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Dúbravská 9, 841 04 Bratislava, Slovak Republic

∗This researcher was supported in part by the epsrc grants GR/R37395/01 and
GR/S76694/01. These grants supported visits of all other authors at Loughborough Uni-
versity

†This researcher was supported in part by the nsf contracts 007 2187 and 030 2307.
‡This researcher was supported in part by vega grant 2/6089/26.

1



Abstract

The biplanar crossing number cr2(G) of a graph G is min{cr(G1)+
cr(G2)}, where cr is the planar crossing number and G1 ∪ G2 = G.
We show that cr2(G) ≤ (3/8)cr(G). Using this result recursively, we
bound the thickness by Θ(G) − 2 ≤ Kcr2(G).4057 log2 n with some
constant K. A partition realizing this bound for the thickness can be
obtained by a polynomial time randomized algorithm. We show that
for any size exceeding a certain threshold, there exists a graph G of
this size, which simultaneously has the following properties: cr(G) is
roughly as large as it can be for any graph of that size, and cr2(G)
is as small as it can be for any graph of that size. The existence is
shown using the probabilistic method.

We dedicate this paper to our late colleague and friend, Ondrej Sýkora.

1 Introduction

This paper is a sequel to our earlier research on biplanar drawings [20] and bi-
planar crossing numbers [5]. Motivation for this research came from Beineke’s
study of biplanar drawings of graphs [4], Owens’s study of the biplanar cross-
ing number of Kn [12], from the theory of thickness (see the survey [15]) and
the theory of crossing numbers (see the surveys [17, 22]).

Recall that a graph G is biplanar, if one can write G = G1 ∪ G2, where
G1 and G2 are planar graphs with the same vertex set as G, i.e. for the
thickness of G, Θ(G), we have Θ(G) ≤ 2. Although planarity can be tested
in polynomial time, testing biplanarity is NP-complete [14].

Owens [12] introcuced the biplanar crossing number of a graph G, that
we denote by cr2(G). By definition cr2(G) = minG1∪G2=G{cr(G1) + cr(G2)},
where cr is the planar crossing number. One can define crk(G) =
minG1∪G2∪...∪Gk=G{cr(G1) + cr(G2) + . . . + cr(Gk)}, [18] similarly for any
k ≥ 2, making G a union of k subgraphs; but perhaps k = 2 is more relevant
for VLSI for the following reason: one always can realize cr2(G) by drawing
the edges of G1 and G2 on two different sides of the same plane, while iden-
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tical vertices of G1 and G2 are placed to identical locations on the two sides
of the plane.

Little is known about the biplanar crossing number in general. Some of
the lower bounds for crossing numbers, mutatis mutandis apply to biplanar
crossing numbers. Here and later n = n(G) is the order and m = m(G) is
the size of the graph G. The lower bounds resulting from Euler’s formula are

cr2(G) ≥ m− 6n + 12 (1)

(for n ≥ 3, however a slightly weaker version of (1), cr2(G) ≥ m − 6n holds
for all n); and a stronger version of (1) for graphs G with girth g

cr2(G) ≥ m− 2 · g

g − 2
· (n− 2). (2)

Formulae (1) and (2) follow easily by combining Theorem 2.1 in [4] with the
arguments in [17]. Similarly, using (1) instead of (1) from [17] in the second
proof of Theorem 3.2 in [17], one obtains the following biplanar counterpart
of the Leighton [10] and Ajtai et al. [1] bound: for all c > 6, if m ≥ cn, then

cr2(G) ≥ c− 6

c3
· m3

n2
. (3)

Lower bounds for the crossing number based on the counting method [17]
generalize to similar arguments setting lower bounds for the biplanar crossing
number.

However, important techniques as the embedding method [10] or the bi-
section width method [10], [16], [21] (see also the survey [17]) do not seem
to generalize to biplanar crossing numbers. Even worse, as Tutte noted [4],
the biplanar crossing number is not an invariant for homeomorphic graphs;
in fact, the edges of every graph can be subdivided such that the subdivided
graph is biplanar!

The only other study on biplanar crossing numbers that we are aware of
is Spencer’s result that proved our conjecture: cr2(G) for a random graph G
with edge-probability p > c0/n is at least c1(n

2p)2 [19].
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The present paper is the first attempt to establish general and non-trivial
bounds on the biplanar crossing number.

2 The Main Results

The first natural problem is that of comparing cr(G) and cr2(G).

Theorem 1. For all finite simple graphs G, cr2(G) ≤ 3
8
cr(G).

Unfortunately, not any kind of converse of Theorem 1 can be true, as the
following theorem shows:

Theorem 2. There are numbers c1, c2 > 0, k1 and n1, such that for all
positive integer n ≥ n1 and m ≥ k1n, there exists a graph G of order n and
size m, with crossing number

cr(G) ≥ c1m
2, (4)

and with biplanar crossing number

cr2(G) ≤ c2m
3/n2. (5)

Since for any graph G we have cr(G) = O(m2), and by (3) cr2(G) =
Ω(m3/n2), whenever m/n > 6, the theorem above shows the existence of
graphs with prescribed size, with roughly as large crossing number as it can
be for any graph, and with roughly as small biplanar crossing number as it
can be for any graph of this size.

Open Problem 1. What is the smallest c∗ of those constants c, for which
cr2(G) ≤ c · cr(G) holds for every graph G?

Owens [12] came up with a conjectured cr2-optimal drawing of Kn which
has about 7/24 of the crossings of a conjectured cr-optimal drawing of Kn.
This might give some basis to conjecture that c∗ ≤ 7/24. On the other hand,
cr2(K9) = 1 ([3] or [11] p. 34) and cr(K9) = 36 [11] proves c∗ ≥ 1/36.
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With a refined argument, we showed in (19) in [5] that cr2(Kn) ≥ n4/952
for large n, and comparison with cr(Kn) ≤ n4/64 [24] proves c∗ ≥ 64/952.

We give here the proof of Theorem 1, since we already need it for the
exposition of the next result. We provide a randomized algorithm which
proves that cr2(G) ≤ (3/8)cr(G) for any finite simple graph G. Without
loss of generality we may assume that the input drawing is nice [22, 24], i.e.
any two edges of G cross at most once, edges do not “touch”, and edges
sharing an endvertex do not cross; since all these assumptions do not change
the crossing number. In the proofs of Theorems 1 and 3 the computational
complexity is estimated for this kind of restricted input, using a table look-up
which tells if two edges do or do not cross.

Splitting Algorithm. INPUT any nice drawing D of G in the plane. Let
cr(D) denote the number of crossings in this drawing.

Consider a random bipartition (U, W ) of V (G): for every vertex, inde-
pendently toss a fair coin, and if Head is obtained, add it to U , otherwise
to V . Now any crossing in D occurs in 6 possible forms, according to which
classes the endpoints of the crossing edges belong to:

it is a crossings of UU,UU edges with probability 1/16

it is a crossings of WW,WW edges with probability 1/16

it is a crossings of UW,UW edges with probability 1/4

it is a crossings of UU,WW edges with probability 1/8

it is a crossings of UU,UW edges with probability 1/4

it is a crossings of WW,UW edges with probability 1/4

Draw in the first plane the subdrawings spanned by U and spanned by W,
draw in the second plane the subdrawing of edges connecting U to W. In the
second plane we have the UW,UW type crossings, in expectation 1

4
cr(D).

In the first plane, we have the UU,UU and WW,WW type crossings, and
also the UU,WW type crossings. However, we easily get rid of the latter
type of crossing, by a translation of the W point set and its induced edges
to sufficiently far away. Therefore, the first plane has in expectation 1

8
cr(D)
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crossings after the translation.

The randomized algorithm above can be derandomized by routine argu-
ments. However, if we want to keep the number of crossings on both planes
near the respective expected value, the standard derandomization techniques
fail. Therefore, it is hard to tell what happens if we try to iterate the algo-
rithm above.

Next we make a refined analysis of the iteration of the randomized algo-
rithm above. The goal is to show, that if a graph can be drawn with few
crossings, then it has small thickness.

Theorem 3. For all γ > lnx0

ln 2
≈ .4057, where x0 is the real root of x3 = x+1,

there exists a cγ constant, such that

Θ(G)− 1 ≤ cγcr(G)γ log2 n, (6)

Θ(G)− 2 ≤ cγcr2(G)γ log2 n. (7)

Furthermore, for every δ > 0 and γ > ln x0

ln 2
, there exists a randomized al-

gorithm of the following description. The input of the algorithm is a table.
This table tells which edges cross in a nice drawing D of G, which has cr(D)
(cr2(D)) crossings. The algorithm outputs with probability at least 1 − δ a
decomposition of the graph G into 1 + cγcr(D)γ log2 n (2 + cγcr(D)γ log2 n)
planar graphs. The running time of the algorithm is bounded by a polynomial
in the variables ln 1

δ
and n(G).

Theorem 3 can be interpreted in two ways. In one way, it is the first non-
trivial, structural lower bound for cr2(G), in terms of other graph parameters.
Unfortunately, it rarely happens that the thickness of a graph G is known.

In the other way, the theorem is interpreted as estimating the thickness
in terms of other graph parameters. There are some results in this direction:
Halton [9] proved Θ(G) ≤ d∆

2
e, and Dean, Hutchinson, and Scheinerman [7]

proved Θ(G) ≤ b√m
3

+ 7
6
c, where ∆ is the maximum degree and m is the

number of edges. Malitz [13] proved Θ(G) = O(
√

g), where g is the genus of
the graph G. These results are not directly comparable to Theorem 3.
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Improvement on Theorem 1 would yield improvement on Theorem 3, but
we were unable give Theorem 3 in an “abstract” way, since for example, an
improvement may involve drawings on 3 planes.

Open Problem 2. Derandomize the algorithm in the proof of Theorem 3.

Open Problem 3. What is the smallest value γ∗ with which (6), (7) hold
for all graphs?

It is clear from the example of the complete graph that γ∗ ≥ 1/4, since
there is a closed form for the thickness of the complete graph [24], and it is
linear in n; while cr(Kn) and cr2(Kn) are at least cn4 with some constant c.

3 Notations and Graph Definitions

In this section we introduce some notations and graphs that we will use in
our proofs.

Let G = (V, E) be a graph. For X, Y ⊂ V we will denote the set of edges
between X and Y by E(X, Y ), i.e.

E(X, Y ) = {{x, y} : x ∈ X, y ∈ Y, {x, y} ∈ E}.

Note that if Y = V −X, E(X, Y ) is the edge set of a cut.

Let G1 and G2 be two graphs on the same vertex set of order n, i.e.
V = V (G1) = V (G2) = {1, 2, . . . , n}. We define the random graph Γ(G1, G2)
as

Γ[G1, G2] = G1 ∪Gπ
2 ,

where π is a random permutation of V , and Gπ
2 denotes the image of G2

under the action of π, i.e. π(i) and π(j) are joined in Gπ
2 iff i and j are

joined in G2. Clearly, Γ[G1, G2] is a union of two edge sets over the same
vertex set (without multiple edges).
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Also, for any graph G and integers s and a, let c(a, s, G) denote the
number of ordered (a, n− a)-cuts of G with at most s edges, i.e.

c(a, s, G) = |{A ⊂ V (G) : |A| = a, |E(A, V (G)− A)| ≤ s}|. (8)

Let n and k be a positive integers, k ≤ n. The graph H(n, k) is defined
as follows: For the set of vertices of H(n, k), take {1, 2, . . . , n}. Join vertex
x with vertex y if they are at most k − 1 apart , i.e if |x− y| < k.

We will also define k subgraphs H1, H2, . . . , Hk of H(n, k) in the following
way (see Fig. 1): The vertex set of each graph is the same as the vertex set
of H(n, k). The edge set of Hi consists of the edges going ’upwards’ from
some special points of the form i + zk for some z ≥ 0 integer and i + zk ≤ n
(we call these points centers in Hi), i.e.

E(Hi) =
{
{x, y} ∈ E(G) : x < y, x = i + zk or some integer z

}
.

The following statements are clear from the construction:

Lemma 1. • The subgraphs H1, H2, ..., Hk are edge-disjoint graphs that
partition the edge set of H(n, k);

• every subgraph Hi is a vertex disjoint union of wi stars (a star is con-
sidered present when its center is present), and

n

k
− 1 ≤ wi ≤ n

k
+ 1, (9)

• the centers of the stars have degree at most k − 1,

• (n− k)(k − 1) < m(H(n, k)) < n(k − 1). (10)

4 The Proof of Theorem 2

If, say, m ≥ n2/20, then conclusions (4) and (5) hold for all graphs of order
n and size m. First, we prove the following lemma, which is a weaker version
of Theorem 2:
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Figure 1: Circular drawing for the graph H(10, 4). Edges of the subgraphs
Hi (i = 1, 2, 3, 4) are drawn in different ways.
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Lemma 2. There exists a k0 and an n0, such that for all n ≥ n0 and all
k0 ≤ k ≤ n/3 integers, the graph G∗ = Γ[H(n, k), H(n, k)] satisfies the
conclusion of the theorem with probability 1− o(1), where o(1)is for n →∞,
independent of k.

For shortness, we denote H(n, k) by H . Lemma 2 will be proved through
a series of lemmas using the following obvious facts:

m(H) ≤ m(G∗) ≤ 2m(H) (11)

cr2(G
∗) ≤ 2cr(H). (12)

(11) and (12) together show that cr(H) ≤ c3m(H)3/n2) implies cr2(G
∗) ≤

c2(m(G∗)3/n2; cr(H) ≤ c3m(H)3/n2 will be shown in Lemma 7. cr(G∗) ≥
c1m(G∗)2 will be shown in Lemma 11, and that will finish the proof of Lemma
2.

We begin with recalling Markov’s inequality:

Lemma 3. For a nonnegative random variable X for every ε > 0 we have

IP
[
X > (1 + ε)IE[X]

]
<

1

1 + ε
, (13)

and therefore we have

IP
[
X ≤ (1 + ε)IE[X]

]
≥ ε

1 + ε
. (14)

Lemma 4. For arbitrary 1/3 ≤ c ≤ 2/3, if n is large enough, and cn is an
integer, then

1

n

(
n

cn

)
> 1.5n. (15)

Proof. Recall the following well-known consequence of Stirling’s formula: for
any constant c : 0 < c < 1 one has

(
n

cn

) 1
n

= H(c) + o(1) (16)
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H(c) = c−c(1− c)−(1−c). (17)

Using Robbins’ formula instead of Stirling’s, we see that the o(1) term is
uniform in 1/3 ≤ c ≤ 2/3. When 1/3 ≤ c ≤ 2/3, then the minimum value of
H(c) is achieved when c = 1/3 or c = 2/3, and this value is larger then 1.5;
(15) follows from this.

Recall that the 1/3-2/3 bisection width of a graph G is the smallest possi-
ble size of an edge set of a cut (A, V (G)−A), where both |A| and |V (G)−A|
are required to be between |V (G)|/3 and 2|V (G)|/3. We denote the 1/3-2/3
bisection width of G by b(G).

We will need the bisection width lower bound for the cr(G) that was
shown in [16, 21]:

Lemma 5. If G = (V, E) and di(G) denotes the degree sequence of the graph
(i ∈ V ), then

(1.58)2
(
16cr(G) +

∑
i∈V

d2
i (G)

)
≥ b(G)2. (18)

The next statement provides us with a lower bound on the bisection width
(see definition (8)!).

Lemma 6. Let G1 and G2 be two graphs on the same vertex set of order n.
If for some integer s = s(n) for each a : n

3
≤ a ≤ n

2
, we have

c(a, s, G1)c(a, s, G2) ≤ g(n)

n

(
n

a

)
, (19)

then b(Γ[G1, G2]) ≥ s with probability at least 1− g(n).

Proof. For shortness, let us use ci(a) = c(a, s, Gi) and G′ = Γ[G1, G2]. It is
easy to see that (19) implies

IP[b(G′) ≤ s] ≤
n/2∑

a=n/3

c1(a)
c2(a)a!(n− a)!

n!
=

n/2∑
a=n/3

c1(a)c2(a)(
n
a

) ≤ g(n),(20)
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where IP in (20) is the probability arising from uniformly selected random
permutations.

Now we are ready to estimate the crossing number of H :

Lemma 7. For k ≥ 4, cr(H) ≤ 48m(H)3/n2.

Proof. We are going to show that cr(H) ≤ 2nk3. If k ≤ n/2, formula
(10) of Lemma 1 will finish the proof; if k ≥ n/2, then the conclusion is
straightforward.

Draw the points of H on a circle in order, and draw the edges in straight
lines (see Fig. 1). For each i : 1 ≤ i ≤ k we have at most n edges of length
i. Consider the i− 1 points that a length i edge e covers in the natural way
(i.e. the points between the endpoints of the edge in the cyclic order). All
of them have at most 2(k − 1) neighbors. Therefore vertices covered by e
contribute at most 2(k − 1)(i− 1) to the crossings in the drawing. Hence,

cr(H) ≤ 1

2
n

k∑
i=2

2(k − 1)(i− 1) ≤ 2nk3.

Lemma 8. Fix an 0 < ε < 1, and fix an i and an a, and let |A| = a be a
fixed vertex set of Hi such that in Hi, |E(A, V − A)| ≤ εn.

1. The average number of A, V −A cut edges, computed over the wi stars
of Hi, is at most 1.5εk.

2. Fix any K > 3/2, and call a star of Hi rich, if it has more than Kεk
edges in the E(A, V −A) cut. The number of rich stars is at most 3wi

2K
.

Proof. For part 1, average is less or equal εn/wi ≤ εn
n/k−1

by (9), which is
εk

1−k/n
< 1.5εk, as k ≤ n/3.

For part 2, apply (13), such that the probability is uniform on the wi stars,
and X counts the E(A, V − A) cut edges in the stars. We have seen in part
1 that IE[X] ≤ 1.5εk; and (13) immediately implies part 2.
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The following rather technical lemma will help us to apply of Lemma 6
for H .

Lemma 9. There exists an ε > 0, such that for all n large enough, for all
a, i such that 1 ≤ i ≤ k and n/3 ≤ a ≤ n/2, we have that c(a, εn, Hi) < 1.1n.

Proof. Fix an arbitrary ε > 0 and K > 3/2. We estimate in their terms the
number of cuts in Hi, where one side has a vertices, and the cut has at most
εn edges. The main tool for the estimate is Lemma 8. Finally, we will assign
a value to ε. We are going to use the following facts:

• there are 2wi placements of the midpoints of the stars of Hi to the two
sides of the partition, A and V \ A;

• there are at most
∑ 3wi

2K
j=0

(
wi

j

)
ways to select the rich stars of Hi, since

the number of such rich stars is at most 3wi

2K
;

• there are at most
∑bKεkc

t=0

(
k−1

t

)
ways for cutting a star that is not a rich

star (we need to decide which of the at most bKεkc cut edges belong
to the side of the center in the cut); and there is a total of wi possible
stars;

• in the rich stars the cut can go at most 2k−1 ways, and as mentioned,
there are at most 3wi

2K
such stars.

By all the above, we have that

c(a, εn, Hi) ≤ 2wi

[ 3wi
2K∑
j=0

(
wi

j

)]
×

[bKεkc∑
t=0

(
k − 1

t

)]wi

×(2k−1)
3wi
2K . (21)

We will bound the right side of (21) term-by term by 1.1n/3, as we make the
appropriate choices for K and ε.

The first factor is at most 2wi2wi ≤ 22(n/k+1) = 22+2n/k using (9), and this

is < 1.1n/3 if and only if 2
6
n

+ 6
k < 1.1. This is simply achieved by selecting a

large enough k0 and n.
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To estimate the third factor, use again (9): (2k−1)
3wi
2K ≤ 2(k−1) 3

2K
(n/k+1),

and the last term < 1.1n/3 if and only if 2(k−1) 9
2K

(1/k+1/n) ≤ 1.1. This can be
achieved by selecting K sufficiently large, say K = 100.

For the second factor, we recall a well-known inequality: For 4b ≤ N

b∑
l=0

(
N

l

)
≤ 2

(
N

b

)
. (22)

Given our choice of K, we want to select ε so small that

[bKεkc∑
t=0

(
k − 1

t

)]wi
n

< 1.11/3. (23)

We require ε ≤ 1
4K

so that we can estimate the LHS of (23) with (22). We
use the estimate wi/n ≤ 1/k + 1/n from (9) to set a sufficient condition for
(23):

[
2

(
k − 1

bKεkc
)]3/k+3/n

< 1.1. (24)

Observe that for fixed Kε < 1/4, limk→∞
(

k−1
bKεkc

)1/k
= H(εK) (see formulas

(16) and (17)). As limε→0 H(εK) = 1, we can set a sufficently small ε and
sufficiently large k0 and n0, such that all k ≥ k0 and n ≥ n0 satisfy (24).
This finishes the proof of the lemma.

We are now in a position to prove

Lemma 10. Select ε > 0 according to Lemma 9. b
(
G∗

)
≥ εnk with proba-

bility at least 1− (1.21
1.5

)nk2.

Proof. Let s = εnk. Fix an a from the range n/3 ≤ a ≤ n/2, and assume
that (A, V \ A) is an a, n − a-cut of H with at most s edges. Then, there
must be an i, such that (A, V \A) is a cut of Hi with at most s

k
= εn edges.
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Since by Lemma 9 the number of such cuts of Hi is less than 1.1n and there
are k ≤ n choices for i, we have that

c2(a, s, H) <
(
k · 1.1n

)2

≤
(
1.21k2/n

)n

<

(
1.21k2/n

1.5

)n
1

n

(
n

a

)
.

This together with Lemmas 4 and 6 gives the required result.

Lemma 11. cr
(
G∗

)
≥ c1m(G∗)2 with probability 1− o(1).

Proof. We require that n0 ≥ 32(1.58)2/ε2. With this choice, the lower bound
for the 1/3-2/3 bisection width of G∗, εnk, plugged into Lemma 5, sets an
c1m(G∗)2 lower bound for cr(G∗), as in G∗ every degree is at most 4k.

With this, we finished the proof of Lemma 2.

Open Problem 4. We showed in Lemma 10 that b(G∗) is large for a par-
ticular graph sequence, G1 = G2 = H(n, k). Would this hold (perhaps with
mild additional conditions) for all graphs ?

Finally, we prove Theorem 2. Set k1 = 3k0, where k0 is the constant in
Lemma 2. Let m ≥ k1n denote the target edge number. According to the
remark above Lemma 2, we may assume m ≤ n2/20. Let k denote the largest
integer with 2nk < m. Clearly n/10 ≥ k > k0, and we can use Lemma 2 for
Γ[H(n, k), H(n, k)]. In particular, there is a permutation π of n elements,
such that the crossing number of G∗ = H(n, k) ∪ [H(n, k)]π is large. Now
think about the graph H(n, k) as a subgraph embedded into H(n, 3k), and
consider G∗∗∗ = H(n, 3k) ∪ [H(n, 3k)]π with the very same π that gave G∗.
According to (10) and (11), m(G∗) < 2n(k−1) < m, and (n−3k)(3k−1) <
m(G∗∗∗). By the choice of k, m ≤ 2n(k + 1) ≤ (n− 3k)(3k − 1) < m(G∗∗∗),
as n/10 ≥ k. Observe that G∗ is sugraph of G∗∗∗, and therefore there exists
a graph G∗∗ with exactly m edges such that G∗ ⊂ G∗∗ ⊂ G∗∗∗. Within a
constant multiplicative factor, all these 3 graphs have the same number of
edges, cr(G∗∗) ≥ cr(G∗), and latter crossing number was big according to
Lemma 2, and finally cr2(G

∗∗) ≤ cr2(G
∗∗∗), and latter crossing number is

small according to Lemma 7.
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5 Towards the proof of Theorem 3

Let us be given a nice drawing D′ of a graph G′ without isolated vertices.
Assume that we apply the randomized algorithm that we used in the proof
of Theorem 1 to D′ to obtain a biplanar drawing on two planes. For e, f
edges of G′, let Xe,f (resp. Ye,f) denote the indicator variable that in the
random drawing edges e and f cross in the first (resp. second) plane. Set
X =

∑
e,f Xe,f and Y =

∑
e,f Ye,f (the summation goes for unordered pairs

of edges). Note that if Xe,f = 1, then the four vertices of e ∪ f are all in the
same partition of the random bipartition U, W ; and if Ye,f = 1, then both e
and f connect a point of U to a point of W . Let cr(D′) denote the number
of crossings in the drawing D′.

Our observations in the proof of Theorem 1 amount to

IE[X] =
cr(D′)

8
and IE[Y ] =

cr(D′)
4

. (25)

Our first goal is to study the variance of Y .

Lemma 12.

σ2[Y ] ≤ cr(D′)(2m(D′) + 12n(D′) + 3), (26)

where n(D′) and m(D′) denote the order and size of G′, respectively.

Proof. We have

σ2[Y ] = IE[Y 2]− IE2[Y ] =
∑
{e,f}

∑
{a,b}

IE[Ye,fYa,b]− IE[Ye,f ]IE[Ya,b]. (27)

We think about edges as 2-element sets of vertices. Since D′ is nice, Ye,f 6= 0
implies that |e ∪ f | = 4. Observe that if the vertex sets a ∪ b and e ∪ f are
disjoint, then by independence the contribution of the {e, f}, {a, b} terms is
zero to (27). We make the following case analysis:
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(i) |{a ∪ b} ∩ {e ∪ f}| = 1

(ii) |{a ∪ b} ∩ {e ∪ f}| = 2 and {a ∪ b} ∩ {e ∪ f} /∈ {a, b, e, f}
(iii) |{a ∪ b} ∩ {e ∪ f}| = 2 and {a ∪ b} ∩ {e ∪ f} ∈ {a, b} ∩ {e, f} 6= ∅
(iv) |{a ∪ b} ∩ {e ∪ f}| = 2 and {a ∪ b} ∩ {e ∪ f} ∈ {a, b},

but {a ∪ b} ∩ {e ∪ f} /∈ {e, f} (or vice versa)

(v) |{a ∪ b} ∩ {e ∪ f}| = 3 and |{a, b} ∩ {e, f}| = 1

(vi) |{a ∪ b} ∩ {e ∪ f}| = 3 and {a, b} ∩ {e, f} = ∅
(vii) |{a ∪ b} ∩ {e ∪ f}| = 4 but {a, b} 6= {e, f}
(viii) {a, b} = {e, f}
(see Fig. 2).

Simple calculations show that in cases (i), (ii), (iv) cov(Ye,f , Ya,b) = 0.
Otherwise cov(Ye,f , Ya,b) ≤ 1, so σ2(Y ) is bounded above by the number of
ordered pairs of unordered edge-pairs ({e, f}, {a, b}) that are in one of the
configurations covered by (iii) and (v)-(viii). Since {e, f} can be chosen in
at most cr(D′) ways, it is enough to bound the number of ways {a, b} may
be chosen once {e, f} is fixed. In particular, once {e, f} is given, {a, b} is
fixed in configuration (viii), and there are only 2 ways {a, b} can be chosen
for configuration (vii), so there are at most 3cr(D′) pairs in configurations
(vii) and (viii).

In configurations (v) and (vi), |(a∪ b)− (e∪f)| = 1, therefore, if {e, f} is
already given, there are no more than n(D′) ways to choose (a∪ b)− (e∪ f).
Once both {e, f} and the vertex in (a ∪ b) − (e ∪ f) is chosen, there is at
most 4 ways to choose {a, b} for configuration (v) and at most 4 × 2 = 8
ways to choose it for (vi), therefore we have at most 12n(D′)cr(D′) pairs in
configurations (v) and (vi).

To estimate the number of pairs in configuration (iii), let cr(e) denote the
number of crossings of edge e in D′. Since D′ is a nice drawing, cr(e), cr(f) ≤
m(D′), therefore if {e, f} is fixed, the number of ways to choose {a, b} is
at most 2m(D′), so the number of pairs in configuration (iii) is at most
2cr(D′)m(D′).
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Figure 2: Geometric cases for the variance.
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Combining all these results yields

σ2[Y ] ≤ cr(D′)(2m(D′) + 12n(D) + 3).

Next we examine the probability that Y is much larger that its expecta-
tion, if the nice drawing D′ has many crossings:

Lemma 13. Let ε > 0. If cr(D′) > K(2m(D′) + 12n(D′) + 3) then

IP
[
Y > (1 + ε)IE(Y ))

]
<

16

Kε2
(28)

Proof. Using Chebyshev’s inequality, Lemma 12 and equation (25), we get
that

IP
[
Y > (1 + ε)IE(Y )

]
≤ σ2(Y )

ε2IE2(Y )

≤ 16(2m(D′) + 12n(D′) + 3)

ε2cr(D′)
, (29)

from which the statement follows.

Now we are ready to show that when cr(D′) is large, the probability
that both X and Y stay below (1 + ε) times their respective expectations is
bounded away from 0:

Lemma 14. Let ε > 0. If there is a K > 16(1+ε)
ε2

such that cr(D′) >
K(2m(D′) + 12n(D′) + 3), then

IP
[
X ≤ (1 + ε)IE(X) and Y ≤ (1 + ε)IE(Y )

]
≥ r(ε, K) > 0, (30)

where r(ε, K) = ε
1+ε

− 16
Kε2

. In particular, if ε ≤ 0.34, and K = 100/ε3, we
have

r

(
ε,

100

ε3

)
≥ ε

2
. (31)
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Proof. Since

IP
[
X ≤ (1 + ε)IE(X) and Y ≤ (1 + ε)IE(Y )

]
≥

IP
[
X ≤ (1 + ε)IE(X)

]
−IP

[
Y > (1 + ε)IE(Y )

]
,

equation (30) follows directly from Markov’s inequality for X (Lemma 3,
equation (14)) and Lemma 13. The remaining part is straightforward.

Next we describe and analyze a procedure that we will recursively use in
the algorithm for (6) in Theorem 3:

PROCEDURE

Input: An ε with .34 > ε > 0, a non-negative integer N and a nice one-plane
drawing D of order n(D) and size m(D), with cr(D) > 0 crossings, without
isolated vertices.
Output: Either FAIL, or a partitioning of all edges of D into at most
23200

ε3
log2 n planar drawings (i.e. without crossings) and two other draw-

ings D1 and D2, such that cr(D1) < (1
8
+ ε)cr(D) and cr(D2) < (1

4
+ ε)cr(D).

D1 and D2 have no isolated vertices.

Case 1: IF cr(D) > 100
ε3

(2m(D) + 12n(D) + 3), THEN make (at most) N runs of
the Splitting Algorithm.

IF a drawing on two planes is achieved that satisfy the requirements
for D1 and D2, then remove their isolated vertices and output two
new drawings D1 and D2 using two new planes, such that cr(D1) <
(1

8
+ ε)cr(D) and cr(D2) < (1

4
+ ε)cr(D).

OTHERWISE output FAIL

END PROCEDURE

Case 2: IF cr(D) ≤ 100
ε3

(2m(D)+12n(D)+3), THEN introduce 11600
ε3

new planes,
copy the vertices of D to each, and then use the greedy algorithm to
move as many edges of D as possible to the new planes, so that no
crossings on the new planes arise. When the greedy algorithm stops,
eliminate the isolated vertices from the rest of D, and call the leftover
drawing D′. Output the planar drawings. Run the PROCEDURE on D′.
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Lemma 15. In every application of Case 2, D′ inherits at most half of the
edges of D, and consequently PROCEDURE executes Case 2 at most 2 log2 n
times. Moreover, as ε ≤ 0.34, the probability that PROCEDURE results in a
FAIL is at most (1− ε

2
)N .

Proof. We are going to use Markov’s inequality. Consider a probability space,
whose elements are are the edges of D, each with probability 1/m(D). Con-
sider the function cr(e) which assigns to every edge e in D the number of
crossings that this edge makes, as a random variable. Its expectation is
2cr(D)/m(D), which is, by the definition of Case 2, ≤ 100

ε3
(4 + 24 n(D)

m(D)
+ 6),

and that, since D has no isolated vertices and therefore m(D) ≥ n(D)/2, is
bounded by 5800

ε3
. After the stopping of the greedy algorithm, only such edges

may remain in D′ which crossed at least 11600
ε3

other edges in D. Using (14)

(with 1 instead of ε in it), we obtain IP[cr(e) ≤ 11600
ε3

] ≥ IP[cr(e) ≤ 22cr(D)
m(D)

] ≥
1
2
. Hence, at most half of the edges stay after the use of the greedy algorithm.

This sets a limit of log2 m(D) < 2 log2 n for the number of consecutive runs
of the greedy algorithm.

By Lemma 14, if ε ≤ 0.34 then a single run of the Splitting Algorithm

results in failure with probability at most 1− ε/2. Therefore the probability
that all of N independent trials result in FAIL in the Case 1 step of the
PROCEDURE is at most (1− ε/2)N .

6 Proof to Theorem 3

Proof. To prove Theorem 3, let us be given an arbitrary γ > ln x0

ln 2
and δ > 0

(recall that x0 is the positive real root of x3 = x+1), and also a graph G with
a nice drawing D in one (two) planes that we have to partition into planar
graphs. We will choose an appropriate ε (depending on γ), and a positive
integer N (which will depend on ε, and on n, the number of vertices of the
graph G), as specified below.

Take an α such that x0 < α < γ, an α is so close to lnx0

ln 2
, that the ε = ε(α)

21



positive solution of

1 =

(
1

4
+ ε

)α

+

(
1

8
+ ε

)α

(32)

is less than .34. (This can be achieved by continuity arguments, as ε → 0
in equation (32) implies the corresponding α exponent decreasing to lnx0

ln 2
.

Note that 2x0 is the solution of the equation 1 = (1
4
)x0 + (1

8
)x0 .) Set N =

2
ε
ln 1

δ
+ 2

ε
ln(n2).

The main algorithm that obtains a partition of G into cγcr(D)γ log2 n plus
1 (plus 2) planar graphs from a planar (biplanar) drawing of G, would output
the input drawing, if it has no crossings, otherwise it will be the simultaneous
recursive call of the PROCEDURE described in the previous section for every
current drawing which has at least one crossing, starting with the drawing
of D. (You may keep the original N or may redefine it with the decreasing
n.)

First we show that the main algorithm partitions G into planar drawings
with probability at least 1 − δ. A Case 1 step of PROCEDURE yields FAIL

with probability (1 − ε/2)N ≤ e−εN/2. For an n-vertex graph, clearly
(

n
2

)
is an upper bound for getting into Case 1 in the algorithm. Therefore the
probability that we get FAIL is <

(
n
2

)
e−εN/2 < δ with our choice for ε and N .

If we never get FAIL in the algorithm, then we end the main algorithm when
there are no more crossings in the current graph drawing. We will call such
runs of the algorithm successful.

Next, we are going to estimate the number of planar drawings obtained
in a successful run. Let us denote by fε(c) the largest number of planes
coming from the first case of the procedure for some initial drawing with at
most c crossings, for all possible input drawings and successful runs. (This
definition is independent of n, so one has to pause if fε(c) exists! But indeed
fε(c) ≤ c.) The algorithm implies the recurrence relation

fε(c) ≤ fε

(
b(1

4
+ ε)cc

)
+fε

(
b(1

8
+ ε)cc

)
. (33)
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It is easy to prove by induction from (33) that

fε(c) ≤ Kcα, (34)

where α is the solution of the equation (32), and the constant K depends on
the initial condition of the recurrence. By Lemma 15, the number of planes
output by the whole algorithm is at most log2 n times more than the number
of planes output in a Case 1 step of the PROCEDURE. We verified the claim
about the number of planes output by any successful run.

Finally, the polynomiality of the algorithm in n and 1/δ follows from the
polynomiality of N and the output size in these variables (as cr(D) < n4),
since every output plane takes polynomial time to compute.
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and K. Böröczky, Bolyai Society Mathematical Studies 6, János Bolyai
Mathematical Society, Akadémiai Kiadó, Budapest, 1997, 179–206.
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