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Abstract

This paper characterizes binary trees with n leaves, which have the greatest

number of subtrees. These binary trees coincide with those which were shown by

Fischermann et al. [2] and Jelen and Triesch [3] to minimize the Wiener index.

1 Terminology

All graphs in this paper will be �nite, simple and undirected. A tree T = (V;E) is a

connected, acyclic graph. We refer to vertices of degree 1 of T as leaves. The unique

path connecting two vertices v; u in T will be denoted by PT (v; u). For a tree T and

two vertices v, u of T , the distance dT (v; u) between them is the number of edges on

the connecting path PT (v; u). For a vertex v of T , de�ne the distance of the vertex as

gT (v) =
P

u2V (T ) dT (v; u): Then �(T ) = 1

2

P
v2V (T ) gT (v) denotes the Wiener index of T .

We call a tree (T; r) rooted at the vertex r (or just by T if it is clear what the root is) by

specifying a vertex r 2 V (T ). For any two di�erent vertices u; v in a rooted tree (T; r), we

say that v is a successor of u, if PT (r; u) � PT (r; v). Furthermore, if u and v are adjacent

to each other and dT (r; u) = dT (r; v) � 1, we say that u is a parent of v and v is a child

of u. A subtree of a tree will often be described by its vertex set.

If v is any vertex of a rooted tree (T; r), let T (v), the subtree induced by v, denote the

rooted subtree of T that is induced by v and all its successors in T , and is rooted at v.

The height of a vertex v of a rooted tree T with root r is hT (v) = dT (r; v), and the

height of a rooted tree T is h(T ) = maxv2T hT (v), the maximum height of vertices.

A binary tree is a tree T such that every vertex of T has degree 1 or 3. A rooted binary

tree is a tree T with root r, which has exactly two children, while every other vertex of

T has degree 1 or 3. A rooted binary tree T is complete, if it has height h and 2h leaves

for some h � 0. In addition, a single vertex tree is also considered a rooted binary tree of

height 0.

For a tree T and a vertex v of T , let fT (v) denote the number of subtrees of T that

contain v, let F (T ) denote the number of non-empty subtrees of T .
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If T is a rooted binary tree with root r, and r1; r2 are the children of r, then we will

simply write T1 for T (r1) and T2 for T (r2). We assign the labels r1 and r2 according to the

following rule: fT2(r2) � fT1(r1). Ti will be rooted at ri, i = 1; 2. We de�ne recursively

Ti1i2:::ik1 and Ti1i2:::ik2 to be the two rooted binary trees induced by the children of the

root of Ti1i2:::ik , when Ti1i2:::ik is not a single vertex, where ij 2 f1; 2g, j = 1; 2; : : : ; k. We

assign the labels ri1i2:::ik1 and ri1i2:::ik2 according to the following rule:

fTi1i2:::ik2
(ri1i2:::ik2) � fTi1i2:::ik1

(ri1i2:::ik1) (1)

We complete the recursive de�nition by letting ri1i2:::ik be the root for Ti1i2:::ik .

2 Introduction

To present our main results, we have to give more de�nitions. Call a rooted binary tree

ordered, if for every k � 1, the vertices at height k are put in a linear order, such that if u

and v are vertices at height k+1, and they have distinct parents, then the order between

u and v at height k + 1 is the same as the order of their parents at height k.

A rooted binary tree is good, if (i) the heights of any two of its leaf vertices di�er by

at most 1; (ii) the tree can be ordered such that the parents of the leaves at the greatest

height make a �nal segment in the ordering of vertices at the next-to-greatest height. For

brevity, we often refer to such trees as rgood binary trees. A single-vertex rooted binary

tree is also rgood.

A binary tree is good, if it is obtained from two rgood binary trees T1 and T2 by joining

their roots with an edge, if (i) for any two leaves, their respective heights in T1 and/or T2
di�er by at most 1; (ii) at least one of T1 and T2 is complete.

Note that good and rgood binary trees are unique in the following sense: if we have two

good (rgood) binary trees with same number of vertices, then we can label their vertices

such that they are isomorphic to each other. The concept of height can be naturally

extended to vertices of good binary trees, as shown on Fig. 1.
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Figure 1: An rgood binary tree (on the left) and a good binary tree (on the right).Vertices

at height k of the rgood binary tree and of the two rgood parts of the good binary tree

are shown on the line R � k.

Fischermann et al. [2], and independently Jelen and Triesch [3] proved:

Theorem 2.1. Among binary trees with n leaves, precisely the good binary tree minimizes

the Wiener index.

The goal of this paper is to prove:

Theorem 2.2. Among binary trees with n leaves, precisely the good binary tree maximizes

the number of subtrees.
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In a related paper [5] we discuss an amazing and not yet understood relationship be-

tween the Wiener index and the number of subtrees. In [5] we also explain additional

motivation for extremal problems about the number of subtrees of trees. Knudsen [4] used

this quantity to provide upper bound for the time complexity of his multiple parsimony

alignment with aÆne gap cost using a phylogenetic tree.

3 Lemmas about arbitrary trees

Lemma 3.1. For any rooted tree T with root r, and any r0 2 V (T ) (r0 6= r), consider the

induced subtree T 0 = T (r0) rooted at r0. Then we have

fT (r) > fT 0(r
0): (2)

If T 00 is obtained from T by deleting some vertices, but not r, then

fT (r) > fT 00(r): (3)

�

In the rest of this section we prove two lemmas. Consider the tree T in Fig. 2, with

leaves x and y, and PT (x; y) = xx1 : : : xnzyn : : : y1y (xx1 : : : xnyn : : : y1y) if dT (x; y) is even

(odd).

s s s s s s s
x x1 xn z yn y1 y

X1 Xn

Z
Yn Y1

: : : : : :

Figure 2: Path PT (x; y) connecting leaves x and y.

After the deletion of all the edges of PT (x; y) from T , some connected components will

remain. Let Xi denote the component that contains xi, let Yj denote the component that

contains yj, for i; j = 1; 2; : : : ; n, and let Z denote the component that contains z. Set

ai = fXi
(xi) for i = 1; : : : ; n, (n � 0)

bj = fYj
(yj) for j = 1; : : : ; n,

c = fZ(z).

Lemma 3.2. In the situation described above, if ai � bi for i = 1; 2; : : : ; n; then fT (x) �

fT (y): Furthermore, fT (x) = fT (y) if and only if n = 0 or ai = bi for all i.

Proof. With the above notations, if z and Z occur, we have

fT (x) = 1 +

nX
k=1

(

kY
i=1

ai) + c(

nY
i=1

ai) + c(

nY
i=1

ai)(

nX
k=1

(

nY
j=n+1�k

bj)) +N ;

fT (y) = 1 +

nX
k=1

(

kY
j=1

bj) + c(

nY
j=1

bj) + c(

nY
j=1

bj)(

nX
k=1

(

nY
i=n+1�k

ai)) +N ;
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(Here N = c
Qn

i=1(aibi) is the number of subtrees that contain both x and y.)

Then we have fT (x)� fT (y) =

nX
k=1

(

kY
i=1

ai �

kY
j=1

bj) + c(

nY
i=1

ai �

nY
j=1

bj) + c

nX
k=1

(

n�kY
i=1

ai �

n�kY
j=1

bj)

nY
l=n+1�k

albl � 0;

with strict inequality if ai > bi for any i 2 f1; 2; : : : ; ng.

A similar argument works if z and Z do not occur.
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Figure 3: Switching subtrees rooted at x and y.

If we have a tree T with leaves x and y, and two rooted trees X and Y , then we can

build two new trees, �rst T 0, by identifying the root of X with x and the root of Y with

y, second T 00, by identifying the root of X with y and the root of Y with x. Under the

circumstances below we can tell which composite tree has more subtrees.

Lemma 3.3. If fT (x) > fT (y) and fX(x) < fY (y), then we have F (T 00) > F (T 0):

Proof. When T 0 changes to T 00, the number of subtrees which contain both or neither of

x and y do not change, so we only need to consider the number of subtrees which contain

precisely one of x and y. For T 0, the number of subtrees which contain x but not y is

fX(x)(fT (x)�N);

the number of the subtrees which contain y but not x is

fY (y)(fT (y)�N);

where N is the number of subtrees of T that contain both x and y. Similarly, for T 00,

these two numbers are

fY (y)(fT (x)�N) and fX(x)(fT (y)�N):

We have

F (T 00)� F (T 0) = (fY (y)� fX(x))(fT (x)� fT (y)) > 0:
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4 Basic properties of good and rgood binary trees

The following 4 lemmas immediately follow from the de�nitions and we leave the proofs

to the Reader.

Lemma 4.1. For any rgood binary tree T , all the induced rooted subtrees T1; T2; T11; T12;

T21; T22; : : : are rgood as well. �

Lemma 4.2. For any two rgood binary trees T and T 0 with roots r and r0 respectively,

we have

h(T ) > h(T 0) ) jV (T )j > jV (T 0)j; (4)

jV (T )j � jV (T 0)j ) h(T ) � h(T 0); (5)

fT (r) > fT 0(r
0), jV (T )j > jV (T 0)j and fT (r) = fT 0(r

0), jV (T )j = jV (T 0)j:(6)

Thus, when trying to compare the number of subtrees containing the roots of some rgood

trees, it suÆces to compare their sizes. �

Lemma 4.3. Assume that in a rooted binary tree T , the induced subtrees at the children

of the root, T1 and T2, are rgood. Now T is rgood if and only if one of the following

conditions hold:

i) h(T1) = h(T2), and T2 is complete;

ii) h(T1) = h(T2)� 1, and T1 is complete. �

Lemma 4.4. Let us be given two rgood binary trees, T 0 and T 00, such that h(T 0) � h(T 00).

Join with an edge the roots of T 0 and T 00 to obtain the binary tree T . Now T is good if

and only if one of the following conditions hold:

i) h(T 0) = h(T 00), and one or both of T 0 and T 00 is complete;

ii) h(T 0) = h(T 00)� 1, and T 0 is complete. �

Lemma 4.5. If T is an rgood binary tree, then (T1; r1) is isomorphic to a subtree of

(T2; r2), and consequently (T1i1:::ik ; r1i1:::ik) is isomorphic to a subtree of (T2i1:::ik ; r2i1:::ik)

for every ij 2 f1; 2g such that r1i1:::ik exists.

Proof. An immediate consequence of Lemma 4.3

Lemma 4.6. For any rgood binary tree T and any k � 0, we have

fT1(v1) � fT2 : : : 21| {z }
k 20s

(v2 : : : 21| {z }
k 20s

): (7)

Proof. For k = 0, (7) holds with identity. For k � 1, we consider two cases:

If h(T1) = h(T2), then h(T1) > h(T21) � h(T2 : : : 21| {z }
k 20s

), and (7) holds by (4) and (6).

If h(T1) = h(T2)�1, then by Lemma 4.3, T1 is complete. Notice that h(T1) = h(T2)�1 �

h(T2 : : : 21| {z }
k 20s

) for k � 1, hence (3) applies to the rooted trees T1 and T2 : : : 21| {z }
k 20s

. Hence, (7)

holds.
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Figure 4: Dividing a binary tree T into two rooted binary trees.

5 The structure of optimal binary trees

For brevity, we will call a binary tree maximizing the number of subtrees among binary

trees with the same number of leaves optimal. We will show several lemmas describing

parts of optimal binary trees. For any binary tree T , the deletion of an edge v0v00 divides

T into two rooted binary trees T 0 and T 00 with roots v0 and v00 respectively.

Lemma 5.1. Assume T is an optimal binary tree. Assume that T is divided into two

rooted subtrees T 0, T 00 by the removal of the edge v0v00 as shown in Fig. 4. Then, if for all

k � 1 the inequalities

fT 0(v
0) > f(T 00)2 : : : 21| {z }

k 20s

(v002 : : : 21| {z }
k 20s

); (8)

hold as far as vertex v002 : : : 21| {z }
k 20s

exists, then T 00 is rgood.

Note: We understand that (8) holds if (T 00)21 does not exist. Then (T 00)2 is a single

vertex, and by (1) (T 00)1 is also a single vertex. Therefore T 00 is rgood as Lemma 5.1

requires.

Proof. The proof goes by induction on jV (T 00)j. The base case: if jV (T 00)j = 1, then by

de�nition, T 00 is rgood. Now, suppose that Lemma 5.1 holds for any induced subtree in

place of T 00 with fewer vertices. We are going to show the following:

Claim 5.1. (T 00)1 and (T 00)2 are rgood.

Proof. Consider (T 00)1 and (T 00)2 with roots v001 and v002 . For (T 00)1, consider T as being

divided into T 000 = ((T 00)1; v
00

1) and T � = (T 0[ (T 00)2[fv
00g; v00). Notice that for any k � 1,

fT �(v
00) >(2) f(T 00)2(v

00

2) �
(1) f(T 00)1(v

00

1)

>(2) f(T 00)12 : : : 21| {z }
k 20s

(v0012 : : : 21| {z }
k 20s

) = f(T 000)2 : : : 21| {z }
k 20s

(v0012 : : : 21| {z }
k 20s

);
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thus (8) holds for T � and T 000. By hypothesis, it follows that (T 00)1 is rgood. (We fall into

the habit of superscripting some inequalities for a reference to their proofs.)

For (T 00)2, consider T as being divided into T 000 = ((T 00)2; v
00

2) and T � = (T 0 [ (T 00)1 [

fv00g; v00). We have for any k � 1

fT �(v
00) >(2) fT 0(v

0) >(8) f(T 00)2 : : : 21| {z }
k+1 20s

(v002 : : : 21| {z }
k+1 20s

) = f(T 000)2 : : : 21| {z }
k 20s

(v002 : : : 21| {z }
k+1 20s

);

thus (8) holds for T � and T 000. By hypothesis, it follows that (T 00)2 must be rgood.
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Figure 5: Considering subtrees of T 00.

Knowing that (T 00)1 and (T 00)2 are rgood, we return to the inductive step in the proof of

Lemma 5.1. We consider the following cases: (i) h((T 00)1) < h((T 00)2) and (ii) h((T 00)1) =

h((T 00)2). (Note that the third inequality h((T 00)1) > h((T 00)2) is impossible by the rgood-

ness of (T 00)1 and (T 00)2, (1) and Lemma 4.2).

Case (i): h((T 00)1) < h((T 00)2).

By (6), (4) and Claim 5.1, we have jV ((T 00)2)j > jV ((T
00)1)j and f(T 00)2(v

00

2) > f(T 00)1(v
00

1).

Claim 5.2. For any k � 0 such that (T 00)1 : : : 1| {z }
k

is not empty, we have

jV ((T 00)1 : : : 1| {z }
k

)j � jV ((T 00)22 : : : 2| {z }
k+1

)j: (9)

Proof. The proof goes by induction on k. The base case k = 0 is trivial. For the inductive

step, suppose that (9) holds for k = 0; 1; 2; : : : ; l. We are going to prove that (9) also holds

for k = l + 1, if (T 00)1 : : : 1| {z }
l+1

is not empty. We need that for k = 0; 1; 2; :::; l

jV ((T 00)1 : : : 12| {z }
k 10s

)j � jV ((T 00)22 : : : 21| {z }
k+1 20s

)j: (10)
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Indeed, jV ((T 00)1 : : : 12| {z }
k 10s

)j � 1

2
(jV ((T 00)1 : : : 1| {z }

k

)j � 1), since by Claim 5.1 and Lemma 4.1 all

rooted subtrees of (T 00)1 and (T
00)2 are rgood, and therefore convention (1) and formula (6)

apply. A similar argument shows 1

2
(jV ((T 00)22 : : : 2| {z }

k+1

)j�1) � jV ((T 00)22 : : : 21| {z }
k+1 20s

)j: Combining

these with the hypothesis (9) for k = l, we obtain (10).

For contradiction, assume that (9) does not hold for k = l + 1, i.e.

jV ((T 00)1 : : : 11| {z }
l+1

)j < jV ((T 00)22 : : : 22| {z }
l+2

)j: (11)

Through Claim 5.1, Lemma 4.1, and (6), formula (11) implies

f(T 00)1 : : : 11| {z }
l+1

(v001 : : : 11| {z }
l+1

) < f(T 00)22 : : : 22| {z }
l+2

(v0022 : : : 22| {z }
l+2

): (12)

Observe that

jV ((T 00)1 : : : 12| {z }
l 10s

)j+ jV ((T 00)1 : : : 11| {z }
l+1

)j = jV ((T 00)1 : : : 11| {z }
l

)j � 1

�(9;k=l) jV ((T 00)22 : : : 2| {z }
l+1

)j � 1 = jV ((T 00)22 : : : 21| {z }
l+1 20s

)j+ jV ((T 00)22 : : : 22| {z }
l+2

)j;

and therefore (11) implies that strict inequality holds in (10) when k = l, i.e.

jV ((T 00)1 : : : 12| {z }
l 10s

)j > jV ((T 00)22 : : : 21| {z }
l+1 20s

)j: (13)

Now we are in the position to apply Lemma 3.2 in the following setting:

x v001 : : : 11| {z }
l+1

;xi  v001 : : : 1| {z }
l+1�i

;xl+1  v00; yl+1  v002 ; yi  v0022 : : : 2| {z }
l+2�i

; y  v0022 : : : 22| {z }
l+2

for i = 1; 2; : : : ; l. For the subtrees, the substitution is

X  ((T 00)1 : : : 11| {z }
l+1

; v001 : : : 11| {z }
l+1

); Xi  ((T 00)1 : : : 12| {z }
l+1�i 10s

[ fv001 : : : 1| {z }
l+1�i

g; v001 : : : 1| {z }
l+1�i

);

Xl+1  (T 0 [ fv00g; v00); Yl+1  ((T 00)21 [ fv
00

2g; v
00

2);

Yi  ((T 00)22 : : : 21| {z }
l+2�i 20s

[ fv0022 : : : 2| {z }
l+2�i

g; v0022 : : : 2| {z }
l+2�i

); Y  ((T 00)22 : : : 22| {z }
l+2

; v0022 : : : 22| {z }
l+2

);

S  (Tn(X [ Y ))[fx; yg;

for where i = 1; 2; : : : ; l. Using the notation in Lemma 3.2, we have

ai = f(T 00)1 : : : 12| {z }
l+1�i 10s

(v001 : : : 12| {z }
l+1�i 10s

) + 1 � f(T 00)22 : : : 21| {z }
l+2�i 20s

(v0022 : : : 21| {z }
l+2�i 20s

) + 1 = bi (14)

for i = 1; 2; : : : ; l, by (10) and (6). In fact, strict inequality holds in (14) for i = 1 by (13).

We also have

al+1 = fT 0(v
0) + 1 > f(T 00)21(v

00

21) + 1 = bl+1

8



by (8). From here, we obtain the conclusion of Lemma 3.2, which is exactly the �rst

condition of Lemma 3.3 as well:

fS(x) > fS(y):

We also have the other condition of Lemma 3.3

fX(x) = f(T 00)1 : : : 11| {z }
l+1

(v001 : : : 11| {z }
l+1

) < f(T 00)22 : : : 22| {z }
l+2

(v0022 : : : 22| {z }
l+2

) = fY (y)

from (12). Thus, by Lemma 3.3, interchangingX and Y increases F (T ), contradicting the

optimality of T . Hence (9) holds for k = l+1, and we completed the induction proof.

Since (T 00)1 : : : 1| {z }
k

and (T 00)22 : : : 2| {z }
k+1

are rgood trees, (9) implies through (5) that

h((T 00)1 : : : 1| {z }
k

) � h((T 00)22 : : : 2| {z }
k+1

) (15)

for any k � 1 such that (T 00)1 : : : 1| {z }
k

is not empty. On the other hand, since we are in the

case h((T 00)1) < h((T 00)2), we have

h((T 00)1) � h((T 00)2)� 1 = h((T 00)22);

h((T 00)11) � h((T 00)1)� 1 � h((T 00)22)� 1 = h((T 00)222);

: : : ;

h((T 00)1 : : : 1| {z }
k

) � h((T 00)22 : : : 2| {z }
k+1

) (16)

for any k � 1 such that (T 00)1 : : : 1| {z }
k

is not empty. Comparing (15) and (16), we conclude

that equality holds all the way in (15) and (16) until both (T 00)11:::1 and (T 00)222:::2 turns

into a single vertex. In this case (T 00)1 is complete and of height h((T 00)2) � 1. By

Lemma 4.3, T 00 is rgood. End of Case (i).

Case (ii): h((T 00)1) = h((T 00)2).

Claim 5.3. For any k � 0 such that (T 00)21 : : : 1| {z }
k 10s

is not empty, we have

jV ((T 00)21 : : : 1| {z }
k 10s

)j � jV ((T 00)12 : : : 2| {z }
k 20s

)j (17)

Proof. The proof goes by induction on k. The base case k = 0 follows from Lemma 4.2

and Claim 5.1. For the inductive step, suppose that (17) holds for k = 0; 1; 2; : : : ; l.

We are going to prove that (17) also holds for k = l + 1, if (T 00)21 : : : 1| {z }
k 10s

is not empty.

Hypothesis jV ((T 00)21 : : : 1| {z }
k 10s

)j � jV ((T 00)12 : : : 2| {z }
k 20s

)j implies that

jV ((T 00)21 : : : 12| {z }
k 10s

)j � jV ((T 00)12 : : : 21| {z }
k 20s

)j (18)

9



through the facts that these trees are rgood by Claim 5.1, labelled according to the

convention (1), and formula (6). For contradiction, assume that (17) does not hold for

k = l + 1, i.e.

jV ((T 00)21 : : : 11| {z }
l+1 10s

)j < jV ((T 00)12 : : : 22| {z }
l+1 20s

)j: (19)

Notice that

jV ((T 00)21 : : : 12| {z }
l 10s

)j+ jV ((T 00)21 : : : 11| {z }
l+1 10s

)j = jV ((T 00)21 : : : 1| {z }
l 10s

)j � 1

�(17;k=l) jV ((T 00)12 : : : 2| {z }
l 20s

)j � 1 = jV ((T 00)12 : : : 21| {z }
l 20s

)j+ jV ((T 00)12 : : : 22| {z }
l+1 20s

)j:

Therefore (19) implies that strict inequality holds in (18) for k = l, i.e.

jV ((T 00)21 : : : 12| {z }
l 10s

)j > jV ((T 00)12 : : : 21| {z }
l 20s

)j: (20)

Now we are in the position to apply Lemma 3.2 in the following setting:

x v0021 : : : 11| {z }
l+1 10s

; xi  v0021 : : : 1| {z }
l+1�i 10s

; z  v00; yi  v0012 : : : 2| {z }
l+1�i 20s

; y  v0012 : : : 22| {z }
l+1 20s

;

X  ((T 00)21 : : : 11| {z }
l+1 10s

; v0021 : : : 11| {z }
l+1 10s

); Xi  ((T 00)21 : : : 12| {z }
l+1�i 10s

[ fv0021 : : : 1| {z }
l+1�i 10s

g; v0021 : : : 1| {z }
l+1�i 10s

);

Z  (T 0 [ fv00g; v00);

Yi  ((T 00)12 : : : 21| {z }
l+1�i 20s

[ fv0012 : : : 2| {z }
l+1�i 20s

g; v0012 : : : 2| {z }
l+1�i 20s

); Y  ((T 00)12 : : : 22| {z }
l+1 20s

; v0012 : : : 22| {z }
l+1 20s

);

S  (Tn(X [ Y ))[fx; yg;

for i = 1; 2; : : : ; l + 1. Using the notation in Lemma 3.2, we have

ai = f(T 00)21 : : : 12| {z }
l+1�i 10s

(v0021 : : : 12| {z }
l+1�i 10s

) + 1 � f(T 00)12 : : : 21| {z }
l+1�i 20s

(v0012 : : : 21| {z }
l+1�i 20s

) + 1 = bi (21)

for i = 1; 2; : : : ; l + 1, by (18) and (6). In fact, strict inequality holds in (21) for i = 1 by

(20), and therefore a1 > b1. From here, we obtain the conclusion of Lemma 3.2, which is

exactly the �rst condition of Lemma 3.3 as well:

fS(x) > fS(y):

By (19) (also using Claim 5.1, Lemma 4.1, and (6)) we also have the second condition of

Lemma 3.3:

fX(x) = f(T 00)21 : : : 11| {z }
l+1 10s

(v0021 : : : 11| {z }
l+1 10s

) < f(T 00)12 : : : 22| {z }
l+1 20s

(v0012 : : : 22| {z }
l+1 20s

) = fY (y):

Thus, Lemma 3.3 applies, interchanging X and Y increases F (T ), contradicting the op-

timality of T . Hence (17) holds for k = l + 1. Using induction, we proved Claim 5.3.
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Notice that the trees mentioned in (17) are rgood by Claim 5.1 and Lemma 4.1, and

therefore (17) implies through (5) that

h((T 00)21 : : : 1| {z }
k 10s

) � h((T 00)12 : : : 2| {z }
k 20s

) (22)

for any k � 1 such that (T 00)21 : : : 1| {z }
k 20s

is not empty. On the other hand, since we are in the

case h((T 00)1) = h((T 00)2), we must have

h((T 00)21) � h((T 00)2)� 1 = h((T 00)1)� 1 = h((T 00)12);

h((T 00)211) � h((T 00)21)� 1 �(22) h((T 00)12)� 1 = h((T 00)122);

: : : ;

h((T 00)21 : : : 1| {z }
k 10s

) �(22) h((T 00)12 : : : 2| {z }
k 20s

) (23)

for any k � 1 such that (T 00)21 : : : 1| {z }
k 10s

is not empty.

Comparing (22) and (23), we conclude that equality holds all the way in (22) and (23)

until both (T 00)21:::1 and (T 00)12:::2 turns into a single vertex. In this case (T 00)2 is complete

and h((T 00)2) = h((T 00)1). By Lemma 4.3, T 00 is rgood. End of Proof to Lemma 5.1.

Now consider an optimal binary tree T which maximizes F (T ) among n-leaf binary

trees. Divide T into two rooted binary trees (T 0; v0) and (T 00; v00) by deleting an edge v0v00.

We obtain the following two lemmas.

Lemma 5.2. If jh(T 00)� h(T 0)j � 1, then T 0 and T 00 both must be rgood.

Note that if we choose a longest path P and choose (v0; v00) as the closest to middle edge

on P , we obtain such a T 0 and T 00.

Proof. Without loss of generality, we can assume fT 00(v
00) � fT 0(v

0) (see Lemma 4.2).

First, it is easy to see that for any k � 1

fT 00(v
00) � fT 0(v

0) >(2) f(T 0)2 : : : 21| {z }
k 20s

(v02 : : : 21| {z }
k 20s

):

Thus condition (8) holds, and by Lemma 5.1, T 0 is rgood.

On the one hand, since T 0 is rgood, T 0 must contain a complete rooted binary tree

T �, with the same root, of height at least h(T 0) � 1 � h(T 00) � 2. On the other hand,

(T 00)2 : : : 21| {z }
k 20s

is of height at most h(T 00) � 2 and is isomorphic to a subtree of T 0 (sharing

the same root). Therefore

fT 0(v
0) �(4;6;3) f(T 00)2 : : : 21| {z }

k 20s

(24)

for k � 1. In fact, (24) is always a strict inequality, since T 0 has some other vertices than

those in the complete rooted binary tree with height h(T 0) � 1. So condition (8) holds,

T 00 is also rgood.
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Figure 6: The optimal binary tree T , which maximizes F (T ).

Let T be divided into T 0 and T 00 by deleting the closest to middle edge as described

after Lemma 5.2. By Lemma 5.2, T 0 and T 00 are both rgood. Without loss of generality

we may assume that fT 00(v
00) � fT 0(v

0) (and also h(T 00) � h(T 0) by (4) and (6)).

Lemma 5.3. T 0 is complete or T � = (T 0 [ (T 00)1 [ fv
00g; v00) is rgood.

Proof. Assume that T 0 is not complete, and therefore f(T 0)1(v
0

1) <
1

2
[fT 0(v

0)� 1]. We have

that f(T 00)2(v
00

2) �
(1) 1

2
[fT 00(v

00)� 1] and 1 � fT 0(v
0) � fT 00(v

00); and therefore

f(T 0)1(v
0

1) < f(T 00)2(v
00

2): (25)

Consider T as being divided into T � and (T 00)2. Since T 0 is rgood by Lemma 5.2,

Lemma 4.6 yields for any k � 0

f(T 0)2 : : : 21| {z }
k 20s

(v02 : : : 21| {z }
k 20s

) �(7) f(T 0)1(v
0

1): (26)

Combining (25) with (26) yields for any k � 0

f(T 0)2 : : : 21| {z }
k 20s

(v02 : : : 21| {z }
k 20s

) < f(T 00)2(v
00

2): (27)

Similarly, notice that (T 00)1 is rgood, and then for k � 0,

f(T 00)2(v
00

2) �
(1) f(T 00)1(v

00

1) >
(2) f(T 00)11(v

00

11) �
(7) f(T 00)12 : : : 21| {z }

k 20s

(v0012 : : : 21| {z }
k 20s

): (28)

Combining (27) and (28), we obtain that for any k � 0,

f(T 00)2(v
00

2) > max

�
f(T 0)2 : : : 21| {z }

k 20s

(v02 : : : 21| {z }
k 20s

); f(T 00)12 : : : 21| {z }
k 20s

(v0012 : : : 21| {z }
k 20s

)

�
: (29)

Since (T �)2 = T 0 or (T 00)1, we have from (29) that

f(T 00)2(v
00

2) > f(T �)2 : : : 21| {z }
k+1 20s

(r�) for k � 0;

where r� is the root of (T �)2 : : : 21| {z }
k+1 20s

. So (8) holds, T � is rgood by Lemma 5.1.

12



6 The proof of Theorem 2.2

Proof. Let T be an optimal binary tree on n leaves. For contradiction, suppose that T is

not good. Divide T into T 0 and T 00 by deleting the closest to middle edge as described

before Lemma 5.3. By Lemma 5.2, both T 0 and T 00 are rgood. We assume that fT 00(v
00) �

fT 0(v
0), and also h(T 00) � h(T 0) by (4), (5) and (6). (Figs. 4, 5, and 6 explain how the

vertices are labelled.) Since T 00 is rgood,

h(T 00)� 2 � h((T 00)1) � h(T 00)� 1 = h((T 00)2): (30)

By de�nition, h(T 00)� 1 � h(T 0) � h(T 00). According to Lemma 4.4, T 0 is not complete,

and if h(T 0) = h(T 00), then T 00 is not complete either. De�ne T � = (T 0 [ (T 00)1 [ fv
00g; v00)

(as in Lemma 5.3). Since T 0 is not complete, T � must be rgood (Lemma 5.3)) and so, by

Lemma 4.3,

(T 00)1 must be complete: (31)

If h(T 0) = h(T 00), then since T 00 is not complete and (31), we must have h((T 00)1) =

h((T 00)2)� 1 = h(T 0)� 2. But this contradicts the rgoodness of T �, (it would have leaves

at heights di�ering by 2), therefore we must have

h(T 0) = h(T 00)� 1: (32)

Assume at this point for a second h((T 00)1) = h((T 00)2). Applying Lemma 4.3 to T 00 yields

that (T 00)2 must be complete, and consequently, by (31), T 00 must be complete. Now, let

T 000 = (T 0 [ (T 00)2 [fv
00g; v00). Then h(T 000) = h(T 0)+ 1 = h((T 00)2)+ 1 = h((T 00)1)+ 1, the

completeness of (T 00)2 and T 0 indicates that T 000 is complete. (T 00)1 is complete by (31),

and observe h(T 000) = h(T 0) + 1 = h((T 00)2) + 1 = h((T 00)1) + 1. Apply Lemma 4.4 (ii) for

joining T 000 and (T 00)1 to obtain T , and observe that T is good, a contradiction. Therefore

we have h((T 00)1) = h((T 00)2) � 1. Assume now for a second that (T 00)2 is complete.

Now draw T by placing the edge v00v002 to the line R � 0 and observe that T is good, a

contradiction. Therefore we may assume for the rest of the proof that

(T 00)2 is not complete, and h((T 00)1) = h((T 00)2)� 1 = h(T 00)� 2 = h(T 0)� 1: (33)

Set T 000 = (T 0 [ (T 00)2 [ fv
00g; v00). Consider now T as being divided into T 000 and (T 00)1,

and note that T 000 is not rgood as neither T 0 nor (T 00)2 are complete. First we will show

that for all k � 0, we have

f(T 00)1(v
00

1) > f(T 0)2 : : : 21| {z }
k 20s

(v02 : : : 21| {z }
k 20s

): (34)

Now

h((T 0)22 : : : 21| {z }
k 20s

) � h(T 0)� (k + 1) =(33) h((T 00)1)� k; (35)

so (34) holds for k � 1 by (4) and (6).

Also if h((T 0)1) = h((T 0)2)� 1 <(33) h((T 00)1), then (34) holds for k = 0 by (4) and (6).

Therefore we only need to show that (34) holds for k = 0 when h((T 0)1) = h((T 0)2) =

h(T 0)�1 =(33) h(T 00

1 ). But since T
0 is not complete, if h((T 0)1) = h((T 0)2) then (T 0)1 must

not be complete, and since (T 00)1 is complete, we get from (6) that f(T 00)1(v
00

1) > f(T 0)1(v
0

1),

and therefore (34) is true.
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Similarly to the above, we will also show that for every k � 1 we have

f(T 00)1(v
00

1) > f(T 00)22 : : : 21| {z }
k 20s

(v0022 : : : 21| {z }
k 20s

): (36)

As before, h((T 00)22 : : : 21| {z }
k 20s

) � h(T 00)� (k + 1) =(33) h((T 00)1)� (k � 1) so (36) holds for

k � 2 by (4). Also if h((T 00)21) = h((T 00)22) � 1 = h(T 00) � 3 <(33) h((T 00)1), then (36)

holds for k = 1 by (4).

So, since (T 00)2 is rgood, all we need to show is that (36) holds for k = 1 when h((T 00)21) =

h((T 00)22) =
(33) h((T 00)1). But since (T

00)2 is not complete, from (6) we have in this case

that f(T 00)1(v
00

1) > f(T 00)21(v
00

21) as required.

Combining (34) with (36), we obtain that for any k � 0,

f(T 00)1(v
00

1) > max

�
f(T 0)2 : : : 21| {z }

k 20s

(v02 : : : 21| {z }
k 20s

); f(T 00)22 : : : 21| {z }
k+1 20s

(v0022 : : : 21| {z }
k+1 20s

)

�
: (37)

Since (T 000)2 = T 0 or (T 00)2, we have from (37) that

f(T 00)1(v
00

1) > f(T 000)2 : : : 21| {z }
k+1 20s

(r) for k � 0;

where r is the root of (T 000)2 : : : 21| {z }
k+1 20s

. So (8) holds, but T 000 is not rgood as neither of T 0 or

(T 00)2 is complete, contradiction to Lemma 5.1.

Thus, we must have that T is good.
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