Diameter of 4-Colourable Graphs

É. Czabarka, University of South Carolina, czabarka@math.sc.edu
P. Dankelmann, University of KwaZulu-Natal, dankelma@ukzn.ac.za
L. A. Székely, University of South Carolina, szekely@math.sc.edu

September 23, 2008

Abstract

We prove that for every connected 4 -colourable graph G of order n and minimum degree $\delta \geq 1, \operatorname{diam}(G) \leq \frac{5 n}{2 \delta}-1$. This is a first step toward proving a conjecture of Erdős, Pach, Pollack and Tuza [4] from 1989.

1 Introduction

Let $G=(V, E)$ be a simple, finite, connected graph on n vertices, with minimum degree $\delta \geq 2$ and diameter $\operatorname{diam}(G)$. The natural problem of bounding the diameter of a graph in terms of its order and minimum degree was solved by several authors [5, 4, 6, 7], who independently proved that, for fixed $\delta \geq 2$ and large n,

$$
\begin{equation*}
\operatorname{diam}(G) \leq \frac{3 n}{\delta+1}+O(1) \tag{1}
\end{equation*}
$$

In 1989, Erdős, Pach, Pollack, and Tuza [4] showed that this upper bound on the diameter can be improved if G is triangle-free, or if G does not contain a 4 -cycle. Their results were extended in [1] to graphs not containing a subgraph isomorphic to the complete bipartite graph $K_{2, s}$, for $s \geq 2$, and in [2] to graphs not containing a complete subgraph $K_{3,3}$.

In the same paper [4], Erdős, Pach, Pollack, and Tuza also conjectured that the upper bound (1) can be improved further if G does not contain a large complete subgraph K_{k} :

Conjecture 1 Let $r, \delta \geq 2$ be fixed integers and let G be a connected graph with n vertices and minimum degree δ.
(i) If G is $K_{2 r}$-free and δ is a multiple of $(r-1)(3 r+2)$ then, for large n,

$$
\operatorname{diam}(G) \leq \frac{2(r-1)(3 r+2)}{\left(2 r^{2}-1\right) \delta} n+O(1)
$$

(ii) If G is $K_{2 r+1-f r e e ~ a n d ~} \delta$ is a multiple of $3 r-1$, then, for large n,

$$
\operatorname{diam}(G) \leq \frac{3 r-1}{r \delta} n+O(1) .
$$

[^0]They also constructed graphs showing that, if the above bounds hold, then they are sharp, apart from an additive constant. For $r=2$, which is relevant for our paper, the graph construction is the following. Let X_{i} and Y_{i} be disjoint sets of vertices, such that $\left|X_{0}\right|=\left|Y_{0}\right|=3 \delta / 5=\left|X_{d}\right|=\left|Y_{d}\right|$ and for $0<i<d,\left|X_{i}\right|=\left|Y_{i}\right|=\delta / 5$; and join vertices of X_{i} to the vertices of Y_{i}, and vertices of $X_{i} \cup Y_{i}$ to vertices of $X_{i-1} \cup Y_{i-1}$ and $X_{i+1} \cup Y_{i+1}$

So far, no progress on the above conjecture, even for specific values of r, has been reported. In this paper, we consider a slight weakening of the above conjecture for K_{5}-free graphs. We show that the conjecture holds for all $\delta \geq 1$ under the somewhat stronger assumption that G is 4-colourable.

2 Proof of theorem

Custom-taylored Bonferroni-type inequalities have a large literature, see [3]. The following variant will be central to our proof.

Lemma 1 Let $\left\{A_{i} \mid i=1,2, \ldots, d\right\}$ be a finite set system. If no element of $\bigcup_{i \in I} A_{i}$ is contained in more than 4 sets among the A_{i}, then

$$
3\left|\bigcup_{i=1}^{d} A_{i}\right| \geq 2 \sum_{1 \leq i \leq d}\left|A_{i}\right|-\sum_{1 \leq i, j \leq d}\left|A_{i} \cap A_{j}\right|+\sum_{1 \leq i<j<k<l \leq d}\left|A_{i} \cap A_{j} \cap A_{k} \cap A_{l}\right| .
$$

Proof. Let $x \in \bigcup_{i \in I} A_{i}$. Then x contributes exactly 3 to the left hand side of the above inequality. If x is in p sets A_{i} then x contributes $2 p-\binom{p}{2}+\binom{p}{4}$ to the right hand side, which for $0 \leq p \leq 4$ is at most 3 . Summing this over all x yields the lemma.

We use standard notation. Specifically, we denote the vertex set and the edge set of a graph by V and E, respectively. The neighbourhood of a vertex v is denoted by $N_{G}(v)$. If $P=v_{1} v_{2}, \ldots v_{k}$ is a sequence of vertices, and v_{0}, v_{k+1} are two further vertices, then we denote the extended sequence $v_{0} v_{1} \ldots v_{k} v_{k+1}$ by $v_{0} P v_{k+1}$.

Theorem 1 For every connected 4-colourable graph G of order n and minimum degree $\delta \geq 1$,

$$
\operatorname{diam}(G) \leq \frac{5 n}{2 \delta}-1
$$

Proof. Let $d:=\operatorname{diam}(G)$. We can assume that G is edge-maximal, i.e., addition of any edge decreases the diameter or increases the chromatic number. It suffices to show that there exists a sequence of vertices $P=\alpha_{0} \alpha_{1} \ldots \alpha_{d}$ of G such that, with $A_{i}:=N_{G}\left(a_{i}\right)$, $i=0,1, \ldots, d$, we have

$$
\begin{equation*}
\sum_{0 \leq i<j \leq d}\left|A_{i} \cap A_{j}\right|-\sum_{0 \leq i<j<k<l \leq d}\left|A_{i} \cap A_{j} \cap A_{k} \cap A_{l}\right| \leq 2 n . \tag{2}
\end{equation*}
$$

since then, by $\left|A_{i}\right| \geq \delta$ and Lemma 1,

$$
\begin{aligned}
3 n & \geq 3\left|\bigcup_{i=0}^{d} A_{i}\right| \\
& \geq 2 \sum_{i=0}^{d}\left|A_{i}\right|-\sum_{0 \leq i<j \leq d}\left|A_{i} \cap A_{j}\right|+\sum_{0 \leq i<j<k<l \leq d}\left|A_{i} \cap A_{j} \cap A_{k} \cap A_{l}\right| \\
& \geq 2(d+1) \delta-2 n,
\end{aligned}
$$

which implies $d \leq \frac{5 n}{2 \delta}-1$, as desired.
For a subset V^{\prime} of V we define $g\left(P, V^{\prime}\right)$ to be the contribution of V^{\prime} to the right hand side of (2), i.e.,

$$
g\left(P, V^{\prime}\right)=\sum_{0 \leq i<j \leq d}\left|A_{i} \cap A_{j} \cap V^{\prime}\right|-\sum_{0 \leq i<j<k<l \leq d}\left|A_{i} \cap A_{j} \cap A_{k} \cap A_{l} \cap V^{\prime}\right| .
$$

So equation (2) becomes $g(P, V) \leq 2 n$. Often we need only the first sum of the right hand side above, so we also let

$$
f\left(P, V^{\prime}\right)=\sum_{0 \leq i<j \leq d}\left|A_{i} \cap A_{j} \cap V^{\prime}\right| .
$$

Note that $g\left(P, V^{\prime}\right) \leq f\left(P, V^{\prime}\right)$. Let u and v be two vertices at distance d, let V_{i} be the set of all vertices at distance i from u, and for $i \leq j$ let $V_{i, j}:=V_{i} \cup V_{i+1} \cup \ldots \cup V_{j}$. Denote by χ_{i} the number of colours that occur in V_{i}. Note that $\chi_{i}=1$ implies $\chi_{i+1} \leq 3$ since no vertex of V_{i+1} can have the colour of the vertices in V_{i}. Note that all vertices in V_{i} of the same colour have the same neighbourhood by the assumption on edge-maximality.

Consider the sequence $C=\chi_{0} \chi_{1} \ldots \chi_{d}$. We will provide an algorithm that shows that there exist integers $0=c_{1}<c_{2}<\ldots<c_{t}=d+1$ such that, if we let $r=c_{i}$ and $s=c_{i+1}-1$, each of the $t-1$ segments $S_{i}=\chi_{r} \chi_{r+1} \chi_{r+2} \ldots \chi_{s}$ is of one of the 4 types described below. (For shortness, we sometimes also say that $V_{r, s}$ is the corresponding type as well.)

Type 1: $\chi_{r}=\chi_{r+1}=\ldots=\chi_{s}=1, s \geq r$;
Type 2: $\chi_{r} \geq 1$ and $\chi_{r+1}, \chi_{r+2}, \ldots, \chi_{s} \geq 2, s \geq r+1$. If $s<d$ then $\chi_{s+1}=1$. If $\chi_{r}>1$, then $r \geq 1$ and $\chi_{r-1}=1$. If $s=r+1$ then $\left(\chi_{r}, \chi_{r+1}\right) \neq(1,3)$;

Type 3: $s-r$ is even and positive; $\chi_{r}=\chi_{r+2}=\chi_{r+4}=\ldots=\chi_{s}=1$ and $\chi_{r+1}=3$ and $\chi_{r+3}, \chi_{r+5}, \ldots, \chi_{s-1} \geq 2 ;$

Type 4: $s=r=d, \chi_{r} \geq 2$ and $\chi_{r-1}=1$.
During the algorithm we will consider the sequence $\chi_{a} \chi_{a+1} \ldots \chi_{b}$ that still needs to be processed with $a \leq b$; initially $a=0$ and $b=d$. The preliminary step decides whether a sequence of type 4 will be used at the end, and the final step will take care of processing the c_{i} 's for the type 4 sequence. After the preliminary step $V_{a, b}$ will have the property that $\chi_{a}=1, b=d$ or $b=d-1$ depending on the existence of a type 4 sequence, and if $\chi_{b} \neq 1$ then $\chi_{b-1} \neq 1$. This property will be maintained during the processing step, where there only the value of a is changed. By contraposition, in the processing step the set $V_{a, b}$ must satisfy the conditions that if $\chi_{b-1}=1$ then $\chi_{b}=1$. Some remarks that may be necessary to see the correctness of the algorithm are included between // dividers and set in italic.

The description of the algorithm is self-explanatory:
PRELIMINARY STEP: $a \leftarrow 0 ; c_{1} \leftarrow 0 ; m \leftarrow 2$; DONE \leftarrow FALSE; IF $\left(\chi_{d}>1\right.$ and $\left.\chi_{d-1}=1\right)$ THEN $\{b \leftarrow d-1\} / /$ This means χ_{d} will be type 4.//

PROCESSING STEP: REPEAT UNTIL DONE=TRUE
$\left\{\right.$ IF $\left(a=b\right.$ or $\left.\chi_{a+1}=1\right) / /$ Removal of type 1 sequence.//
\{
LET c_{m} BE THE LARGEST INTEGER SUCH THAT FOR ALL $i: a \leq i \leq c_{m}$ WE
HAVE $\chi_{i}=1 ; / /$ Clearly $c_{m}-1 \geq a$ or $c_{m}=a=b . / /$
IF $c_{m}=b$ THEN $\left\{c_{m} \leftarrow b+1\right.$; DONE \leftarrow TRUE $\} / / V_{a, b}$ will be type 1.//
ELSE // $V_{a, c_{m}-1}$ will be type $1, \chi_{c_{m}}=1 . / /\left\{a \leftarrow c_{m} ; m \leftarrow m+1\right\}$
\}
ELSEIF $\left(\chi_{a+1} \neq 3\right.$ OR $\left.\chi_{a+2} \neq 1\right) / / \chi_{a+1}>1$; removal of type 2 sequence.//
IF $\left(\chi_{i} \neq 1\right.$ FOR ALL $\left.i: a<i \leq b\right)$ THEN $\left\{c_{m} \leftarrow b+1\right.$; DONE \leftarrow TRUE $\}$ // $V_{a, b}$ will be type 2.//
ELSE // now some χ_{i} is 1.//
\{LET c_{m} BE THE LEAST INTEGER SUCH THAT ($c_{m}>a$ AND $\chi_{c_{m}}=1$); $/ / V_{a, c_{m}-1}$ will be type 2, $\chi_{c_{m}}=1 . / /$ $\left.a \leftarrow c_{m} ; m \leftarrow m+1\right\}$
ELSE // Now $\chi_{a+1}=3$ and $\chi_{a+2}=1$; removal of type 3 sequence.//
\{SET k TO THE LARGEST INTEGER SUCH THAT FOR ALL $i: 1 \leq i \leq k$ WE HAVE $\left(\chi_{a+2 i}=1\right.$ AND $\left.\chi_{a+2 i-1}>1\right) ; ~ c_{m} \leftarrow a+2 k+1 ; / /$ Clearly $k \geq 1 . / /$
IF $c_{m}=b+1$ THEN DONE \leftarrow TRUE // $V_{a, b}$ will be type 3.//
ELSE // $V_{a, a+2 k}=V_{a, c_{m}-1}$ will be type 3; but $\chi_{c_{m}}$ may not be 1.// IF ($\chi_{i}=1$ FOR SOME $i: c_{m} \leq i \leq b$)
\{SET w TO THE LEAST INTEGER SUCH THAT $\left(w \geq c_{m}\right.$ AND $\chi_{w}=1$); $/ /$ Clearly $w \neq c_{m}+1$, as this would contradict the maximality of $k . / /$ IF $w=c_{m}$ THEN $\left\{a \leftarrow c_{m} ; m \leftarrow m+1\right\} / /$ continue as $\chi_{c_{m}}=1 . / /$ ELSE $/ / \chi_{c_{m}} \neq 1, V_{c_{m}, w-1}$ will be type 2 since $w>c_{m}+2, \chi_{w}=1 . / /$ $\left\{c_{m+1} \leftarrow w ; a \leftarrow c_{m+1} ; m \leftarrow m+2\right\}$ \} ELSE DONE $\leftarrow \mathrm{TRUE} / /$ In this case there are no more 1 's among the χ_{i} 's. From $\chi_{c_{m}-1}=1$, we get $b-1>c_{m}-1$ and $V_{c_{m}, b}$ is type 2.//
$\} / /$ End of case $\chi_{a+1}=3$ and $\chi_{a+2}=1 . / /$
\} // End of repeat loop.//
FINAL STEP: IF $c_{m}=d+1$ THEN $\{t \leftarrow m\}$ ELSE $\left\{t \leftarrow m+1 ; c_{t} \leftarrow d+1\right\}$
Consider a segment $S_{i}=\chi_{r} \chi_{r+1} \ldots \chi_{s}$ of C of type $1,2,3$, or 4 . If $r>0$, let $\beta_{r-1} \in V_{0, r-1}$ be arbitrarily fixed. We will show that for this arbitrarily fixed choice of β_{r-1} (if such a choice was made) there exists a sequence of vertices $P_{r, s}=\alpha_{r} \alpha_{r+1} \ldots \alpha_{s}$ such that

Property (i): $V_{r}\left(V_{s}\right)$ contains no vertex of $P_{r, s}$, except possibly $\alpha_{r}\left(\alpha_{s}\right)$,
Property (ii):
(a) If $r>0$ and $s<d$ then for all $\beta_{s+1} \in V_{s+1, d} \operatorname{using} P^{\prime}=\beta_{r-1} P_{r, s} \beta_{s+1}$ we have

$$
g\left(P^{\prime}, V_{r, s}\right) \leq 2\left|V_{r, s}\right|
$$

(b) If $r>0$ and $s=d$ then using $P^{\prime}=\beta_{r-1} P_{r, s}$ we have $g\left(P^{\prime}, V_{r, s}\right) \leq 2\left|V_{r, s}\right|$.
(a) If $r=0$ and $s<d$ then for all $\beta_{s+1} \in V_{s+1, d}$ using $P^{\prime}=P_{r, s} \beta_{s+1}$ we have

$$
g\left(P^{\prime}, V_{r, s}\right) \leq 2\left|V_{r, s}\right| .
$$

(d) If $r=0$ and $s=d$ then $g\left(P, V_{r, s}\right) \leq 2\left|V_{r, s}\right|$.

If such sequence selections can indeed be made, we will achieve our goal because of the following. Recall that C is subdivided into $t-1$ segments, with the i th segment being $S_{i}=\chi_{c_{i}} \chi_{c_{i}+1} \chi_{c_{i}+2} \cdots \chi_{c_{i+1}-1}$.

Since $c_{1}=0$, we can choose $P_{c_{1}, c_{2}-1}$ according to properties (i)-(ii). Once the sequence $P_{c_{i-1}, c_{i}-1}$ has been chosen for some $i: 2<i<t$, choose the sequence $P_{c_{i}, c_{i+1}-1}$ for $\beta_{c_{i}-1}=\alpha_{c_{i}-1}$ according to properties (i) and (ii).

The sequence $P=\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d}=P_{c_{1}, c_{2}-1} P_{c_{2}, c_{3}-1} \ldots P_{c_{t-1}, c_{t}-1}$ is constructed by concatenating the sequences $P_{c_{i}, c_{i+1}-1}$ in order.

Now if $c_{i}>0$ and $c_{i+1} \leq d$ (i.e. $1<i<t-1$), then by properties (i) and (ii) and the fact that the value of $g\left(\cdot, V_{r, s}\right)$ is uneffected by any vertices not in $V_{r-1, s+1}$, we have that

$$
g\left(P, V_{c_{i}, c_{i+1}-1}\right)=g\left(\alpha_{c_{i}-1} P_{c_{i}, c_{i+1}-1} \alpha_{c_{i}+1}, V_{c_{i}, c_{i+1}-1}\right) \leq 2\left|V_{c_{i}, c_{i+1}-1}\right| .
$$

Similarly, we get that $g\left(P, V_{c_{i}, c_{i+1}-1}\right) \leq 2\left|V_{c_{i}, c_{i+1}-1}\right|$ for all $i: 1 \leq i \leq t$. Therefore

$$
g(P, V)=\sum_{i=1}^{t-1} g\left(P, V_{c_{i}, c_{i+1}-1}\right) \leq \sum_{i=1}^{t-1} 2\left|V_{c_{i}, c_{i+1}-1}\right|=2|V|,
$$

as desired.
So what remains to show is that for each segment $S_{i}=\chi_{r} \ldots \chi_{s}$ of type $1,2,3$ or 4 we can choose the appropriate sequence $P_{r, s}$ satisfying properties (i)-(ii). We have already remarked that the value of $g\left(\cdot, V_{r, s}\right)$ is uneffected by any vertices not in $V_{r-1, s+1}$, and therefore it is enough to assume that $\beta_{r-1} \in V_{r-1}$ and $\beta_{s+1} \in V_{s+1}$ instead of $\beta_{r-1} \in V_{0, r-1}$ and $\beta_{s+1} \in V_{s+1, d}$ in the proof of property (ii).

If $r>0$, fix $\beta_{r-1} \in V_{r-1}$ arbitrarily. We consider each type of segment separately. We will use $a_{r-1}=\beta_{r-1}$ and $a_{s+1}=\beta_{s+1}$ for ease of notation below.
Type 1: For $i=r, r+1, \ldots, s$ choose a vertex $a_{i} \in V_{i}$ arbitrarily and let $P_{r, s}=$ $a_{r}, a_{r+1}, \ldots, a_{s}$ (so $\alpha_{i}=a_{i}$). Clearly, $P_{r, s}$ satisfies property (i) above. First assume that $r>0$ and $s<d$. Choose $a_{s+1} \in V_{s+1}$ arbitrarily and let $P^{\prime}=a_{r-1}, P_{r, s}, a_{s+1}$. Since for $i \in\{r, r+1, \ldots, s\}$ the distance layer V_{i} has only one colour class,

$$
\begin{aligned}
f\left(P^{\prime}, V_{i}\right) & =\left|N\left(a_{i-1}\right) \cap N\left(a_{i}\right) \cap V_{i}\right|+\left|N\left(a_{i}\right) \cap N\left(a_{i+1}\right) \cap V_{i}\right|+\left|N\left(a_{i-1}\right) \cap N\left(a_{i+1}\right) \cap V_{i}\right| \\
& \leq 0+0+\left|V_{i}\right|, \text { and } \\
f\left(P^{\prime}, V_{r, s}\right) & =\sum_{i=r}^{s} f\left(P^{\prime}, V_{i}\right) \leq \sum_{i=r}^{s}\left|V_{i}\right| \leq\left|V_{r, s}\right| .
\end{aligned}
$$

Hence $g\left(P^{\prime}, V_{r, s}\right) \leq f\left(P^{\prime}, V_{r, s}\right) \leq\left|V_{r, s}\right|$, independently of the choice of β_{s+1}, and so $P_{r, s}$ satisfies property (ii) as well.

If $r=0<s<d$ then $P^{\prime}=P_{r, s}, a_{s+1}$, and the above estimate only changes when $i=0$; and $f\left(P^{\prime}, V_{0}\right)=\left|N\left(a_{i}\right) \cap N\left(a_{i+1}\right) \cap V_{i}\right|=0$. It is easy to see that the statement works in all other cases $(0<r \leq s<d$ or $0=r$ and $s=d)$ as well.

Type 2: For $i=r, \ldots, s$ choose one vertex each from the largest two colour classes of V_{i}. (If $\chi_{r}=1$ then we choose a vertex of V_{r} twice.) By edge maximality the graph induced by these vertices contains two geodesics $P_{r, s}=a_{r}, a_{r+1}, \ldots, a_{s}$ and $Q_{r, s}=b_{r}, b_{r+1}, \ldots, b_{s}$ from V_{r} to V_{s} that are vertex disjoint, except possibly for the first vertex. Clearly, $P_{r, s}$ and $Q_{r, s}$ satisfy property (i) above.

Assume first that $0<r$ and $s<d$. Let $a_{s+1} \in V_{s+1}$ be arbitrary. Note that by $\chi_{s+1}=1$ all vertices in V_{s+1} have the same neighbours. Therefore, what follows is independent of the choice of a_{s+1}. Let $P^{\prime}=a_{r-1} P_{r, s} a_{s+1}$ and $Q^{\prime}=a_{r-1} Q_{r, s} a_{s+1}$. We show that for each $i: r \leq i \leq s$

$$
\begin{equation*}
f\left(P^{\prime}, V_{i}\right)+f\left(Q^{\prime}, V_{i}\right) \leq 4\left|V_{i}\right| \tag{3}
\end{equation*}
$$

For ease of notation $b_{r-1}=a_{r-1}$ and $b_{s+1}=a_{s+1}$. Consider a distance layer V_{i}, $r \leq i \leq s$. For $j=1,2,3,4$ let x_{j} be the number of vertices of colour j in V_{i}. We can assume w.l.o.g. that $x_{1} \geq x_{2} \geq x_{3} \geq x_{4}$, and that a_{i} and b_{i} have colour 1 and 2, respectively. Let $a_{i-1}, b_{i-1}, a_{i+1}, b_{i+1}$ have colour j, k, l, m, respectively.

Assume first that $\chi_{i}>1$. Then a_{i-1} is adjacent to a_{i} and b_{i-1} is adjacent to b_{i} (by construction if $i>r$ and by the fact that $\chi_{r}>1$ implies $\chi_{i-1}=1$ if $i=r$), so $j \neq 1$ and $k \neq 2$. If a_{i} (or b_{i}) is not adjacent to $a_{i+1}\left(b_{i+1}\right)$, then we must have $i=s$, which implies that $a_{i+1}=b_{i+1}$ so $l=m$.

Therefore

$$
\begin{aligned}
f\left(P^{\prime}, V_{i}\right) & =\left|N\left(a_{i-1}\right) \cap N\left(a_{i}\right) \cap V_{i}\right|+\left|N\left(a_{i}\right) \cap N\left(a_{i+1}\right) \cap V_{i}\right|+\left|N\left(a_{i-1}\right) \cap N\left(a_{i+1}\right) \cap V_{i}\right| \\
& =\left(\left|V_{i}\right|-x_{1}-x_{j}\right)+\left|N\left(a_{i}\right) \cap N\left(a_{i+1}\right) \cap V_{i}\right|+\left|N\left(a_{i-1}\right) \cap N\left(a_{i+1}\right) \cap V_{i}\right|
\end{aligned}
$$

If in addition $j \neq l$, then $\left|N\left(a_{i-1}\right) \cap N\left(a_{i+1}\right) \cap V_{i}\right|=\left|V_{i}\right|-x_{j}-x_{l}$.
The following 3 cases might occur: $j \neq l \neq 1, j \neq l=1$ (in which case $i=s$ and $l=m=1)$ and $j=l$.

If $j \neq l \neq 1$ then $x_{j}+x_{l} \geq x_{3}+x_{4}$ and so

$$
\begin{aligned}
f\left(P^{\prime}, V_{i}\right) & =\left(\left|V_{i}\right|-x_{1}-x_{j}\right)+\left(\left|V_{i}\right|-x_{1}-x_{l}\right)+\left(\left|V_{i}\right|-x_{j}-x_{l}\right) \\
& =3\left|V_{i}\right|-2\left(x_{1}+x_{j}+x_{l}\right) \leq 3\left|V_{i}\right|-2\left(x_{1}+x_{3}+x_{4}\right)
\end{aligned}
$$

If $j \neq l=1$ then

$$
\begin{aligned}
f\left(P^{\prime}, V_{i}\right) & =\left(\left|V_{i}\right|-x_{1}-x_{j}\right)+\left(\left|V_{i}\right|-x_{1}\right)+\left(\left|V_{i}\right|-x_{j}-x_{1}\right) \\
& =3\left|V_{i}\right|-\left(3 x_{1}+2 x_{j}\right) \leq 3\left|V_{i}\right|-3 x_{1}
\end{aligned}
$$

If $j=l$ then

$$
f\left(P^{\prime}, V_{i}\right) \leq\left(\left|V_{i}\right|-x_{1}-x_{j}\right)+\left(\left|V_{i}\right|-x_{1}-x_{j}\right)+\left(\left|V_{i}\right|-x_{j}\right)=3\left|V_{i}\right|-\left(2 x_{1}+3 x_{j}\right)
$$

In summary, we have for P^{\prime} (and similarly for Q^{\prime}) that

$$
\begin{aligned}
& f\left(P^{\prime}, V_{i}\right) \leq \begin{cases}3\left|V_{i}\right|-2\left(x_{1}+x_{3}+x_{4}\right), & \text { if } j \neq l \neq 1 \\
3\left|V_{i}\right|-3 x_{1} & \text { if } j \neq l=1 \\
3\left|V_{i}\right|-\left(2 x_{1}+3 x_{j}\right), & \text { if } j=l\end{cases} \\
& f\left(Q^{\prime}, V_{i}\right) \leq \begin{cases}3\left|V_{i}\right|-2\left(x_{2}+x_{3}+x_{4}\right), & \text { if } k \neq m \neq 2 \\
3\left|V_{i}\right|-3 x_{2}, & \text { if } k \neq m=2 \\
3\left|V_{i}\right|-\left(2 x_{2}+3 x_{k}\right), & \text { if } k=m\end{cases}
\end{aligned}
$$

Since we always have $f\left(Q^{\prime}, V_{i}\right) \leq 3\left|V_{i}\right|-2 x_{2}$, for $j \neq l \neq 1$ we get

$$
f\left(P^{\prime}, V_{i}\right)+f\left(Q^{\prime}, V_{i}\right) \leq 3\left|V_{i}\right|-2\left(x_{1}+x_{3}+x_{4}\right)+3\left|V_{i}\right|-2 x_{2}=4\left|V_{i}\right|,
$$

as claimed. This statement follows similarly if $k \neq m \neq 2$.
If $j \neq l=1$, then $l=m=1$. Therefore we are done when $k \neq m$, so we may assume that $k=m=1$. Using $6 x_{1} \geq 2\left(x_{1}+x_{3}+x_{4}\right)$ we get

$$
\begin{aligned}
f\left(P^{\prime}, V_{i}\right)+f\left(Q^{\prime}, V_{i}\right) & \leq 3\left|V_{i}\right|-3 x_{1}+3\left|V_{i}\right|-\left(2 x_{2}+3 x_{1}\right) \leq 6\left|V_{i}\right|-\left(6 x_{1}+2 x_{2}\right) \\
& \leq 6\left|V_{i}\right|-2\left(x_{1}+x_{2}+x_{3}+x_{4}\right)=4\left|V_{i}\right|,
\end{aligned}
$$

as claimed. A similar logic works when $k \neq m=2$.
So the only case that still needs to be examined is $j=l$ and $k=m$, when

$$
f\left(P^{\prime}, V_{i}\right)+f\left(Q^{\prime}, V_{i}\right) \leq 6\left|V_{i}\right|-2\left(x_{1}+x_{2}+x_{j}+x_{k}\right)
$$

If $j \neq k$ then, as before, $x_{j}+x_{k} \geq x_{3}+x_{4}$ and we get that $f\left(P^{\prime}, V_{i}\right)+f\left(Q^{\prime}, V_{i}\right) \leq 4\left|V_{i}\right|$. If $j=k$, then we must have $\chi_{i-1}=\chi_{i+1}=1$, which implies that $i=s=r+1$. Since the sequence is type 2 , this must mean that $\chi_{i}=2$, so $x_{3}=x_{4}=0$ and $\left|V_{i}\right|=x_{1}+x_{2}$. Therefore in this case also $f\left(P^{\prime}, V_{i}\right)+f\left(Q^{\prime}, V_{i}\right) \leq 4\left|V_{i}\right|$, as claimed.

So the statement is true when $\chi_{i}>1$. In the case when $\chi_{i}=1$ (and so $i=r$) we get $f\left(P^{\prime}, V_{i}\right)+f\left(Q^{\prime}, V_{i}\right) \leq 2\left|V_{i}\right|$, as before.

If $r=0$ or $s=d$ then the corresponding estimates for $f\left(P^{\prime}, V_{r}\right), f\left(Q^{\prime}, V_{r}\right), f\left(P^{\prime}, V_{s}\right)$ and $f\left(Q^{\prime}, V_{s}\right)$ can only decrease.

We can assume, without loss of generality, that $f\left(P^{\prime}, V_{r, s}\right) \leq f\left(Q^{\prime}, V_{r, s}\right)$ and thus $g\left(P^{\prime}, V_{r, s}\right) \leq f\left(P^{\prime}, V_{r, s}\right) \leq 2\left|V_{r, s}\right|$. Hence $P_{r, s}$ satisfies property (i) and property (ii), as desired.

Type 3: We can assume that, possibly after recolouring, the vertices in $V_{r} \cup V_{r+2} \cup V_{r+4} \cup$ $\ldots \cup V_{s}$ all have the same colour and that this colour does not occur inbetween. We consider two cases, depending on whether $s=r+2$ or $s \geq r+4$. Initially, we consider $s<d$ only. Let $a_{s+1} \in V_{s+1}$ be arbitrary. Note that since $\chi_{s}=1$, any member of V_{s} is adjacent to a_{s+1}.
Case 1: $s \geq r+4$.
For $i=r+1, r+3, r+5, \ldots, s-1$ let $a_{i}^{1}, a_{i}^{2} \in V_{i}$ be vertices that belong to the largest and second largest,respectively, colour class of V_{i}, and for $i=r, r+2, r+4, \ldots, s$ let $a_{i} \in V_{i}$. Define the following sequences of vertices, each with $s-r+1$ vertices:

$$
\begin{aligned}
P_{r, s} & =a_{r} a_{r+1}^{1} a_{r+2} a_{r+3}^{1} a_{r+4} a_{r+5} a_{r+6} \ldots a_{s-1} a_{s-1}^{1} a_{s}, \\
Q_{r, s} & =a_{r} a_{r+1}^{1} a_{r+1}^{2} a_{r+3}^{1} a_{r+3}^{2} a_{r+5}^{1} a_{r+5}^{2} \ldots a_{s-2}^{2} a_{s-1}^{1} a_{s-1}^{2}, \\
R_{r, s} & =a_{r+1}^{1} a_{r+1}^{2} a_{r+3}^{1} a_{r+3}^{2} a_{r+5}^{1} a_{r+5}^{2} a_{r+7}^{1} \ldots a_{s-1}^{1} a_{s-1}^{2} a_{s} .
\end{aligned}
$$

Clearly, $P_{r, s}, Q_{r, s}$ and $R_{r, s}$ have the required length and satisfy property (i) above.
Let $P^{\prime}=a_{r-1}, P_{r, s}, a_{s+1}, Q^{\prime}=a_{r-1}, Q_{r, s}, a_{s+1}$, and $R^{\prime}=a_{r-1}, R_{r, s}, a_{s+1}$. We first consider $f\left(P^{\prime}, V_{r, s}\right)$. Let $i \in\{r, r+1, r+2, \ldots, s\}$ with $\chi_{i}=3$. So $a_{i-1} \in V_{i-1}, a_{i}^{1} \in V_{i}$, and $a_{i+1} \in V_{i+1}$. Now $N\left(a_{i-1}\right) \cap N\left(a_{i}^{1}\right) \cap V_{i}$ and $N\left(a_{i}^{1}\right) \cap N\left(a_{i+1}\right) \cap V_{i}$ are contained in the union of the two smallest colour classes of V_{i} and thus have at most $\frac{2}{3}\left|V_{i}\right|$ vertices each, while $N\left(a_{i-1}\right) \cap N\left(a_{i+1}\right) \cap V_{i}$ has at most $\left|V_{i}\right|$ vertices each. Hence $f\left(P^{\prime}, V_{i}\right) \leq \frac{7}{3}\left|V_{i}\right|$ if
$\chi_{i}=3$. If $\chi_{i}=2$, then similar considerations show that $f\left(P^{\prime}, V_{i}\right) \leq 2\left|V_{i}\right|$, while $\chi_{i}=1$ implies that $f\left(P^{\prime}, V_{i}\right) \leq\left|V_{i}\right|$, even when $i=r$ and perhaps $r=0$. Hence,

$$
f\left(P^{\prime}, V_{r, s}\right) \leq\left(\left|V_{r}\right|+\left|V_{r+2}\right|+\left|V_{r+4}\right|+\ldots+\left|V_{s}\right|\right)+\frac{7}{3}\left(\left|V_{r+1}\right|+\left|V_{r+3}\right|+\left|V_{r+5}\right|+\ldots+\left|V_{s-1}\right|\right) .
$$

Now consider Q^{\prime}. First let $i=r+1$, so $\chi_{i}=3$. Then $N\left(a_{i-1}\right) \cap N\left(a_{i}^{1}\right) \cap V_{i}$ and $N\left(a_{i-1}\right) \cap N\left(a_{i}^{2}\right) \cap V_{i}$ do not contain vertices in the largest and second largest colour class, respectively, of V_{i}, while $N\left(a_{i}^{1}\right) \cap N\left(a_{i}^{2}\right) \cap V_{i}$ does not contain vertices in the two largest colour classes of V_{i}. Hence $f\left(Q^{\prime}, V_{i}\right) \leq \frac{5}{3}\left|V_{i}\right|$ for $i=r+1$. (Were $\chi_{i}=2$, we would have got $f\left(Q^{\prime}, V_{i}\right) \leq\left|V_{i}\right|-$ this is an estimate that we will need for R^{\prime} later.) Similarly we obtain for $i=r+3, r+5, \ldots, s-1$ that $f\left(Q^{\prime}, V_{i}\right)=\left|N\left(a_{i}^{1}\right) \cap N\left(a_{i}^{2}\right) \cap V_{i}\right|$; therefore in this case $f\left(Q^{\prime}, V_{i}\right) \leq \frac{1}{3}\left|V_{i}\right|$ if $\chi_{i}=3$ and $f\left(Q^{\prime}, V_{i}\right)=0$ if $\chi_{i}=2$. It is easy to see that $f\left(Q^{\prime}, V_{r}\right) \leq 3\left|V_{r}\right|$ and $f\left(Q^{\prime}, V_{s}\right) \leq 3\left|V_{s}\right|$. For $i=r+2, r+4, r+6, \ldots, s-2$ each vertex of V_{i} is in the neighbourhood of exactly four vertices, $a_{i-1}^{1}, a_{i-1}^{2}, a_{i+1}^{1}$ and a_{i+1}^{2}. Hence $f\left(Q^{\prime}, V_{i}\right)=\binom{4}{2}\left|V_{i}\right|=6\left|V_{i}\right|$ and $g\left(Q^{\prime}, V_{i}\right)=5\left|V_{i}\right|$. In total

$$
\begin{aligned}
g\left(Q^{\prime}, V_{r, s}\right) \leq & 3\left(\left|V_{r}\right|+\left|V_{s}\right|\right)+\frac{5}{3}\left|V_{r+1}\right|+\frac{1}{3}\left(\left|V_{r+3}\right|+\left|V_{r+5}\right|+\left|V_{r+7}\right|+\ldots+\left|V_{s-1}\right|\right) \\
& +5\left(\left|V_{r+2}\right|+\left|V_{r+4}\right|+\left|V_{r+6}\right|+\ldots+\left|V_{s-2}\right|\right) .
\end{aligned}
$$

Similarly we obtain

$$
\begin{aligned}
g\left(R^{\prime}, V_{r, s}\right) \leq & 3\left(\left|V_{r}\right|+\left|V_{s}\right|\right)+\frac{5}{3}\left|V_{s-1}\right|+\frac{1}{3}\left(\left|V_{r+1}\right|+\left|V_{r+3}\right|+\left|V_{r+5}\right|+\ldots+\left|V_{s-3}\right|\right) \\
& +5\left(\left|V_{r+2}\right|+\left|V_{r+4}\right|+\left|V_{r+6}\right|+\ldots+\left|V_{s-2}\right|\right) .
\end{aligned}
$$

Note that each of the above three inequalities hold irrespective of the choice of a_{s+1}. moreover, they also hold when $s=d$. Now consider the weighted average of $g\left(P^{\prime}, V_{r, s}\right)$ (counted six times) and $g\left(Q^{\prime}, V_{r, s}\right)$ and $g\left(R^{\prime}, V_{r, s}\right)$ (counted once each). By the above

$$
\begin{aligned}
6 g\left(P^{\prime}, V_{r, s}\right)+g\left(Q^{\prime},\right. & \left.V_{r, s}\right)+g\left(R^{\prime}, V_{r, s}\right) \\
\leq & 12\left(\left|V_{r}\right|+\left|V_{s}\right|\right)+16\left(\left|V_{r+2}\right|+\left|V_{r+4}\right|+\left|V_{r+6}\right|+\ldots+\left|V_{s-2}\right|\right) \\
& +16\left(\left|V_{r+1}\right|+\left|V_{s-1}\right|\right)+\frac{44}{3}\left(\left|V_{r+3}\right|+\left|V_{r+5}\right|+\left|V_{r+7}\right|+\ldots+\left|V_{s-3}\right|\right) \\
\leq & 16\left|V_{r, s}\right| .
\end{aligned}
$$

Hence at least one of $P_{r, s}, Q_{r, s}$ and $R_{r, s}$ satisfies also property (ii) above, as desired.
Case 2: $s=r+2$.
Then $\left(\chi_{r}, \chi_{r+1}, \chi_{r+2}\right)=(1,3,1)$. Choose vertices $a_{r} \in V_{r}, a_{r+2} \in V_{r+2}$ and $a_{r+1}^{1}, a_{r+1}^{2} \in$ V_{r+1} from the largest and the second largest colour class in V_{r+1}, respectively. Let $P_{r, s}=$ $a_{r} a_{r+1}^{1} a_{r+2}$ and $Q_{r, s}=a_{r} a_{r+1}^{1} a_{r+1}^{2}$. Clearly, $P_{r, s}$ and $Q_{r, s}$ satisfy property (i) above. Let $a_{s+1} \in V_{s+1}$ be arbitrary and let $P^{\prime}=a_{r-1} P_{r, s} a_{s+1}$ and $Q^{\prime}=a_{r-1} Q_{r, s} a_{s+1}$. Then

$$
\begin{aligned}
& f\left(P^{\prime}, V_{r, r+2}\right) \leq\left|V_{r}\right|+\frac{7}{3}\left|V_{r+1}\right|+\left|V_{r+2}\right|, \\
& f\left(Q^{\prime}, V_{r, r+2}\right) \leq 3\left|V_{r}\right|+\frac{5}{3}\left|V_{r+1}\right|+3\left|V_{r+2}\right|,
\end{aligned}
$$

irrespective of the choice of a_{s+1}. Adding these two inequalities yields

$$
f\left(P^{\prime}, V_{r, r+2}\right)+f\left(Q^{\prime}, V_{r, r+2}\right) \leq 4\left|V_{r}\right|+4\left|V_{r+1}\right|+4\left|V_{r+2}\right|,
$$

and so $f\left(P^{\prime}, V_{r, r+2}\right) \leq 2\left|V_{r, r+2}\right|$ for all $a_{s+1} \in V_{s+1}$ or $f\left(Q^{\prime}, V_{r, r+2}\right) \leq 2\left|V_{r, r+2}\right|$ for all $a_{s+1} \in V_{s+1}$. Hence at least one of $P_{r, s}$ and $Q_{r, s}$ satisfies also property (ii).
Type 4: In this case $r=s=d>r$ Choose a vertex $\alpha_{r} \in V_{r}$ arbitrarily and set $P=\alpha_{r}$. Since $\chi_{r-1}=1$, we must have β_{r-1} adjacent to α_{r} and therefore $g\left(\beta_{r-1} P, V_{r}\right) \leq$ $f\left(\beta_{r-1} P, V_{r}\right)=0$.

We remark that there appears to be no straightforward generalisation of the proof of Theorem 1 to $2 k$-colourable graphs. However, we expect that the methods presented in this proof points a way towards a possible proof of such a generalisation.

Acknowledgement The authors would like to thank Wayne Goddard for very helpful discussions on the topic of the paper.

References

[1] P. Dankelmann, G. Dlamini, and H.C. Swart, Upper bounds on distance measures in $K_{2, l}$-free graphs, Submitted.
[2] P. Dankelmann, G. Dlamini, and H.C. Swart, Upper bounds on distance measures in $K_{3,3}$-free graphs, Util. Math. 67 (2005), 205-221.
[3] J. Galambos and I. Simonelli, Bonferroni-type inequalities with applications, Springer-Verlag, 1996.
[4] P. Erdős, J. Pach, R. Pollack, and Z. Tuza, Radius, diameter, and minimum degree, J. Combin. Theory B 47 (1989), 279-285.
[5] D. Amar, I. Fournier, and A. Germa, Odre minimum d'un graphe simple de diametre, degré minimum et connexité donnés, Ann. Discrete Math. 17 (1983), 7-10.
[6] D. Goldsmith, B. Manvel, and V. Farber, A lower bound for the order of a graph in terms of the diameter and minimum degree, J. Combin. Inform. System Sciences $\mathbf{6}$ (1981), 315-319.
[7] J.W. Moon, On the diameter of a graph, Mich. Math. J. 12 (1965), 349-351.

[^0]: *This author was supported in part by the NSF DMS contract 07011111.

