial t-intersection results for posets

A t-chain L in a poset P is a strict chain of elements £ = (z; < 29 < -+ <
x;). For a given t-chain £ = (z1 < 20 < -+ < ay), let Tpy(x1, 22, ..., T¢)
denote the set of k-chains in P which contain £ as a subset. Define Tp (21, 22,
ooy xy) = |Tpr(xy, @a, ..., 2)|. Sometimes we write T" instead of Ty, when
it does not cause ambiguity. Also define ry(P, k) = maxTpy(z1, xa, ..., 24,
where the maximum is taken for ¢t-chains z; < x93 < - -+ < 2y in P. It follows
from the definition that

’I“Z‘(P, k) Z Ti—i—l(Pu k’) (].)

For a t-chain X C P and y ¢ X, let T(X,y) denote the number of k-
chains which contain X and y. For a ¢t-chain X and a k-chain £ in P, such
that [X UL| =k + 1, let y; € £\ X such that T(X,y}) minimize T'(X,y)
for the elements y € £\ X, and set

(X, L)= Y T(X.y). (2)

YEL\X, y#y,

Also define
M (P, k) = max 7(X, L), (3)
and
MZ(P k)= max T(X,yz)- (4)

7(X,L)=M, (P,k)

Now the following Hilton-Milner type theorem holds:



Theorem 1 For fited 1 < t < k, and a sequence of posets P,, let us be
giwen a maximum sized family F, of non-trivially t-intersecting k-chains in
P,. Assume further that

lim Tt+2(Pn7 k)/M:(Pn, ]{?) = 0. (5)

Then, for n sufficiently large, F, has one of the following two descriptions:

(i) there exists at-chain X and a (k+1—t)-chain ), such that XNY = 0;
and F,, is the following set of k-chains:

Fx,Y) = {L: XCLand LNY #D}U
U {L: YCLand |[LNX|=t—1}, (6)

where the second set of chains is non-empty;
(1) there exists a (t+2)-chain Z, and F, is the following set of k-chains:
FZ)={L: |[LNZ]|>t+1}, (7)

and | (Nper, LN Z[ <t —1.

3 New results

Let t <k < /{and n; <--- < ny be positive integers. We define two families
Fi(t, k;nq,...,ng) and Fo(t, k;ny, ..., ng) of non-trivially ¢-intersecting families
in Fy(nq,...,ny) with support size k as follows.

(i) Let ji,72,...,Jk+1 be integers satisfying 1 < j; < n; for i € [1,k + 1].
We define Fi(t, k;nq, ..., ng) as the set of ¢-tuples k = (ky, ..., ky) with
support size k which belong to the set

{k : k; = j; for all i € [1,t] and for at least one i€ [t+ 1,k + 1|} U
{k:k;=j;forall i€[t+1,k+1]and for t — 1 values i € [1,¢]}. (8)

(ii) Let ji, 72, .., e be integers satisfying 1 < j; < n; for i € [1,t + 2].
We define Fy(t, k;nq, ...,ng) as the set of -tuples k = (ky, ..., k¢) with
support size k which belong to the set

{k : k; = j; for at least ¢t + 1 values i € [1,t + 2|}. 9)



Note that |Fi(t, k;nq,...,ne)| and |Fa(t, k;nq, ..., ng)| do not depend on the
particular choices of the j;. Our goal is to give sufficient conditions for
the parameter values t, k, ¢, nq,...,n, which ensure that either F; or F; is
of maximum size among the non-trivially t-intersecting families of /-tuples
with support size k.

Given ny < --- < ny, we define a partially ordered set (P(nq, ..., ng), <
as follows. The underlying set is P(nq,...,ns) == {(4,j) : 1 <i < ¢, 1
Jj < n;}, and (i1,51) < (i9, o) if and only if i3 < 4. The map k
(k1 ..., ko) — {(i, ki) € P(ni,...,ng) : k; # 0} is obviously a bijection between
F¢(n,...,ne) and the chains in the poset (P(nq,...,n¢), <), and {-tuples with
support size k are mapped to k-chains. Therefore, t-intersecting families of
(-tuples in Fy(ny,...,ny) with support size k correspond to t-intersecting k-
chains in (P(nq,...,ng), <). For a subset ) C P(ny,...,ny), we define the
support of Y as the set of first coordinates of the elements of ); namely,
supp(Y) = {i < £:3j < mn; (i,j) € Y}. We start with the determination
of the quantities ry1o, M;, and M* defined in Section 2. Note that for any
m-chain £ in P = (P(ny,...,ny), <), we have

AC[1,£]\supp(L): i€A
|Al=k—m

~—

I IA

Proposition 2 Let t < k < £, let P = (P(n1,...,n), <) and let L be an
m-chain in P. Suppose that (i, k;) € L and j & supp(L) with j < i, and let
L= (L\{(i,ki)}) U{(J, kj)} for some k; < n;. Then Tp (L) > Tp (L),

with equality if and only if nj = njy1 = --- =n,.

Proof. We obtain Tp j(L*) from Tp (L) by replacing each occurrence of n;
by n; in the sum in (10). Hence the inequalities n; < n;4q < --- < n; imply
both assertions of the proposition. O

Let o;(z1, 79, ..., T,,) denote the i elementary symmetric polynomial in

variables x1, xa, ..., ;. We define og(z1, 29, ..., ) = 1.

Lemma 3 Lett < k < { and let P = (P(ny,...,ng),<). Then

Tt+2(P, k) = Z an :ak,t,g(an,...,m). (11)

AC[t+3,0:  i€A
|Al=k—t—2



Proof. Proposition 2 implies that for (¢ + 2)-chains £ in P, the quantity
Tp (L) is maximized when supp(L) = [1,¢ + 2]. O

Lemma 4 Lett < k < { and let P = (P(ny,...,ng),<). Then for any t-
chain X and k-chain L in P with |XUL| = k+1, we have M, (P, k) = 7(X, L)
if and only if the multiset relations {n; : i € supp(X)} = {n; : 1 <1 <t}
and {n; : i € supp(L)} D {n; : t+ 1 <i <k} hold.

Proof. We first note that the condition |X¥ UL| = k+ 1 implies that X and L
have t — 1 common elements and |£\ X| = k—t+ 1. Moreover, since 7(X, L)
is the sum of only k —t values T'(X,y) with y € £\ X, it is possible that for
a fixed t-chain X', 7(X, £) is maximized for some £ even though T'(X,y) =0
for some y € L\ X.

For a fixed t-chain X', Proposition 2 implies that 7(X, £) is maximized
for a k-chain £ whose support contains the k — ¢t smallest elements of [1, £] \
supp(X). Moreover, another application of Proposition 2 shows that if X’
is obtained by replacing an element (i1, j;) € X with some (ig, jo) satisfying
ip < i1 and 49 the smallest number not in supp(X) then 7(X’, L") > 7(X, L)
for an optimal £’ constructed in the way described in the previous sentence.
Hence M. (P,k) = 7(X, L) for X, £ with supp(X) = [1,¢] and supp(L) 2
[t + 1,k]. Finally, Proposition 2 also implies that if supp(X’) # [1,¢] or
supp(L') 2 [t + 1, k] then 7(X', L) < M, (P, k), unless the condition about
the multiset of n; values described in the statement of the lemma holds. O

Lemma 5 Lett < k < { and let P = (P(ny,...,ng),<). Then

MPER) = Y [T = orea(n i, ne). (12)
AC[t+10\{k+1}:  i€A
|A|=k—t—1

Proof. Let X be a t-chain and £ be a k-chain with |[X¥ U £L| = k + 1 and
7(X,L) = M;(P,k). Then, by Lemma 4, we have the multiset relations
{ni:i€supp(X)} ={n;: 1 <i<t}and {n;:i €supp(L)} D {n;:t+1<
i < k}. Also, we have k < |[supp(X U L)| < k+ 1. If |[supp(X U L)| = k then
there exists y; = (i, k;) € £\ X with ¢ € supp(X) and so T'(X,y}) = 0. If
|supp(X U L)| = k + 1 then Proposition 2 implies that T'(X, y) is minimized
in £\ X for the y} = (i, k;) € L\ X with i = maxsupp(L\ X) and, in order to
maximize T'(X, y}), we have to choose maxsupp(L\ X) as small as possible.
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Combining these observations, we obtain that max7 (X, y}) is achieved in
the case supp(&X') = [1,t], supp(L\X) = [t+1, k+1], and supp(y;) = {k+1},
leading to (12). O

The following two lemmas will be useful at the comparison of r;, 5 and
Lemma 6 Let t, k, ¢ satisfy k > t+ 2 and ¢ > 2k —t — 1, and let P =
(P(n1,...,n0),<). Then

k—t—2
=2k +t+2

Proof. On one hand, if A C [t +1,/] satisfies |[A| =k —t—2and k+1€ A
then

T2 (P k) < <1+ >0k—t—2(nt+1,~-~7n/k:17~-,ne)-

Zse[k+2 \A Tbs
P (l—k—-1)—(k—t—3) e AN{EA1

On the other hand, any (k — ¢ — 2)-element subset B of [t + 1,¢] \ {k + 1}
can be obtained at most k — ¢t — 2 ways by replacing £ + 1 by an element
j > k+ 2 of B. Hence Lemma 3 implies

rtJrQ(P: k) = O'kfth(ntJrZSa cey nf) S O'kfth(ntJrla sy 77/@) S

<1+ k—t—2 ) ( _ )
———————— | O—¢+—2(N s n s Ny).
€—2]€+t+2 k—t—2\Ttt415 «oey Tok415 -y 104

O

Lemma 7 Let t, k, 0 satisfy k > t+ 2 and let P = (P(ny,...,n¢),<). Then
(—k+1
kE—t—1
Proof. Using that any (k —t — 2)-element subset B of [t +1,¢]\ {k+ 1} can
be obtained ({ —t—1) — (k—t—2) = ¢ — k+ 1 ways by deleting an element
different from k£ + 1 from a (k — ¢ — 1)-element subset of [t + 1,¢] \ {k + 1},
we have

M (P, k) > np Ohta(Mests o TiTL, ome). (13)

—

(k —t— 1)ak7t71(nt+17 ooy M1, "'7”5) =

L
E nsgk—t—Q(nH—ly‘“7”87‘“7”/47-1—17‘“7”5) >

s=t+1
s#k+1

—

N1 (€ — K+ 1)op—t2(Mp11, oy Mhp 1, -5 M)
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Hence Lemma 5 implies (13). O

Lemma 8 Lett < k < £ and let P = (P(n1,....,n¢), <). If X is a t-chain
and Y is a k+1—t-chain with XNY = 0 then |F(X, V)| < |Fi(t, k;na, ..., ng)|
for the families of chains defined in (6) and (8), respectively.

Proof. First note that |supp(X) N supp(Y)| < 1, because otherwise there
is no k-chain containing ) and t — 1 elements of &' as required in (6). If
|supp(X)Nsupp(Y)| = 1, say (i, f;) € X and (i, ¢g;) € Y for some f; # g;, then
there exists exactly one k-chain in F(X,)) which contains (7, g;), namely,
(YUX)\{(4, fi)}. Hence, if we define Yy = (Y \ {(i,9:)}) U{(j, 1)} for some
J & supp(X UY) then |F(X,Y)| < |F(X,V1)|, because F(X, D)) contains
all but one chain from F(&X,)) and it contains ¢ chains not in F(X,)) (the
chains obtained by deleting an element of X from X U Y). Therefore, it is
enough to prove that |F(X,))| < |Fi(t, k;nq,...,ng)| for chains X,) with
supp(X) Nsupp(Y) = 0.

Suppose now that supp(X) Nsupp()) = (). There are exactly ¢ chains
in F(X,)) containing ) and there are ¢ chains in Fi(t, k;nq,...,ny) with
support containing [t + 1, k + 1]; hence it is enough to show that for the set
of chains

F (X, Y)={L: X C Land LNY # 0}

and
Fi(t, k;ng,...,ng) ={L € Fi(t, k;nq,...,ng) : supp(L) D [1,¢]}

we have |F*(X, V)| < |Fi(t, k;n, ...,ng)|. If supp(X) # [1,¢] then we define
a new set of chains by the following shifting operation. Let i; € [1,t] be
the smallest number not in supp(X) and let i € supp(X’) with iy > 7y, say
(19, ki,) € X. For a k-chain £ € F*(X,)), let

([’ \ {(i% ku)}) U {(ila 1)} if il Q Supp(£)7
(L) = S (LA, ki), (2, kip) }) UA{ (41, 1), (2, ki) }

if (i1, k;,) € L for some ki, < n;,.

(14)
Moreover, define X' = (X' \ {(i2, ki,)}) U {(i1,1)} and
-2 it iy ¢ supp(Y)
(y \ {(il, ]{?“)}) U {(ig, kf“)} if (’L.l, k?“) S y for some kil S n11(15>



Then it is clear that f is an injection from F*(X',)) into F*(X’,)’), and
so |F*(X, )| < |FY(X",Y)| and |F(X,Y)| < |F(X',Y')|. Repeating this
procedure, we arrive to some t-chain X" and (k + 1 — t)-chain ) such that
|FH(X,P)] < |F*(&X7,Y")| and supp(X”) = [1,t] and supp(X")Nsupp(Y”) =
(. Tt is enough to show that |F*(X", V)| < |F(t, k;na, ..., ng).

If supp()”) # [t+1, k+1] then let iy € [t+1, k+1] be the smallest number
not in supp(Y”) and let iy € supp(Y”) with is > iy, say (is, k;,) € V". By
renumbering the i9th coordinate, we may assume that k;, < n;,. We apply
the following modification of the shifting operation described in the previous

paragraph. For a k-chain £ € F*(X",Y"), let
(((L£\ {2, 52)}) U{(i1, j2) }

if iy ¢ supp(L) and (ig, j2) € L with jo < nq,
(LA, 1)) V{2, 51)}
g(L) = if iy & supp(L) and (i1,71) € L,
(LN A1, 1), (2, 52) ) U { (i1, J2), (i2, j1) }
if (41, 1), (42, J2) € £ and jo < ny,
\ L otherwise.

(16)
Moreover, define V" = (V" \ {(i2, kiy)}) U {(i1, ki,)}. Then g is an injection
fI'OITl f*(X//, y//) iIltO F*(X/”, 3}///)7 and SO |F*(XH7 y//)| S |f>k()c'///7 y///)|
and |F(X", V") < |F(X",Y")|. Repeating this procedure, we arrive to a
member of the family Fy (¢, k;ny, ..., ng). O

Lemma 9 Lett < k < { and let P = (P(n1,...,n¢), <). If Z is a (t + 2)-
chain then |F(Z)| < |Fa(t, k;na, ...,ne)| for the families of chains defined in
(7) and (9), respectively.

Proof. Given F(Z2), if supp(Z) # [1,t + 2] then we can apply the shifting
procedure described in (16), not decreasing the size of F(Z), and eventually
arriving to a set of chains in the family Fy(t, k;nq, ..., ng). O

Lemma 10 For Fy and Fy from (8) and (9),

’fl‘ = ak,t(ntﬂ, ...,ng) — ak,t(ntﬂ -1, vy M1 — 1,nk+2, ...,ng) +1
t+2

|~7'-2| = ng—t—l(niynt—l—?n -~7W) - (t + 1)0k—t—2(nt+37 e W)‘
=1

10



Proof. Explanation for |F;|. The second line of (8) yields the term ¢, and
the cardinality arising from the first line of (8) is obtained as a difference,
counting all functions k with k; = j; for all i € [1,¢], and subtracting the
number of functions k with k; = j; for all i € [1,¢] that have no i € [t +
Explanation for |F,|. Fix a (¢ + 2)-chain Z with support [1,¢ + 2]. For
i € [1,t+2], the number of k-chains intersecting Z in coordinates 1,2, ..., i—
Li+1,...,t4+21is op_4_1(n;, ngys, ..., ng). Adding these expressions for all
i € [1,t+ 2|, the k-chains intersecting Z in exactly ¢ + 1 coordinates are
counted once, and the k-chains intersecting Z in t+2 coordinates are counted
t + 2 times. The negative term reduces the multiplicity of the latter ones to
one. 0

In order to apply Theorem 1, we have to find values of the parameters
t,k,€,nq,...,n, such that the hypothesis of the theorem is satisfied.

Theorem 11 Let t < k < { be fized. Then there exists a bound n(t,k, ()
such that if n > n(t,k,£) then for any non-trivially t-intersecting family F
of (-tuples with support k in Fy(n,...,n) we have

|F| < max{|Fi(t, k;n,...,n)|, |Fa(t, k;n, ...;n)| }.

Moreover, if k > 2t + 1 then for large enough n we have |Fy(t, k;n,...,n)| >
| Fa(t, ksmy..on)| and if t +1 < k < 2t 4+ 1 then for large enough n we have
|:/t1(t7 kanvun” < |f2(t7k7nu ,TL)|

Proof. Let P, = (P(n,...,n), <). By Lemmas 3 and 5, we have ry,2(P,, k) =
(A2 0P 12 and M (P, k) = (L4~ ))n" "t~ Hence
—t—-1 1

lim Tt+2(7)n7k) — lim k l -

— —— =0 17
n—oo M*(P,, k) nocl—t—1 n (17)

and so Theorem 1, together with Lemmas 8 and 9, implies that for large
enough n one of the maximum sized families of ¢-intersecting ¢-tuples with
support k in Fy(n,...,n) is F; = Fi(t,k;n,....,n) or Fo = Fo(t, k;n,...,n).

Our final task is to compare |Fi(t, k;n, ...,n)| and |Fa(t, k;n, ...,n)|. From
Lemma 10 we have

k—t

I—t\ . 1=\ [l—k—1 e

|.7:1|:t+(k_t)nkt—g ( ; )(k’—t—z)(n_l)nkt (18)
i=0

11



and

I—t—1\ ., l—t—2\
|| = (r+m<k t_l)nktl—(r+n(k_t_2>nkt? (19)

Suppose now that ¢t +2 < k. For fixed ¢, k, ¢, as n — oo, we expand (18) and
(19) as polynomials of n. There is nothing to do with (19), as it is already
written in polynomial form. In (18), the coefficient of n*~* in |F| is

k—t
I—t k+1—t\(l—k—1
(o) (T )6S)=

the coefficient of n*~'~1 in |F| is

B0

j:z:(k’—i-l —t)<f__1t> (lkii) =(k+1 —t)(li:tt:ll)

and similarly the coefficient of n*~'=2 in |Fy| is

—Z(') (k+1—t) (lk_—ktj) :_(k+1—2t)(k—t)<li:1;—_22).

We compare |F;| and |F| for large n. The leading term in both is n*~t=1

with coefficients (k+1—t) (i:i:ll) and (t+2) (é:i:ll) Therefore, if k+1—t >
t+2,ie. k> 2t+ 1, then for large enough n we have |F;| > |Fs| and if
k < 2t + 1 then for large enough n we have |Fi| < |F|. fk—t—1=1t+2,
i,e. k= 2t+ 1, then the main terms have equal coefficients. We compare
the coefficients of the next term, n*7'=2 = n’~! in |F}| and |F,|, which are

—7(t+2)2(t+1) (12:2) and —(t + 1)(l = 2) respectively. We have |Fi| < |F|. O

Theorem 12 Let t < k be fized. Then there exists a bound ((t, k) such that
if € > L(t, k) then for any non-trivially t-intersecting family F of (-tuples
with support k in Fy(nq, ...,ny) we have

|F| < max{|Fi(t, k;nq,...,ne)|, | Falt, k;na,...ng)|

12



Proof. Let Py = (P(ny,...,ne),<). Ilf k =t + 1 then r,2(Pp, k) = 0 and
M*(Py, k) > 0. If k> ¢+ 2 then by Lemmas 6 and 7, for £ > 2k —t — 1 we

have
Tt42 (Pfa k)

k—t—2 1 k—t—1
< (1 . . 2
M:(Pe,k:)‘< +€—2k+t+2> nepr L—k+1 (20)
and therefore
hmwzo_

=00 M: (va k)
So Theorem 1, together with Lemmas 8 and 9, implies that for large enough

¢ one of the maximum sized families of t-intersecting ¢-tuples with support
kin Fo(ny,...,ne) is Fy = Fi(t, k;nq, ...,ng) or Fo = Fo(t, k;ny, ..., np). O

Theorem 13 Let t < k < ( be fived, satisfying £ > 2k —t — 1. Then
there ezists a bound n(t,k,t) such that if ng1 > n(t, k, ) then for any non-
trivially t-intersecting family F of (-tuples with support k in Fy(ny, ..., ng) we
have |F| < max{|Fi(t, k;nq,...,ne)|, | Falt, k;n1, ..., ne) |}

Proof. Let Py, = (P(n1, ..., g1, ... ng), <). If bk = t+1 then vy o (Pr,,, k) =
0 and M*(Pn,,,, k) > 0. If k > ¢+ 2 then, analogously to (20) in the proof
of Theorem 12,

7’t+2(7)nt+17k)<< k—t—2 ) 1 k—t—l (21)
M (P, k) — C=2k+t+2/) ngqy (—k+1
and therefore

lim M =0.

nip1—oo M (Pntﬂv k)

So Theorem 1, together with Lemmas 8 and 9, implies that for large enough
n;+1 one of the maximum sized families of t-intersecting ¢(-tuples with support
kin Fy(ny,...,ng) is Fy = Fi(t, k;nq, ...,ng) or Fo = Fa(t, k;ng, ..., ng). O
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