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Abstract

We prove that for every connected 4-colourable graph G of order n and minimum
degree δ ≥ 1, diam(G) ≤ 5n

2δ
− 1. This is a first step toward proving a conjecture of

Erdős, Pach, Pollack and Tuza [4] from 1989.

1 Introduction

Let G = (V,E) be a simple, finite, connected graph on n vertices, with minimum degree
δ ≥ 2 and diameter diam(G). The natural problem of bounding the diameter of a graph
in terms of its order and minimum degree was solved by several authors [5, 4, 6, 7], who
independently proved that, for fixed δ ≥ 2 and large n,

diam(G) ≤
3n

δ + 1
+ O(1). (1)

In 1989, Erdős, Pach, Pollack, and Tuza [4] showed that this upper bound on the diameter
can be improved if G is triangle-free, or if G does not contain a 4-cycle. Their results were
extended in [1] to graphs not containing a subgraph isomorphic to the complete bipartite
graph K2,s, for s ≥ 2, and in [2] to graphs not containing a complete subgraph K3,3.

In the same paper [4], Erdős, Pach, Pollack, and Tuza also conjectured that the upper
bound (1) can be improved further if G does not contain a large complete subgraph Kk:

Conjecture 1 Let r, δ ≥ 2 be fixed integers and let G be a connected graph with n vertices
and minimum degree δ.
(i) If G is K2r-free and δ is a multiple of (r − 1)(3r + 2) then, for large n,

diam(G) ≤
2(r − 1)(3r + 2)

(2r2 − 1)δ
n + O(1).

(ii) If G is K2r+1-free and δ is a multiple of 3r − 1, then, for large n,

diam(G) ≤
3r − 1

rδ
n + O(1).

∗This author was supported in part by the NSF DMS contract 0701 1111.
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They also constructed graphs showing that, if the above bounds hold, then they are
sharp, apart from an additive constant. For r = 2, which is relevant for our paper, the
graph construction is the following. Let Xi and Yi be disjoint sets of vertices, such that
|X0| = |Y0| = 3δ/5 = |Xd| = |Yd| and for 0 < i < d, |Xi| = |Yi| = δ/5; and join vertices of
Xi to the vertices of Yi, and vertices of Xi ∪ Yi to vertices of Xi−1 ∪ Yi−1 and Xi+1 ∪ Yi+1

So far, no progress on the above conjecture, even for specific values of r, has been
reported. In this paper, we consider a slight weakening of the above conjecture for K5-free
graphs. We show that the conjecture holds for all δ ≥ 1 under the somewhat stronger
assumption that G is 4-colourable.

2 Proof of theorem

Custom-taylored Bonferroni-type inequalities have a large literature, see [3]. The following
variant will be central to our proof.

Lemma 1 Let {Ai | i = 1, 2, . . . , d} be a finite set system. If no element of
⋃

i∈I Ai is
contained in more than 4 sets among the Ai, then

3|
d

⋃

i=1

Ai| ≥ 2
∑

1≤i≤d

|Ai| −
∑

1≤i,j≤d

|Ai ∩Aj |+
∑

1≤i<j<k<l≤d

|Ai ∩Aj ∩Ak ∩Al|.

Proof. Let x ∈
⋃

i∈I Ai. Then x contributes exactly 3 to the left hand side of the
above inequality. If x is in p sets Ai then x contributes 2p −

(p
2

)

+
(p
4

)

to the right hand
side, which for 0 ≤ p ≤ 4 is at most 3. Summing this over all x yields the lemma. 2

We use standard notation. Specifically, we denote the vertex set and the edge set of a
graph by V and E, respectively. The neighbourhood of a vertex v is denoted by NG(v).
If P = v1v2, . . . vk is a sequence of vertices, and v0, vk+1 are two further vertices, then we
denote the extended sequence v0v1 . . . vkvk+1 by v0Pvk+1.

Theorem 1 For every connected 4-colourable graph G of order n and minimum degree
δ ≥ 1,

diam(G) ≤
5n

2δ
− 1.

Proof. Let d := diam(G). We can assume that G is edge-maximal, i.e., addition of
any edge decreases the diameter or increases the chromatic number. It suffices to show
that there exists a sequence of vertices P = α0α1 . . . αd of G such that, with Ai := NG(ai),
i = 0, 1, . . . , d, we have

∑

0≤i<j≤d

|Ai ∩Aj | −
∑

0≤i<j<k<l≤d

|Ai ∩Aj ∩Ak ∩Al| ≤ 2n. (2)

since then, by |Ai| ≥ δ and Lemma 1,

3n ≥ 3|
d

⋃

i=0

Ai|

≥ 2
d

∑

i=0

|Ai| −
∑

0≤i<j≤d

|Ai ∩Aj |+
∑

0≤i<j<k<l≤d

|Ai ∩Aj ∩Ak ∩Al|

≥ 2(d + 1)δ − 2n,
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which implies d ≤ 5n
2δ
− 1, as desired.

For a subset V ′ of V we define g(P, V ′) to be the contribution of V ′ to the right hand
side of (2), i.e.,

g(P, V ′) =
∑

0≤i<j≤d

|Ai ∩Aj ∩ V ′| −
∑

0≤i<j<k<l≤d

|Ai ∩Aj ∩Ak ∩Al ∩ V ′|.

So equation (2) becomes g(P, V ) ≤ 2n. Often we need only the first sum of the right hand
side above, so we also let

f(P, V ′) =
∑

0≤i<j≤d

|Ai ∩Aj ∩ V ′|.

Note that g(P, V ′) ≤ f(P, V ′). Let u and v be two vertices at distance d, let Vi be the set
of all vertices at distance i from u, and for i ≤ j let Vi,j := Vi ∪ Vi+1 ∪ . . . ∪ Vj . Denote
by χi the number of colours that occur in Vi. Note that χi = 1 implies χi+1 ≤ 3 since no
vertex of Vi+1 can have the colour of the vertices in Vi. Note that all vertices in Vi of the
same colour have the same neighbourhood by the assumption on edge-maximality.

Consider the sequence C = χ0χ1 . . . χd. We will provide an algorithm that shows that
there exist integers 0 = c1 < c2 < . . . < ct = d + 1 such that, if we let r = ci and
s = ci+1 − 1, each of the t − 1 segments Si = χrχr+1χr+2 . . . χs is of one of the 4 types
described below. (For shortness, we sometimes also say that Vr,s is the corresponding type
as well.)

Type 1: χr = χr+1 = . . . = χs = 1, s ≥ r;

Type 2: χr ≥ 1 and χr+1, χr+2, . . . , χs ≥ 2, s ≥ r + 1. If s < d then χs+1 = 1. If χr > 1,
then r ≥ 1 and χr−1 = 1. If s = r + 1 then (χr, χr+1) 6= (1, 3);

Type 3: s− r is even and positive; χr = χr+2 = χr+4 = . . . = χs = 1 and χr+1 = 3 and
χr+3, χr+5, . . . , χs−1 ≥ 2;

Type 4: s = r = d, χr ≥ 2 and χr−1 = 1.

During the algorithm we will consider the sequence χaχa+1 . . . χb that still needs to be
processed with a ≤ b; initially a = 0 and b = d. The preliminary step decides whether a
sequence of type 4 will be used at the end, and the final step will take care of processing
the ci’s for the type 4 sequence. After the preliminary step Va,b will have the property that
χa = 1, b = d or b = d− 1 depending on the existence of a type 4 sequence, and if χb 6= 1
then χb−1 6= 1. This property will be maintained during the processing step, where there
only the value of a is changed. By contraposition, in the processing step the set Va,b must
satisfy the conditions that if χb−1 = 1 then χb = 1. Some remarks that may be necessary
to see the correctness of the algorithm are included between // dividers and set in italic.

The description of the algorithm is self-explanatory:

PRELIMINARY STEP: a← 0; c1 ← 0; m← 2; DONE←FALSE;

IF (χd > 1 and χd−1 = 1) THEN {b← d− 1} // This means χd will be type 4.//

PROCESSING STEP: REPEAT UNTIL DONE=TRUE
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{IF (a = b or χa+1 = 1) // Removal of type 1 sequence.//
{
LET cm BE THE LARGEST INTEGER SUCH THAT FOR ALL i : a ≤ i ≤ cm WE

HAVE χi = 1; //Clearly cm − 1 ≥ a or cm = a = b.//
IF cm = b THEN {cm ← b + 1; DONE←TRUE} // Va,b will be type 1.//
ELSE // Va,cm−1 will be type 1, χcm

= 1.// {a← cm; m← m + 1}
}

ELSEIF (χa+1 6= 3 OR χa+2 6= 1) // χa+1 > 1; removal of type 2 sequence.//

IF (χi 6= 1 FOR ALL i : a < i ≤ b) THEN {cm ← b + 1; DONE←TRUE}
// Va,b will be type 2.//

ELSE // now some χi is 1.//
{LET cm BE THE LEAST INTEGER SUCH THAT (cm > a AND χcm

= 1);
// Va,cm−1 will be type 2, χcm

= 1.//
a← cm; m← m + 1}

ELSE // Now χa+1 = 3 and χa+2 = 1; removal of type 3 sequence.//
{SET k TO THE LARGEST INTEGER SUCH THAT FOR ALL i : 1 ≤ i ≤ k WE HAVE

(χa+2i = 1 AND χa+2i−1 > 1); cm ← a + 2k + 1; // Clearly k ≥ 1.//

IF cm = b + 1 THEN DONE←TRUE // Va,b will be type 3.//

ELSE // Va,a+2k = Va,cm−1 will be type 3; but χcm
may not be 1.//

IF (χi = 1 FOR SOME i : cm ≤ i ≤ b)
{SET w TO THE LEAST INTEGER SUCH THAT (w ≥ cm AND χw = 1);
// Clearly w 6= cm + 1, as this would contradict the maximality of k.//

IF w = cm THEN {a← cm; m← m + 1} // continue as χcm
= 1.//

ELSE //χcm
6= 1, Vcm,w−1 will be type 2 since w > cm + 2, χw = 1.//

{cm+1 ← w; a← cm+1; m← m + 2}

}

ELSE DONE←TRUE //In this case there are no more 1’s among the χi’s.
From χcm−1 = 1, we get b− 1 > cm − 1 and Vcm,b is type 2.//

} // End of case χa+1 = 3 and χa+2 = 1.//

} // End of repeat loop.//

FINAL STEP: IF cm = d + 1 THEN {t← m} ELSE {t← m + 1; ct ← d + 1}

Consider a segment Si = χrχr+1 . . . χs of C of type 1, 2, 3, or 4. If r > 0, let βr−1 ∈ V0,r−1

be arbitrarily fixed. We will show that for this arbitrarily fixed choice of βr−1 (if such a
choice was made) there exists a sequence of vertices Pr,s = αrαr+1 . . . αs such that

Property (i): Vr (Vs) contains no vertex of Pr,s, except possibly αr (αs),

Property (ii):

(a) If r > 0 and s < d then for all βs+1 ∈ Vs+1,d using P ′ = βr−1Pr,sβs+1 we have

g(P ′, Vr,s) ≤ 2|Vr,s|.

(b) If r > 0 and s = d then using P ′ = βr−1Pr,s we have g(P ′, Vr,s) ≤ 2|Vr,s|.
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(a) If r = 0 and s < d then for all βs+1 ∈ Vs+1,d using P ′ = Pr,sβs+1 we have

g(P ′, Vr,s) ≤ 2|Vr,s|.

(d) If r = 0 and s = d then g(P, Vr,s) ≤ 2|Vr,s|.

If such sequence selections can indeed be made, we will achieve our goal because of
the following. Recall that C is subdivided into t− 1 segments, with the ith segment being
Si = χci

χci+1χci+2 . . . χci+1−1.
Since c1 = 0, we can choose Pc1,c2−1 according to properties (i)-(ii). Once the sequence

Pci−1,ci−1 has been chosen for some i : 2 < i < t, choose the sequence Pci,ci+1−1 for
βci−1 = αci−1 according to properties (i) and (ii).

The sequence P = α0, α1, . . . , αd = Pc1,c2−1Pc2,c3−1 . . . Pct−1,ct−1 is constructed by
concatenating the sequences Pci,ci+1−1 in order.

Now if ci > 0 and ci+1 ≤ d (i.e. 1 < i < t− 1), then by properties (i) and (ii) and the
fact that the value of g( · , Vr,s) is uneffected by any vertices not in Vr−1,s+1, we have that

g(P, Vci,ci+1−1) = g(αci−1Pci,ci+1−1αci+1, Vci,ci+1−1) ≤ 2|Vci,ci+1−1|.

Similarly, we get that g(P, Vci,ci+1−1) ≤ 2|Vci,ci+1−1| for all i : 1 ≤ i ≤ t. Therefore

g(P, V ) =
t−1
∑

i=1

g(P, Vci,ci+1−1) ≤
t−1
∑

i=1

2|Vci,ci+1−1| = 2|V |,

as desired.
So what remains to show is that for each segment Si = χr . . . χs of type 1,2,3 or 4 we

can choose the appropriate sequence Pr,s satisfying properties (i)-(ii). We have already
remarked that the value of g( · , Vr,s) is uneffected by any vertices not in Vr−1,s+1, and
therefore it is enough to assume that βr−1 ∈ Vr−1 and βs+1 ∈ Vs+1 instead of βr−1 ∈ V0,r−1

and βs+1 ∈ Vs+1,d in the proof of property (ii).
If r > 0, fix βr−1 ∈ Vr−1 arbitrarily. We consider each type of segment separately. We

will use ar−1 = βr−1 and as+1 = βs+1 for ease of notation below.

Type 1: For i = r, r + 1, . . . , s choose a vertex ai ∈ Vi arbitrarily and let Pr,s =
ar, ar+1, . . . , as (so αi = ai). Clearly, Pr,s satisfies property (i) above. First assume
that r > 0 and s < d. Choose as+1 ∈ Vs+1 arbitrarily and let P ′ = ar−1, Pr,s, as+1. Since
for i ∈ {r, r + 1, . . . , s} the distance layer Vi has only one colour class,

f(P ′, Vi) = |N(ai−1) ∩N(ai) ∩ Vi|+ |N(ai) ∩N(ai+1) ∩ Vi|+ |N(ai−1) ∩N(ai+1) ∩ Vi|

≤ 0 + 0 + |Vi|, and

f(P ′, Vr,s) =
s

∑

i=r

f(P ′, Vi) ≤
s

∑

i=r

|Vi| ≤ |Vr,s|.

Hence g(P ′, Vr,s) ≤ f(P ′, Vr,s) ≤ |Vr,s|, independently of the choice of βs+1, and so Pr,s

satisfies property (ii) as well.
If r = 0 < s < d then P ′ = Pr,s, as+1, and the above estimate only changes when i = 0;

and f(P ′, V0) = |N(ai) ∩N(ai+1) ∩ Vi| = 0. It is easy to see that the statement works in
all other cases (0 < r ≤ s < d or 0 = r and s = d) as well.
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Type 2: For i = r, . . . , s choose one vertex each from the largest two colour classes of Vi.
(If χr = 1 then we choose a vertex of Vr twice.) By edge maximality the graph induced
by these vertices contains two geodesics Pr,s = ar, ar+1, . . . , as and Qr,s = br, br+1, . . . , bs

from Vr to Vs that are vertex disjoint, except possibly for the first vertex. Clearly, Pr,s

and Qr,s satisfy property (i) above.
Assume first that 0 < r and s < d. Let as+1 ∈ Vs+1 be arbitrary. Note that by χs+1 = 1

all vertices in Vs+1 have the same neighbours. Therefore, what follows is independent of
the choice of as+1. Let P ′ = ar−1Pr,sas+1 and Q′ = ar−1Qr,sas+1. We show that for each
i : r ≤ i ≤ s

f(P ′, Vi) + f(Q′, Vi) ≤ 4|Vi|. (3)

For ease of notation br−1 = ar−1 and bs+1 = as+1. Consider a distance layer Vi,
r ≤ i ≤ s. For j = 1, 2, 3, 4 let xj be the number of vertices of colour j in Vi. We
can assume w.l.o.g. that x1 ≥ x2 ≥ x3 ≥ x4, and that ai and bi have colour 1 and 2,
respectively. Let ai−1, bi−1, ai+1, bi+1 have colour j, k, l,m, respectively.

Assume first that χi > 1. Then ai−1 is adjacent to ai and bi−1 is adjacent to bi (by
construction if i > r and by the fact that χr > 1 implies χi−1 = 1 if i = r), so j 6= 1 and
k 6= 2. If ai (or bi) is not adjacent to ai+1 (bi+1), then we must have i = s, which implies
that ai+1 = bi+1 so l = m.

Therefore

f(P ′, Vi) = |N(ai−1) ∩N(ai) ∩ Vi|+ |N(ai) ∩N(ai+1) ∩ Vi|+ |N(ai−1) ∩N(ai+1) ∩ Vi|

= (|Vi| − x1 − xj) + |N(ai) ∩N(ai+1) ∩ Vi|+ |N(ai−1) ∩N(ai+1) ∩ Vi|

If in addition j 6= l, then |N(ai−1) ∩N(ai+1) ∩ Vi| = |Vi| − xj − xl.
The following 3 cases might occur: j 6= l 6= 1, j 6= l = 1 (in which case i = s and

l = m = 1) and j = l.
If j 6= l 6= 1 then xj + xl ≥ x3 + x4 and so

f(P ′, Vi) = (|Vi| − x1 − xj) + (|Vi| − x1 − xl) + (|Vi| − xj − xl)

= 3|Vi| − 2(x1 + xj + xl) ≤ 3|Vi| − 2(x1 + x3 + x4)

If j 6= l = 1 then

f(P ′, Vi) = (|Vi| − x1 − xj) + (|Vi| − x1) + (|Vi| − xj − x1)

= 3|Vi| − (3x1 + 2xj) ≤ 3|Vi| − 3x1

If j = l then

f(P ′, Vi) ≤ (|Vi| − x1 − xj) + (|Vi| − x1 − xj) + (|Vi| − xj) = 3|Vi| − (2x1 + 3xj)

In summary, we have for P ′ (and similarly for Q′) that

f(P ′, Vi) ≤







3|Vi| − 2(x1 + x3 + x4), if j 6= l 6= 1
3|Vi| − 3x1 if j 6= l = 1
3|Vi| − (2x1 + 3xj), if j = l

f(Q′, Vi) ≤







3|Vi| − 2(x2 + x3 + x4), if k 6= m 6= 2
3|Vi| − 3x2, if k 6= m = 2
3|Vi| − (2x2 + 3xk), if k = m
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Since we always have f(Q′, Vi) ≤ 3|Vi| − 2x2, for j 6= l 6= 1 we get

f(P ′, Vi) + f(Q′, Vi) ≤ 3|Vi| − 2(x1 + x3 + x4) + 3|Vi| − 2x2 = 4|Vi|,

as claimed. This statement follows similarly if k 6= m 6= 2.
If j 6= l = 1, then l = m = 1. Therefore we are done when k 6= m, so we may assume

that k = m = 1. Using 6x1 ≥ 2(x1 + x3 + x4) we get

f(P ′, Vi) + f(Q′, Vi) ≤ 3|Vi| − 3x1 + 3|Vi| − (2x2 + 3x1) ≤ 6|Vi| − (6x1 + 2x2)

≤ 6|Vi| − 2(x1 + x2 + x3 + x4) = 4|Vi|,

as claimed. A similar logic works when k 6= m = 2.
So the only case that still needs to be examined is j = l and k = m, when

f(P ′, Vi) + f(Q′, Vi) ≤ 6|Vi| − 2(x1 + x2 + xj + xk)

If j 6= k then, as before, xj +xk ≥ x3 +x4 and we get that f(P ′, Vi)+f(Q′, Vi) ≤ 4|Vi|.
If j = k, then we must have χi−1 = χi+1 = 1, which implies that i = s = r + 1. Since

the sequence is type 2, this must mean that χi = 2, so x3 = x4 = 0 and |Vi| = x1 + x2.
Therefore in this case also f(P ′, Vi) + f(Q′, Vi) ≤ 4|Vi|, as claimed.

So the statement is true when χi > 1. In the case when χi = 1 (and so i = r) we get
f(P ′, Vi) + f(Q′, Vi) ≤ 2|Vi|, as before.

If r = 0 or s = d then the corresponding estimates for f(P ′, Vr), f(Q′, Vr), f(P ′, Vs)
and f(Q′, Vs) can only decrease.

We can assume, without loss of generality, that f(P ′, Vr,s) ≤ f(Q′, Vr,s) and thus
g(P ′, Vr,s) ≤ f(P ′, Vr,s) ≤ 2|Vr,s|. Hence Pr,s satisfies property (i) and property (ii), as
desired.

Type 3: We can assume that, possibly after recolouring, the vertices in Vr ∪Vr+2∪Vr+4∪
. . . ∪ Vs all have the same colour and that this colour does not occur inbetween. We
consider two cases, depending on whether s = r + 2 or s ≥ r + 4. Initially, we consider
s < d only. Let as+1 ∈ Vs+1 be arbitrary. Note that since χs = 1, any member of Vs is
adjacent to as+1.

Case 1: s ≥ r + 4.

For i = r+1, r+3, r+5, . . . , s−1 let a1
i , a

2
i ∈ Vi be vertices that belong to the largest and

second largest,respectively, colour class of Vi, and for i = r, r + 2, r + 4, . . . , s let ai ∈ Vi.
Define the following sequences of vertices, each with s− r + 1 vertices:

Pr,s = ara
1
r+1ar+2a

1
r+3ar+4ar+5ar+6 . . . as−1a

1
s−1as,

Qr,s = ara
1
r+1a

2
r+1a

1
r+3a

2
r+3a

1
r+5a

2
r+5 . . . a2

s−2a
1
s−1a

2
s−1,

Rr,s = a1
r+1a

2
r+1a

1
r+3a

2
r+3a

1
r+5a

2
r+5a

1
r+7 . . . a1

s−1a
2
s−1as.

Clearly, Pr,s, Qr,s and Rr,s have the required length and satisfy property (i) above.
Let P ′ = ar−1, Pr,s, as+1, Q′ = ar−1, Qr,s, as+1, and R′ = ar−1, Rr,s, as+1. We first

consider f(P ′, Vr,s). Let i ∈ {r, r + 1, r + 2, . . . , s} with χi = 3. So ai−1 ∈ Vi−1, a1
i ∈ Vi,

and ai+1 ∈ Vi+1. Now N(ai−1)∩N(a1
i )∩Vi and N(a1

i )∩N(ai+1)∩Vi are contained in the
union of the two smallest colour classes of Vi and thus have at most 2

3
|Vi| vertices each,

while N(ai−1) ∩ N(ai+1) ∩ Vi has at most |Vi| vertices each. Hence f(P ′, Vi) ≤
7

3
|Vi| if
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χi = 3. If χi = 2, then similar considerations show that f(P ′, Vi) ≤ 2|Vi|, while χi = 1
implies that f(P ′, Vi) ≤ |Vi|, even when i = r and perhaps r = 0. Hence,

f(P ′, Vr,s) ≤ (|Vr|+ |Vr+2|+ |Vr+4|+ . . . + |Vs|)+
7

3
(|Vr+1|+ |Vr+3|+ |Vr+5|+ . . . + |Vs−1|).

Now consider Q′. First let i = r + 1, so χi = 3. Then N(ai−1) ∩ N(a1
i ) ∩ Vi and

N(ai−1)∩N(a2
i )∩Vi do not contain vertices in the largest and second largest colour class,

respectively, of Vi, while N(a1
i ) ∩ N(a2

i ) ∩ Vi does not contain vertices in the two largest
colour classes of Vi. Hence f(Q′, Vi) ≤

5

3
|Vi| for i = r + 1. (Were χi = 2, we would

have got f(Q′, Vi) ≤ |Vi|—this is an estimate that we will need for R′ later.) Similarly
we obtain for i = r + 3, r + 5, . . . , s − 1 that f(Q′, Vi) = |N(a1

i ) ∩ N(a2
i ) ∩ Vi|; therefore

in this case f(Q′, Vi) ≤
1

3
|Vi| if χi = 3 and f(Q′, Vi) = 0 if χi = 2. It is easy to see that

f(Q′, Vr) ≤ 3|Vr| and f(Q′, Vs) ≤ 3|Vs|. For i = r + 2, r + 4, r + 6, . . . , s − 2 each vertex
of Vi is in the neighbourhood of exactly four vertices, a1

i−1, a
2
i−1, a

1
i+1 and a2

i+1. Hence

f(Q′, Vi) =
(

4

2

)

|Vi| = 6|Vi| and g(Q′, Vi) = 5|Vi|. In total

g(Q′, Vr,s) ≤ 3(|Vr|+ |Vs|) +
5

3
|Vr+1|+

1

3
(|Vr+3|+ |Vr+5|+ |Vr+7|+ . . . + |Vs−1|)

+5(|Vr+2|+ |Vr+4|+ |Vr+6|+ . . . + |Vs−2|).

Similarly we obtain

g(R′, Vr,s) ≤ 3(|Vr|+ |Vs|) +
5

3
|Vs−1|+

1

3
(|Vr+1|+ |Vr+3|+ |Vr+5|+ . . . + |Vs−3|)

+5(|Vr+2|+ |Vr+4|+ |Vr+6|+ . . . + |Vs−2|).

Note that each of the above three inequalities hold irrespective of the choice of as+1.
moreover, they also hold when s = d. Now consider the weighted average of g(P ′, Vr,s)
(counted six times) and g(Q′, Vr,s) and g(R′, Vr,s) (counted once each). By the above

6g(P ′, Vr,s) + g(Q′, Vr,s) + g(R′, Vr,s)

≤ 12(|Vr |+ |Vs|) + 16(|Vr+2|+ |Vr+4|+ |Vr+6|+ . . . + |Vs−2|)

+16(|Vr+1|+ |Vs−1|) +
44

3
(|Vr+3|+ |Vr+5|+ |Vr+7|+ . . . + |Vs−3|)

≤ 16|Vr,s|.

Hence at least one of Pr,s, Qr,s and Rr,s satisfies also property (ii) above, as desired.

Case 2: s = r + 2.

Then (χr, χr+1, χr+2) = (1, 3, 1). Choose vertices ar ∈ Vr, ar+2 ∈ Vr+2 and a1
r+1, a

2
r+1 ∈

Vr+1 from the largest and the second largest colour class in Vr+1, respectively. Let Pr,s =
ara

1
r+1ar+2 and Qr,s = ara

1
r+1a

2
r+1. Clearly, Pr,s and Qr,s satisfy property (i) above. Let

as+1 ∈ Vs+1 be arbitrary and let P ′ = ar−1Pr,sas+1 and Q′ = ar−1Qr,sas+1. Then

f(P ′, Vr,r+2) ≤ |Vr|+
7

3
|Vr+1|+ |Vr+2|,

f(Q′, Vr,r+2) ≤ 3|Vr|+
5

3
|Vr+1|+ 3|Vr+2|,

8



irrespective of the choice of as+1. Adding these two inequalities yields

f(P ′, Vr,r+2) + f(Q′, Vr,r+2) ≤ 4|Vr|+ 4|Vr+1|+ 4|Vr+2|,

and so f(P ′, Vr,r+2) ≤ 2|Vr,r+2| for all as+1 ∈ Vs+1 or f(Q′, Vr,r+2) ≤ 2|Vr,r+2| for all
as+1 ∈ Vs+1. Hence at least one of Pr,s and Qr,s satisfies also property (ii).

Type 4: In this case r = s = d > r Choose a vertex αr ∈ Vr arbitrarily and set
P = αr. Since χr−1 = 1, we must have βr−1 adjacent to αr and therefore g(βr−1P, Vr) ≤
f(βr−1P, Vr) = 0.

2

We remark that there appears to be no straightforward generalisation of the proof of
Theorem 1 to 2k-colourable graphs. However, we expect that the methods presented in
this proof points a way towards a possible proof of such a generalisation.

Acknowledgement The authors would like to thank Wayne Goddard for very helpful
discussions on the topic of the paper.
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