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Péter L. Erdős1
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Abstract

We prove Erdős-Ko-Rado and Hilton-Milner type theorems for t-intersecting
k-chains in posets using the kernel method. These results are common
generalizations of the original EKR and HM theorems, and our earlier
results for intersecting k-chains in the Boolean algebra. For intersecting
k-chains in the c-truncated Boolean algebra we also prove an exact EKR
theorem (for all n) using the shift method. An application of the general
theorem gives a similar result for t-intersecting chains if n is large enough.

1 Introduction

One of the basic results in extremal set theory is the Erdős-Ko-Rado (EKR) the-
orem [5]: if F is an intersecting family of k-element subsets of [n] = {1, 2, . . . , n}
(i.e. every two members of F have at least one element in common) and n ≥ 2k
then |F| ≤

(
n−1
k−1

)
and this bound is attained. A similar result holds for t-

intersecting k-element subsets (Wilson, [18]): if n ≥ (k− t+1)(t+1) and F is a
t-intersecting family, then |F| ≤

(
n−t
k−t
)
. Since k-subsets of [n] can be considered

as length-k chains in the (total) order 1 < 2 < · · · < n; using this terminology,
the EKR theorem is a result about intersecting k-chains in a special partially
ordered set.

Let Bcn denote the inclusion poset of the sets {X ⊂ [n] : c ≤ |X | ≤ n− c}.
A k-chain in Bcn is an L = (L1, L2, . . . , Lk) such that Li ⊂ Li+1, but Li 6= Li+1

for i = 1, 2, . . . , k − 1. Note that B0
n is the Boolean algebra, while B1

n is the
truncated Boolean algebra where the empty set and the universe are eliminated.
A family F of k-chains in Bcn is t-intersecting if any two elements of F have at
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least t elements in common. A 1-intersecting family is simply called intersecting.
In an earlier paper [6] we proved an EKR theorem for intersecting k-chains in Bcn
for c = 0, 1 and promised generalizations for general c and t-intersecting chains,
and also a Hilton-Milner (HM) (see [13]) type theorem. We also promised a
common generalization of the EKR theorem and our theorem. In this paper we
deliver all these results.

The paper is organized as follows. Section 2 generalizes our earlier EKR
result on intersecting k-chains for every c. The proof is based on the shifting
technique [9], and in most parts it is applicable for general t as well. In Section 3
we prove EKR and HM theorems for t-intersecting chains in posets. The proofs
utilize the kernel method [12] and therefore work from some threshold. These
results likely have a number of applications, however, in this paper, we focus
on Bcn. Application of our general method to Bcn are given in Section 4. It is
worth mentioning that since the EKR theorem for t-intersecting chains does not
hold for all possible n, k, c and t, the method of Section 2 alone is probably not
appropriate to prove an exact EKR theorem for general t.

We give a brief account on the history of our problems. M. Simonovits and
V. T. Sós proposed a research program on ”structured intersection theorems”
[16, 17], which has developed a fairly large literature. They investigated the
maximum number of graphs on n vertices such that any two intersect in a
prescribed graph, e.g. a path or cycle. The following problem fits into their
scheme: given a graph G, what is the maximum number of pairwise intersecting
complete k-subgraphs? In this paper we study the latter problem if G is the
comparability graph of a poset.

P. L. Erdős, Faigle, and Kern [4] pointed out that certain results of Deza,
Frankl [3, Thm. 5.8] and Frankl, Füredi [10] on intersecting sequences of integers
may be interpreted as results on intersecting families of chains in some partially
ordered sets. They posed the problem of finding the largest number of pairwise
intersecting k-chains in the truncated Boolean algebra Bcn. Füredi solved this
problem first, using the kernel method, for c = 0, 1 and n > 6k log k (personal
communication). We solved the problem for c = 0, 1 and every n [6]. Ahlswede
and Cai [1] also solved the problem for c = 0.

We refer to two good surveys on EKR type theorems: Deza and Frankl [3],
Frankl [9].

We are indebted to Éva Czabarka for pointing out an errror in an earlier
version of our paper.

2 Exact EKR theorem for intersecting chains

In this section we generalize our previous results in [6]: we prove an exact EKR
theorem for intersecting k-chains in Bcn for every meaningful value of n, c and k.
Our earlier results covered only the cases c = 0 and 1. We give here a complete
proof for c ≥ 1. We think the results about shifting t-intersecting chains may
be interesting for their own sake.

2.1 Shifting families of chains in Bc
n

In this subsection we introduce the shifting of chains, a tool that we need to
prove tight EKR theorems for intersecting chains in Bcn. This method can be
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also useful in studying t-intersecting chains, therefore we present it in generality
exceeding our needs.

We reduce the EKR problem to the examination of so-called compressed sets
of chains and prove that compressed sets of chains satisfy a strong intersection
property. This subsection is a more or less straightforward generalization of
shifting in Bn [6]. Let’s start with some notations.
Definition. For c ≤ m1 < m2 < · · · < mt ≤ n − c, let T cn,k(m1,m2, . . . ,mt)
denote the set of those k-chains in Bcn, which contain as elements the initial
segments [m1], [m2], . . . , [mt]. (We say that M ∈ Bcn is an initial segment
if M = [m] for some 1 ≤ m ≤ n or M = ∅.) Set T cn,k(m1,m2, . . . ,mt) =
|T cn,k(m1,m2, . . . ,mt)|. Clearly T cn,k(m1,m2, . . . ,mt) is also the cardinality of
the set of those k-chains in Bcn,k which contain any specified subchain of length
t with specified sizes m1,m2, . . . ,mt.

Let F be a family of pairwise t-intersecting k-chains from Bcn and let 1 ≤
i < j ≤ n be integers. The (i, j) chain-shift Sij(F) of the family F is defined
as follows.

For every k-chain L = (L1, . . . Lk) ∈ F , let Sij(L) = (L′1, . . . , L
′
k) where

L′l =
{
Ll \ {j} ∪ {i} if j ∈ Ll and i 6∈ Ll,
Ll otherwise.

We say that L′l is the shift of Ll. Shifting preserves set containment, so Sij(L) is
a k-chain. The shifted family Sij(F) is obtained by the following rule: replace
every k-chain L ∈ F by Sij(L) if and only if (1) Sij(L) 6= L and (2) Sij(L) 6∈ F .

It is clear from the definition that |Sij(F)| = |F|. Moreover, shifting pre-
serves the t-intersection property.

Lemma 2.1 If F is a t-intersecting family of k-chains in Bcn then Sij(F) is
also t-intersecting.

Proof. Let L1,L2 ∈ Sij(F); we have to prove that they contain t common
elements. We distinguish three cases:

Case 1: L1,L2 ∈ F . In this case it is obvious that L1 and L2 t-intersect.
Case 2: L1,L2 6∈ F . In this case, there are L3,L4 ∈ F such that L1 =

Sij(L3) and L2 = Sij(L4). Let {M1,M2, . . . ,Mt} ⊂ L3 ∩ L4. Then the shift of
Mi (which may be Mi itself) is a common element of L1 and L2 for i = 1, 2, . . . , t.
Note that the shifts of the Mi’s are distinct, since they make a t-chain which is
shifted into a t-chain.

Case 3: L1 6∈ F and L2 ∈ F . Then let L3 ∈ F such that L1 = Sij(L3).
There may be two reasons why L2 was not replaced. If L2 = Sij(L2) then let
{M1,M2, . . . ,Mt} ⊂ L2 ∩ L3. The shift of Ms (s = 1, 2, . . . , t) is itself (since
L2 = Sij(L2)) so Ms ∈ L2 ∩ Sij(L3) = L2 ∩ L1 as well.

The other reason is that L2 6= Sij(L2) but Sij(L2) ∈ F . In this subcase,
let {M1,M2, . . . ,Mt} ⊂ L3 ∩ Sij(L2). It is impossible that j ∈ Ms and i 6∈ Ms

since Ms is the shift of some element of L2. Also, it is impossible that i ∈ Ms

and j 6∈Ms because there is some K ∈ L3 such that j ∈ K and i 6∈ K (because
Sij(L3) 6= L3) and one of K,Ms must contain the other. So Ms (s = 1, 2, . . . , t)
is a set containing either both of i, j or neither of i, j. In either case, from
Ms ∈ Sij(L2) we have Ms ∈ L2 so Ms ∈ L1 ∩ L2. 2

We say that the family F of t-intersecting k-chains is compressed if F is
invariant for all chain-shift operations Sij , 1 ≤ i < j ≤ n. By Lemma 2.1,

3



for any intersecting family F , repeated applications of chain-shifts result in a
compressed family of the same size.

Compressed families satisfy a strong intersection property.

Lemma 2.2 Let F be a compressed family of t-intersecting k-chains. Then for
any L1,L2 ∈ F , there are at least t initial segments in their intersection L1∩L2.

Proof. Suppose that the lemma is not true and let L1 ∈ F be a minimal
counterexample in the sense that

(i) there exists L2 ∈ F such that L1 ∩ L2 contains fewer than t initial
segments

(ii)
∑
L∈L1

∑
x∈L x is minimal among all L1 satisfying (i).

Take a set M ∈ L1 ∩ L2 which is not an initial segment. Since M is not an
initial segment, there exist 1 ≤ i < j ≤ n such that i 6∈ M and j ∈ M . Then
Sij(L1) 6= L1, so Sij(L1) is not a counterexample. Therefore, there exist t initial
segments {K1,K2, . . . ,Kt} ⊂ Sij(L1) ∩ L2. It is impossible that j ∈ Ks and
i 6∈ Ks since Ks is an initial segment (s = 1, 2, . . . , t). Also, it is impossible
that i ∈ Ks and j 6∈ Ks because Ks,M ∈ L2 and so one of them must contain
the other. So Ks is a set containing both of i, j or neither of i, j. In either case
Ks ∈ L1 (s = 1, 2, . . . , t), and {K1,K2, . . . ,Kt} ⊂ L1 ∩ L2, a contradiction. 2

2.2 Exact EKR theorems for Bc
n

We give a tight upper bound for the number of intersecting k-chains in Bcn,
which works for all n and c, using the shift method. This method, however,
fails to give characterization of the extremes. The case c = 0 were already
proved by shifting in our previous paper [6] and we omit it here. The proof of
cases c ≥ 1 is a generalization of the original shifting proof of the case c = 1,
but it is described in the language of injections instead of estimates.

Recall that for c ≤ m ≤ n−c, T cn,k(m) denotes the set of those k-chains inBcn,
which contain as element the initial segment [m], and that T cn,k(m) = |T cn,k(m)|.
Clearly T cn,k(m) is also the cardinality of the set of those k-chains in Bcn,k which
contain any specified subchain of length 1 with specified sizes m.

We prove a slightly stronger result which is more appropriate for induction:

Theorem 2.1 Let c ≥ 1 and let F be a family of intersecting k-chains in Bcn.
Then |F| ≤ T cn,k(c), and there is an injection φ : F → T cn,k(c) such that every
chain L = (L1, L2, . . . , Lk) ∈ F and its image φ(L) = H = (H1,H2, . . . ,Hk) ∈
T cn,k(c) satisfy

|Lk| ≥ |Hk|. (1)

Proof. We use induction on n and k. If k = 1 or n = 2c then |F| ≤ 1 and it
is trivial to check that the theorem holds. These simple facts are the base cases
of the induction. Assume the hypothesis for n′ < n and k′ ≤ k, and also for
n′ = n and k′ < k. We may assume that F , a family of intersecting k-chains in
Bcn, is already compressed. We distinguish two cases:
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Case 1: For all L ∈ F , n− c /∈ L1. Define

Fi = {L ∈ F : Li+1 \ Li = {n− c}}, (i = 1, 2, . . . , k − 1) (2)
Fk = {L ∈ F : |Lk| = n− c and n− c /∈ Lk}, (3)

F0 = F −
k⋃
j=1

Fj. (4)

We use the shorthand notation I(n, k) = T cn,k(c). Similarly define

I(n, k)i = {H ∈ I(n, k) : Hi+1 \Hi = {n− c}}, (i = 1, 2, . . . , k − 1)
I(n, k)k = {H ∈ I(n, k) : |Hk| = n− c and n− c 6∈ Hk},

I(n, k)0 = I(n, k)−
k⋃
j=1

I(n, k)j .

Deleting n− c from each element of each chain of F0 we obtain a family F ′0
of intersecting k-chains in Bcn−1 on the underlying set ˆ[n] = [n] \ {n − c}. We
obtain the family I(n, k)′0 similarly. Now it is clear that I(n, k)′0 coincides with
I(n− 1, k) on the underlying set ˆ[n]. Applying our inductive hypothesis, there
exists an injection φ′0 : F ′0 → I(n, k)′0 not increasing the size of the kth elements
of the chains.

This injection can be lifted to a suitable injection φ0 : F0 → I(n, k)0 the
following way. Assume that Lj is the first element of L ∈ F0 which contains
the number (n − c) (j ∈ {2, . . . , k}, or such a j does not exist at all). Assume
that the deletion of (n− c) turns L into L′ ∈ F ′0. If φ′0(L′) = (H ′1,H ′2, . . . ,H ′k),
then define

φ0(L) = (H ′1, . . . ,H
′
j−1,H

′
j ∪ {n− c}, . . . ,H ′k ∪ {n− c}),

if such a j existed, and φ0(L) = φ′0(L′) otherwise. Now the inequality (1)
obviously holds for the map φ0.

Deleting n − c from every set in every chain in Fi for i = 1, 2, . . . , k − 1,
we obtain a family F ′i of intersecting (k − 1)-chains in Bcn−1 on the underlying
set ˆ[n]. We similarly obtain I(n, k)′i, which coincides with I(n − 1, k − 1)i for
every i. By the inductive hypothesis, there exist injections φ′i : F ′i → I(n, k)′i
with property (1). These injections can be lifted to suitable injections φi (i =
1, 2, . . . , k − 1) from Fi into I(n, k)i the following way. We know that Li+1 is
the first element of L ∈ Fi which contains the number (n− c). Assume that the
deletion of (n − c) turns L into L′ ∈ F ′i . If φ′i(L′) = (H ′1,H

′
2, . . . ,H

′
k−1), then

define
φi(L) = (H ′1, . . . ,H

′
i,H

′
i ∪ {n− c}, . . . ,H ′k−1 ∪ {n− c}).

Now the inequality (1) obviously holds for the map φi.
Finally, define the family of chains F ′k by deleting the largest set Lk from

every chain in Fk. (Remember that for all L ∈ Fk, |Lk| = n − c.) We obtain
the family Ik(n, k)′ similarly, by deleting the kth element of every chain in
Ik(n, k). Observe that F ′k is a family of intersecting (k−1)-chains inBcn−1 on the
underlying set ˆ[n], since the sets that we dropped are not initial segments in the
original underlying set [n]. Furthermore, I(n, k)′k coincides with I(n− 1, k− 1)
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on the underlying set ˆ[n]. Therefore, by hypothesis, there exists an injection
φ∗k : F ′k → I(n, k)′k = I(n− 1, k − 1) satisfying inequality (1).

Now we lift φ∗k into a suitable φk : Fk → I(n, k)k by a greedy procedure. By
the inductive hypothesis, we have a map φ∗k : F ′k → I(n, k)′k, which for every
L′ ∈ F ′k assigns a φ∗k(L′) = H ∈ I(n, k)′k, such that |Lk−1| ≥ |Hk−1|. We want
to define an injection φk : Fk → I(n, k)k such that (φk(L))′ = φ∗k(L′). Such
a definition is possible if any L′ has at most as many pre-images under ′ than
φ∗k(L′). This is the case, since the number of pre-images of L′ under ′ is at most(

n− 1− |Lk−1|
n− c− |Lk−1|

)
, (5)

and the number of pre-images of φ∗k(L′) under ′ is exactly(
n− 1− |Hk−1|
n− c− |Hk−1|

)
. (6)

It is easy to see, that (6) is at least as big as (5), since |Lk−1| ≥ |Hk−1|.
Finally, φ = φ0 ∪ (

⋃k
i=1 φi) is an appropriate injection from F into T cn,k(c),

satisfying (1). The reason is that the φi’s were such injections by construction,
and their ranges are disjoint.

Case 2: There exists a chain L ∈ F such that n − c ∈ L1. We claim that
Lk = [n − c] and this is the only initial segment in L. Since each Li contains
n − c and |Li| ≤ n − c, [n − c] is the only initial segment which may occur in
L. On the other hand, by Lemma 2.2, L contains at least one initial segment,
proving our claim. Note that the inequality

|F| ≤ T cn,k(c) (7)

is sufficient to finish the proof of Case 2 since, by Lemma 2.2, for every L′ ∈ F ,
[n − c] ∈ L′. Therefore any injection φ : F → T cn,k(c) would be suitable. But
this inequality clearly holds since the dual of F is a subset of T cn,k(c).

2

3 Results for chains of posets

In this section we prove EKR and HM theorems for chains of posets. The basic
technique is the kernel method introduced by Hajnal and Rothschild [12]. The
limitation of this method is that it works just from some threshold.

3.1 Review of sunflowers

In this subsection we review facts about sunflowers that we use in the kernel
method. A set system {A1, A2, . . . , Am} is called a sunflower or delta-system, if
Ai ∩Aj =

⋂m
l=1Al for all 1 ≤ i < j ≤ m. The sets Ai are called the petals and⋂m

l=1 Al is called the kernel of the sunflower.
We say that a set system is of rank k, if |H| ≤ k for all H ∈ H; and H is

t-intersecting, if |H1 ∩ H2| ≥ t for all H1,H2 ∈ H. For t ≥ 1, we say that H
is non-trivially t-intersecting, if it is t-intersecting, and |

⋂
H| < t. We say that
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H is critically t-intersecting, if it is t-intersecting, and deleting any x ∈ H from
any H ∈ H, the resulting set system H \ {H} ∪ {H \ {x}} is not t-intersecting.

Estimates in the kernel method are usually based on the following simple
observation.

Lemma 3.1 Let H be a critically t-intersecting system (t ≥ 1) of rank k. Then
H does not contain a sunflower with k + 1 petals.

Proof. Indeed, if {H1,H2, . . . ,Hk+1} is a sunflower in H, then any H ∈ H must
intersect the kernel K of the sunflower in at least t elements, since a ≤ k-element
set cannot intersect each of the k+1 disjoint sets H1 \K, H2 \K,. . . , Hk+1 \K.
Hence the deletion of H1 \K from H1 (if H1 6= K) results a t-intersecting set
system, contradicting the minimality of H. 2

We will also need the Erdős-Rado theorem [7]:

Lemma 3.2 For every i and l, there exists a number f(i, l), such that any
family of f(i, l) sets of size i each, contains a sunflower with l petals. 2

3.2 EKR and HM theorems for chains in posets

Throughout Subsection 3.2, let us be given a fixed k and a sequence of posets
Pn. A t-chain L in Pn is a strict chain of elements L = (x1 < x2 < · · · < xt).
For a given t-chain L = (x1 < x2 < · · · < xt), let Tn,k(x1, x2, . . . , xt) denote the
set of k-chains in Pn which contain L as a subset. Define Tn,k(x1, x2, . . . , xt) =
|Tn,k(x1, x2, . . . , xt)|. Sometimes we write T instead of Tn,k, when it does not
cause ambiguity. Also define rt(n) = maxTn,k(x1, x2, . . . , xt), where the max-
imum is taken for t-chains x1 < x2 < · · · < xt in Pn. It follows from the
definition that

ri(n) ≥ ri+1(n). (8)

A family F of k-chains in Pn is t-intersecting, if any two k-chains of F share
at least t elements of the poset.

Theorem 3.1 For fixed 1 ≤ t < k, and a sequence of posets Pn, let us be given
a family Fn of t-intersecting k-chains in Pn. Assume that

lim
n→∞

rt+1(n)/rt(n) = 0. (9)

Then, for n sufficiently large, |Fn| ≤ rt(n), and equality implies that the ele-
ments of Fn share a t-subchain.

Proof. Let us be given a family Fn of t-intersecting k-chains. We reduce Fn to
a critically t-intersecting family H as follows: we repeatedly delete an element
xi of a chain L if the chain L \ {xi} still intersects all other chains in at least
t elements. We neglect the possible multiplicities with which chains arise. We
write H = Ht ∪ Ht+1 ∪ · · · ∪ Hk, where Hi contains the i-element chains from
H. If Ht 6= ∅, then H = Ht, and Ht is contained by every L ∈ Fn, hence
|Fn| ≤ rt(n).

If Ht = ∅, we argue the following way. By Lemmas 3.1 and 3.2 we have
|Hi| ≤ f(i, k+1), and F has at most ri(n) chains containing any element of Hi.
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Combining these observations with (8) and (9), we obtain |Fn| ≤
∑k
i=t+1 f(i, k+

1)ri(n) = O(rt+1(n)) = o(rt(n)). 2

Note that for the poset 1 < 2 < · · · < n, we have rt(n) =
(
n−t
k−t
)
. We get back

the original EKR theorem for n large enough, with the kernel method proof [12].
For a t-chain X ⊂ Pn and y /∈ X , let T (X , y) denote the number of k-chains

which contain X and y. For a t-chain X and a k-chain L in Pn, such that
|X ∪ L| = k + 1, let y∗L ∈ L \ X such that T (X , y∗L) minimize T (X , yL) for the
elements y ∈ L \ X , and set

τ(X ,L) =
∑

y∈L\X , y 6=y∗L

T (X , y). (10)

Also define
Mτ (n) = max

X ,L
τ(X ,L), (11)

and
M∗τ (n) = max

X ,L:
τ(X ,L)=Mτ(n)

T (X , y∗L). (12)

Now the following Hilton-Milner type theorem holds:

Theorem 3.2 For fixed 1 ≤ t < k, and a sequence of posets Pn, let us be
given a maximum sized family Fn of non-trivially t-intersecting k-chains in Pn.
Assume further that

lim
n→∞

rt+2(n)/M∗τ (n) = 0. (13)

Then, for n sufficiently large, Fn has one of the following two descriptions:

(i) there exists a t-chain X and a (k+1− t)-chain Y, such that X ∩Y = ∅;
and Fn is the following set of k-chains:

{L : X ⊆ L and L ∩ Y 6= ∅} ∪ {L : Y ⊆ L and |L ∩ X | = t− 1}, (14)

where the second set of chains is non-empty;

(ii) there exists a (t+ 2)-chain Z, and Fn is the following set of k-chains:

{L : |L ∩ Z| ≥ t+ 1}, (15)

and |
⋂
L∈Fn L ∩Z| ≤ t− 1.

Proof. We reduce Fn to a critically t-intersecting familyH = Ht∪Ht+1∪· · ·∪Hk
as we did in the proof of Theorem 3.1. Note that Ht = ∅ by assumption.

First we observe that X and L that defines M∗τ (n) in (12), provides for a
feasible X and Y = L \ X in (14), yielding a construction for non-trivially t-
intersecting k-chains. Inclusion-exclusion shows that this construction has at
least

Mτ (n) +M∗τ (n)−O(rt+2(n)) (16)

k-chains, and so has the maximum sized Fn.
We partition Fn = F ′ ∪ F ′′, where

F ′ = {L ∈ F : ∃H ∈ Hi such that H ⊂ L for some i ≥ t+ 2},
F ′′ = Fn \ F ′.
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First we estimate |F ′|. By Lemmas 3.1 and 3.2 we have |Hi| ≤ f(i, k + 1), and
Fn has at most ri(n) chains containing any element of Hi. Using (8),

|F ′| ≤
k∑

i=t+2

f(i, k + 1)ri(n) = O(rt+2(n)). (17)

We distinguish cases.
Case 1: Either |Ht+1| = 2 or there exist H1, H2, H3 ∈ Ht+1, such that |H1 ∩
H2 ∩H3| = t.
It easily follows that Ht+1 is a sunflower with kernel X =

⋂
Ht+1 of size t.

We have |Ht+1| ≤ k+1−t, otherwise for every L ∈ Fn, X ⊂ L, contradicting
our assumption.

If |Ht+1| = k + 1 − t, then any L ∈ Fn not containing X , contains Y =⋃
Ht+1 \

⋂
Ht+1. It is easy to see that Ht+2 = · · · = Hk−1 = ∅, and H ∈ Hk

implies |H ∩X| = t− 1 and |H ∩Y| = k+ 1− t. X and Y are chains, since they
are contained in some k-chains, and X ∩ Y = ∅ (by definition). We are in the
situation described in Part (i) of the Theorem.

If |Ht+1| = l < k + 1 − t, then any L ∈ Fn not containing X , contains
{y1, . . . , yl} =

⋃
Ht+1 \

⋂
Ht+1. Also |L ∩X | ≤ t− 1, and hence equal to t− 1,

since otherwise L cannot t-intersect the members of Ht+1. Hence X and L are
chains, and |X ∪L| = k+1. Therefore X and L were considered in the definition
of Mτ (n) in (11). Using (10), (11), and (17), respectively, we have

|F ′′| ≤
l∑
i=1

T (X , yi) ≤Mτ (n),

|F ′| = O(rt+2(n)).

Our Fn has at most |F ′| + |F ′′| ≤ Mτ (n) + O(rt+2(n)) k-chains, and hence is
short of optimum by (16) and (13).
Case 2: |Ht+1| ≥ 3 and for all distinct H1, H2, H3 ∈ Ht+1, we have |H1 ∩H2 ∩
H3| < t.
We fix H1, H2, H3 ∈ Ht+1. It is not difficult to see that |H1 ∩H2 ∩H3| = t− 1
and |H1 ∪ H2 ∪ H3| = t + 2. We show that the choice Z = H1 ∪ H2 ∪ H3 is
appropriate to exhibit that we are in Part (ii) of the Theorem. For any H ∈ H,
|H ∩ Z| ≥ t + 1, otherwise H cannot intersect all of H1,H2,H3 in at least
t elements. We use that H is critically t-intersecting. Assume that for some
H ′ ∈ H, H ′ \ Z 6= ∅. Then H ′ can be changed to H ′′ = Z ∩H ′, keeping the
t-intersection property, and contradicting the criticality. Similarly, assume that
for some H ′ ∈ H, |H ′ ∩ Z| = t + 2. Then any element of H ′ can be deleted,
keeping the t-intersection property, and contradicting the criticality. The last
claim to prove is that Z is a chain. Note that H1,H2,H3 were chains, and any
two elements of Z are contained by some Hi.
Case 3: Ht+1 = ∅.
In this case Fn = F ′, and its size is estimated by (17). By (16) and (13), the
optimal choice for Part (i) in the theorem beats this size for n large enough.
Case 4: |Ht+1| = 1.
Then Ht+1 = {H}. For any y1 ∈ H, define X = H \ {y1}. From here the
situation is identical with the |Ht+1| = l < k + 1− t subcase of Case 1. 2

Note that for the poset 1 < 2 < · · · < n, we have rt+2(n) =
(
n−t−2
k−t−2

)
,

T (X , y) =
(
n−t−1
k−t−1

)
, τ(X ,L) = (k − t)

(
n−t−1
k−t−1

)
, and M∗τ (n) =

(
n−t−1
k−t−1

)
, and

9



(13) holds. Therefore we get back the old t-intersecting Hilton-Milner theorem
(Hilton and Milner, [13] for t = 1 and Frankl [8]), for n large enough.

We also remark, that the previous proof may generalize for a much more
general situation: it uses only the fact, that chains with length at most k in a
poset form a down-ideal. Therefore Theorem 3.2 has close connection to the
Chvátal conjecture (see, for example, Miklós, [15]). We shall return to this issue
in a forthcoming paper.

4 t-intersecting chains in Bc
n

In this section we apply the general results we just proved for EKR and Hilton-
Milner type theorems to t-intersecting k-chains in Bcn for n large enough.

We show an example below to point out that the t-intersecting EKR theorem
in Bcn will not hold for all values of n, k, t, i.e. the largest family is not all chains
containing a particular t-chain. This is much like the case of the ordinary t-
intersecting EKR theorem, and therefore we may expect a t-intersecting EKR
theorem in Bcn for large values of n only. Hence we may not expect the use of
shifting and have to use the kernel method.

Take a system F of (n−3)-intersecting (n−1)-chains (i.e. maximal chains) in
B1
n. We have |T 1

n,n−3(1, 2, . . . , n− 3)| = O(1). On the other hand, if F contains
the chain ([1], [2], . . . , [n − 1]) and the chains ([1], [2], . . . , [i − 1], [i − 1] ∪ {i +
1}, [i+ 1], . . . , [n − 1]) for all i = 1, 2, . . . , n − 1, then F is (n − 3)-intersecting
and |F| = n.

4.1 Technicalities on Stirling numbers and Bc
n

This subsection will characterize which t-chains in Bcn are contained by the
largest number of k-chains. This characterization in Theorem 4.1 will be ob-
tained from a sequence of lemmas.

For a chain L = (L1, L2, . . . , Lk) in Bcn, we define its dual by L∗ = ([n] \
Lk, . . . , [n] \ L1). For a family of k-chains F , define F∗ = {L∗ : L ∈ F}. If F
was t-intersecting, then so is F∗. Clearly, |T cn,k(m1,m2, . . . ,mt)∗| = |T cn,k(n −
mt, n−mt−1, . . . , n−m1)|. Hence we have

Lemma 4.1 T cn,k(m1,m2, . . . ,mt) = T cn,k(n−mt, n−mt−1, . . . , n−m1). 2

Lemma 4.2 Observe that there is a bijection

T cn,k(m1,m2, . . . ,m1 + t− 2,mt)←→ T cn−t+2,k−t+2(m1,mt − t+ 2).

Proof. (L1, . . . , Lk) 7→ (L1 \ [m1 + 1,m1 + t− 2], . . . , Lk \ [m1 + 1,m1 + t− 2]),
and the chain becomes shorter by (t− 2). 2

Each chain L = (L1, . . . , Lk) defines an ordered partition [n] = L1 ∪ (L2 \
L1) ∪ · · · ∪ (Lk \ Lk−1) ∪ ([n] \ Lk). For c ≥ 1, all parts are non-empty, and
L corresponds to a surjection from [n] to [k + 1]. This hints that we have to
deal with Stirling numbers of the second kind. Let S(n, k) denote the Stirling
number of the second kind. We need the basic recurrence

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k). (18)
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The following results are easy exercises:

T 1
n,k = (k + 1)!S(n, k + 1), (19)

where T 1
n,k denotes the number of all k-chains in B1

n; and for t ≥ 2 using (18)
we obtain

T 0
n,k(0, 1, . . . , t− 2, n) = (k − t+ 1)!S(n− t+ 2, k − t+ 1) (20)

T 0
n,k(n) = (k − 1)!S(n, k − 1) + k!S(n, k) = (k − 1)!S(n+ 1, k). (21)

We slightly generalize the notation T cn,k and T cn,k to T c1,c2n,k and T c1,c2n,k , by
allowing chains whose smallest element is at least c1 and whose largest element
is at most n− c2 by size.

Lemma 4.3 For all n, k, c1 ≤ c2, and c1 ≤ m ≤ n− c2, we have T c1,c2n,k (m) ≤
T c1,c2n,k (c1).

Proof. Let us be given any sequence c1 = l1 < l2 < · · · < li ≤ m < li+1 < · · · <
lk ≤ n− c2. We claim that the number of chains in T c1,c2n,k (c1) with |Lj| = lj is
at least as large as the number of chains in T c1,c2n,k (m) with |L′j | = lj +m− li for
j ≤ i and |L′j| = lj for j ≥ i+ 1. Routine calculations show that the number of
the first type of chains is

(n− c1)!
(l2 − l1)!(l3 − l2)! · · · (lk − lk−1)!(n− lk)!,

and the number of chains of the second type is

m!(n−m)!
(l1 +m− li)!(l2 − l1)! · · · (li − li−1)!(li+1 −m)!(li+2 − li+1)! · · · (lk − lk−1)!(n− lk)!

.

Hence our claim boils down to proving

(n− c1)!(c1 +m− li)!(li+1 −m)! ≥ m!(n−m)!(li+1 − li)!. (22)

Either c1 +m ≥ li+1 or c1 +m < li+1. In the first case (22) is equivalent to(
n

m

)(
c1 +m− li
m− li

)
≥
(
n

c1

)(
li+1 − li
m− li

)
.

This inequality holds termwise. In the other case (22) is equivalent to

(n− c1)n−c1−m ≥ (n−m)n−li+1(li+1 − li)li+1−c1−m.

It is easy to see that (n−c1)n−c1−m = (n−c1)n−li+1(li+1−c1)li+1−c1−m. Finally,
n−c1 ≥ n−m and therefore (n−c1)n−li+1 ≥ (n−m)n−li+1 ; li+1−c1 ≥ li+1− li,
and therefore (li+1 − c1)li+1−c1−m ≥ (li+1 − li)li+1−c1−m.

Using the claim we may partition T c1,c2n,k (c1) and T c1,c2n,k (m) such that we have
bijection between the sets of classes and the classes in T c1,c2n,k (c1) are at least as
big as the corresponding classes. 2
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Lemma 4.4 Assume 2 ≤ t ≤ k − 1. For c ≥ 2

T cn,k(c, c+ 1, . . . , c+ t− 2, n− c) ≤ T cn,k(c, c+ 1, . . . , c+ t− 1),

for c = 1 equality holds, and for c = 0 the inequality turns over.

Proof. Assume c ≥ 2. Observe that the RHS counts surjections from [n− c−
t+ 1] to [k − t+ 1], such that the size of the pre-image of (k − t+ 1) is at least
c. The LHS counts surjections from [n − 2c − t + 2] to [k − t + 1]. There is
an injection from the second set of surjections into the first set of surjections:
extend the function to the points n− 2c− t+ 3, n− 2c− t+ 4, . . . , n− c− t+ 1
with value k − t+ 1.

For c = 1 the two sets of surjections described above are identical.
For c = 0 the RHS is S(n− t+ 1, k − t) · (k − t)! + S(n− t+ 1, k − t + 1) ·

(k− t+ 1)!, the LHS is S(n− t+ 2, k− t+ 1) · (k− t+ 1)!. Due to the recurrence
S(n− t+ 2, k − t+ 1) = S(n− t+ 1, k − t) + (k − t+ 1)S(n− t+ 1, k − t+ 1)
we have the inequality claimed. 2

Theorem 4.1 For all c ≥ 1, n, k, c, t and m1, . . . ,mt holds

T cn,k(m1,m2, . . . ,mt) ≤ T cn,k(c, c+ 1, . . . , c+ t− 1).

For 1 ≤ t < k and n ≥ k + 2c − 1 equality holds if and only if mi = c + i − 1
for i = 1, 2, . . . , t or mi = n − c− t + i for i = 1, 2, . . . , t, or c = 1, t ≥ 2 and
mi = c+ i− 1 for i = 1, 2, . . . , j and mi = n− c− t+ i for i = j + 1, . . . , t for
some j.

For c = 0, the case t ≤ 1 is like above. For c = 0, for all t ≥ 2, n, k and
m1, . . . ,mt holds

T 0
n,k(m1,m2, . . . ,mt) ≤ T 0

n,k(0, 1, . . . , t− 2, n).

For 2 ≤ t < k and n ≥ k + 1 equality holds if and only if mi = c + i − 1 for
i = 1, 2, . . . , j and mi = n− c− t+ i for i = j + 1, . . . , t for some 1 ≤ j < t.

Proof. We focus on the proof of the inequality and leave the characterization
of equalities as an exercise to the Reader. The dual extremities are explained
by Lemma 4.1.

Given a sequence m1,m2, . . . ,mt, using Lemma 4.3 with c1 = c2 = 1 shows
that T cn,k(m1,m2, . . . ,mt) does not decrease when we change mi for mi−1 + 1
or mi+1 − 1 for any i = 2, 3, . . . , t− 1. Iterating this estimate yields

T cn,k(m1,m2, . . . ,mt) ≤ T cn,k(m1,m1 + 1, . . . ,m1 + t− 2,mt).

Lemma 4.2 yields that the latter is equal to T cn−t+2,k−t+2(m1,mt − t+ 2). An-
other application of Lemma 4.3 shows that T cn−t+2,k−t+2(m1,mt − t + 2) is
maximized if m1,mt − t+ 2 are the smallest and largest set sizes allowed to be
in a chain, or are the smallest two or largest two consecutive set sizes allowed
to be in a chain. Transforming this result back by Lemma 4.2, we see that the
maximum size arising in one of the expressions compared in Lemma 4.1. Hence
Lemma 4.1 finishes the proof. 2
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4.2 Asymptotic results for Bc
n

In this subsection we prove asymptotic EKR and Hilton-Milner theorems for
Bcn.
For fixed k, we have the following asymptotics ([2], p. 293):

S(n, k) ∼ kn/k!. (23)

Using (23), it is easy to prove the following lemma:

Lemma 4.5 Assume that k is fixed and c = O(n/ logn). Then almost all, i.e.
(1−o(1))S(n, k)k! ordered partitions of n elements into k non-empty parts have
the property, that all classes have sizes at least c.

Proof. The number of ordered partitions not having the required property is
at most

k
c−1∑
i=1

(
n

i

)
S(n− i, k − 1)(k − 1)!. (24)

In order to estimate (24), note that S(n − i, k − 1)(k − 1)! = O((k − 1)n) and
that

(
n
1

)
+ ...+

(
n
c−1

)
<
(
n+c
c−1

)
by the identity

∑n
k=0

(
m+k
k

)
=
(
m+n+1

n

)
. In view

of (23), one has to verify that
(
n+c
c−1

)
(k − 1)n = o(kn). We estimate

(
n+c
c−1

)
by

( (n+c)e
c−1 )c−1. Since ( (n+c)e

c−1 )c−1 is an increasing function in c, we just have to

check ( (n+c)e
c−1 )c−1(k − 1)n = o(kn) for c = c′n

logn , which is an easy exercise. 2

Given a sequence c ≤ m1 < m2 < · · · < mt ≤ n− c, let g1 ≥ g2 ≥ · · · ≥ gt+1

denote the sequence m1,m2−m1,m3−m2, . . . ,mt−mt−1, n−mt after sorting.
We refer to these numbers as gaps.

Lemma 4.6 Assume that 1 ≤ t ≤ k − 2 are fixed, 1 ≤ c ≤ n/ logn, and
(g1 − g2)→∞. Then

T cn,k(m1,m2, . . . ,mt) ∼ (k + 1− t)g1 . (25)

Proof. Observe that T cn,k(m1,m2, . . . ,mt) =∑
a1+a2+···+at+1=k−t

ai≥0

T c,1m1,a1
· T 1

m2−m1,a2
· · ·T 1

mt−mt−1,at · T
1,c
n−mt,at+1

, (26)

where T c1,c2n,k and T cn,k count all chains in the respective truncated Boolean
algebra. These T ’s count ordered partitions. It is easy to see that T 1

u,v =
S(u, v + 1)(v + 1)! and hence T 1

u,v ∼ (v + 1)u for any fixed v by (23). The first
and last factors cannot be expressed explicitely, since in them a certain class
has size at least c. If m1 = g1 then, in particular, m1 ≥ n/(t + 1) and by
Lemma 4.5, T c,1m1,a1

∼ (a1 + 1)m1 . If m1 < g1 then we use the upper estimate
T c,1m1,a1

≤ T 1
m1,a1

. The term T 1,c
n−mt,at+1

is handled similarly.
Working out asymptotic formula for a finite sum like (26), only the dominant

term counts, if there is a single dominant term. A single dominant term is
achieved when the largest possible base meets the largest possible exponent. 2
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Theorem 4.2 Assume that F is a maximum size family of t-intersecting k-
chains in Bcn. Then, for fixed 1 ≤ t < k and (n − c) sufficiently large, F
consists of all k-chains containing a specific t-chain M1,M2, . . . ,Mt, such that
|Mi| = mi, and m1,m2, . . . ,mt maximizes T cn,k(m1,m2, . . . ,mt), as described
in Theorem 4.1.

Proof. For (n − c) large, the application of Theorem 3.1 is possible, since
Theorem 4.1 explicitly gives the size of rt(n). We have to check that condition
(9) from Theorem 3.1 holds. For c ≥ 1, we have rt+1(n) = T cn,k(c, c+1, . . . , c+t),
rt(n) = T cn,k(c, c + 1, . . . , c + t − 1), and rt+1(n)/rt(n) < 1/(n − c − t + 1),
since there are n − c − t + 1 ways to choose a (c + t)-element set containing
[c + t − 1]. For c = 0, Theorem 4.1 yields rt+1(n) = T 0

n,k(0, 1, . . . , t − 1, n),
rt(n) = T 0

n,k(0, 1, . . . , t − 2, n). For t ≥ 2, rt+1(n)/rt(n) < 1/(n − t + 2), since
there are n − t + 2 ways to choose a (t − 1)-element set containing [t − 2].
For t = 1, r2(n) = T 0

n,k(0, n) = (k − 1)!S(n, k − 1) and r1(n) = T 0
n,k(n) =

(k − 1)!S(n, k − 1) + k!S(n, k), from Theorem 4.1 and (20), (21). By (23),
S(n, k−1) = o(S(n, k)) as n goes to infinity. It implies limn→∞ r2(n)/r1(n) = 0,
and hence condition (9) from Theorem 3.1 holds. (We note that the extreme
cases for c = 0, t = 1 were already characterized for all n in our previous
paper [6].) 2

Theorem 4.3 For fixed 1 ≤ t ≤ k−3, n large, and c ≤ n/ logn, any maximum
sized family of non-trivially t-intersecting k-chains in Bcn is described by (15)
in Part (ii) of Theorem 3.2, where the sizes of Z are

(c, c+ 1, . . . , c+ t+ 1) or (n− c− t− 1, . . . , n− c)
for c ≥ 2; and the sizes of Z are

(c, c+ 1, . . . , c+ i, n− c− t+ i, . . . , n− c− 1, n− c)
for c = 0, 1, with any 0 ≤ i < t.

Proof. We treat here only the case c ≥ 2, and leave c = 0, 1 to the Reader.
First we show that condition (13) of Theorem 3.2 holds. We have

rt+2(n) = T cn,k(c, c+ 1, . . . , c+ t+ 1) ∼ (k − t− 1)n−c−t−1

by Theorem 4.1 and Lemma 4.6. An X ,L pair defining Mτ (n) must have the
property, that the sizes of its elements are within O(1) distance either from c
or from (n− c). Hence M∗τ (n) ≥ (k − t)n−c−O(1), and (13) holds.

Looking at possible extremal families of type (i) or (ii) from Theorem 3.2,
one realizes that they decompose to a union of constant number of terms of
families T c1,c2u,v (m1, ...,ms). Lemma 4.6 applies to each of these families.

It is not difficult to see that the best candidates to realize Part (i) of The-
orem 3.2 are X = {[c], . . . , [c + t − 1]} and Y = {[c + t], . . . , [k + c]}, while
the best candidate to realize Part (ii) is Z as given above. The reason is that
the family of t-intersecting k-chains Fn that they define beats gapwise all other
constructions of the respective type. Finally, we have to decide if |Fn(X ,Y)| or
|Fn(Z)| is bigger. Using Lemma 4.6, we obtain

|Fn(Z)| ∼ (t+ 1)(k − t)n−t−c−1 + (k − t)n−t−c = (k + 1)(k − t)n−t−c−1,

|Fn(X ,Y)| ∼
k+1−t∑
i=1

(k − t)n+1−c−t−i.

14



|Fn(Z)| wins. 2
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