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The purpose of these talks is to prove (some parts of) the following result.

Theorem. Let k be a field of positive characteristic p, P be the polynomial ring

k[x1, . . . , xn], C be the homogeneous complete intersection ideal C = (f1, . . . , fm) in

P and R be P/C. Let I be a homogeneous ideal in P with P/I a finite dimensional

vector space over k. Suppose that the socle degrees of R/IR are d1 ≤ · · · ≤ d` and

that the socle degrees of R/I [p]R are D1 ≤ · · · ≤ DL. Then the following statements

are equivalent:

(1) L = ` and Di = pdi − (p − 1)a(R) for all i, and

(2) The ring R/IR has finite projective dimension as an R-module.

Remark. In the present context a(R) is
∑

|fi| −
∑

|xi|.

Proof of (1) ⇐ (2) when C = 0. The ring P is regular. Every P -module has a
finite resolution by free P -modules. Let

F : 0 → Fn → Fn−1 → · · · → F1 → F0

be the minimal homogeneous resolution of P/I by free P -modules, with Fn =
⊕

i P (−bi). There are two ingredients to the proof.

(A) The number of back twists in F is exactly equal to the dimension of the socle
of P/I; furthermore, bi and di = bi + a(P ).

(B) One obtains the minimal free resolution of P/I [p] by applying the Frobenius
functor to F.

As soon as you buy (A) and (B), then the proof is complete. Ingredient (B) tells
us that the back twists in the P -resolution of P/I are pbi, with 1 ≤ i ≤ `. Thus,
by (A):

Di = pbi + a(P ) = p(bi + a(P )) − (p − 1)a(P ) = pdi − (p − 1)a(P ).

A quick illustration. Let P = k[x, y] and I = (x2, xy, y2). The P -resolution of
P/I is

0 → P (−3)2
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−−−−−−→ P (−2)3
[y2 −xy x2 ]
−−−−−−−−−−−−→ P.
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The resolution of P/I [p] is

0 → P (−3p)2
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−−−−−−−−→ P (−2p)3
[y2p −xpyp x2p ]
−−−−−−−−−−−−−−−→ P.

We have a(P ) = −2. We saw that x and y form a basis for the socle of P/I. So
the socle degrees of P/I are d1 = 1 ≤ d2 = 1. The back twists in the resolution
of P/I are b1 = 3 ≤ b2 = 3. We see that 3 − 2 = 1, so bi + a(P ) = di. We also
see that xp−1y2p−1 and x2p−1yp−1 are in the socle of P/I [p]. One can show that
xp−1y2p−1 and x2p−1yp−1 are a basis for the socle of P/I [p]. So the socle degrees
of P/I [p] are D1 = 3p− 2 ≤ D2 = 3p− 2; the back twists in the resolution of P/I [p]

are B1 = 3p ≤ B2 = 3p; and a(P ) is still −2. We have Di = Bi + a(P ) and also
Di = pdi − (p − 1)a(P ), for both i.

Ingredient (B), in the present form, is due to Kunz (1969) – this is the paper that
got commutative algebraists (especially Peskine, Spziro, Hochster) using Frobenius
methods. One could also think of this assertion as an application of “What makes
a complex exact?” (John Olmo lectured on this last Fall). The complex F is a
resolution, so the ranks of its matrices behave correctly and the grade of the ideals
of matrix minors grow correctly. If one raises each entry of each matrix to the pth

power, then the ranks of the new matrices are the same as the ranks of the old
matrices (since det M [p] = (detM)p because the characteristic of the ring is p), and
the grade of the ideals of minors also remains unchanged!

I will give two explanations for ingredient (A). The quick argument is that one may

commute TorP
n (P/I, k) using either coordinate. If one resolves P/I, then applies

⊗P k, and then computes homology, then one sees that

TorP
n (P/I, k) =

⊕

i

k(−bi).

In other words, the generators of Tor have degrees b1 ≤ . . . . On the other hand, if
one resolves k, then applies P/I ⊗P , and then computes homology, then one sees
that

TorP
n (P/I, k) =

⊕

i

I : m

I
(a(P )).

In other words, the the generators of Tor have degrees d1 − a(P ), . . . (where the
socle degrees of P/I are d1, . . . ). So di = bi + a(P ) as claimed.
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My second argument is exactly the same as my first, except, instead of stating the
abstract result that Tor may computed in either coordinate, I reprove this result,
giving a construction which associates an element of the socle of P/I to each basis
vector at the back of the resolution of of P/I. The constructive argument takes
longer, but shows what is really happening. Let F be a resolution of P/I, as above.
Let G be the Koszul complex which resolves k. One can directly show that there
is an isomorphism

(*) Hn(F ⊗ k) ∼= Hn(Tot(F ⊗ G)) ∼= Hn(P
I
⊗ G).

Anyhow, I think that the best way to convey the idea of (*) is to work out the
example where I = (x2, xy, y2). In this case, F is

0 → P (−3)2
︸ ︷︷ ︸

F2

f2=
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−−−−−−−−−→ P (−2)3
︸ ︷︷ ︸

F1

f1=[y2 −xy x2 ]
−−−−−−−−−−−−−−→ P

︸︷︷︸

F0

,

G is

0 → P (−2)
︸ ︷︷ ︸

G2

g2=

"

y
−x

#

−−−−−−−→ P (−1)2
︸ ︷︷ ︸

G1

g1=[x y ]
−−−−−−−−→ P

︸︷︷︸

G0

,
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and F ⊗ G is

0 0 0


y



y



y

0 −−−−→ F2 ⊗ G2
f2⊗1

−−−−→ F1 ⊗ G2
f1⊗1

−−−−→ F0 ⊗ G2

1⊗g2



y 1⊗g2



y 1⊗g2



y

0 −−−−→ F2 ⊗ G1
f2⊗1

−−−−→ F1 ⊗ G1
f1⊗1

−−−−→ F0 ⊗ G1

1⊗g1



y 1⊗g1



y 1⊗g1



y

0 −−−−→ F2 ⊗ G0
f2⊗1

−−−−→ F1 ⊗ G0
f1⊗1

−−−−→ F0 ⊗ G0.

Start with

[
1
0

]

⊗ 1 in F2 ⊗ G0 in the lower left hand corner. We see that this

element represents an element of the homology of H2(F ⊗ k). One can extend this
element to get an element of the homology of H2(Tot(F ⊗ G)):

1 ⊗ y


y





1
0
0



 ⊗

[
1
0

]

+





0
1
0



 ⊗

[
0
1

]

−−−−→ 1 ⊗

[
y2

−xy

]



y

[
1
0

]

−−−−→





x
y
0





The indicated element of H2(Tot(F ⊗ G)) gives rise to the element y of the socle
of P/I. To answer the question that our freshman ask: “Yes, it always works like
that.” We can use the idea of the snaky game to prove both isomorphisms in (*).

Now we work on (1) =⇒ (2). We want to prove that pdR(R/IR) < ∞. We apply
the Theorem of Avramov and Claudia Miller (see the last seminar talk given by

John Olmo last semester.) It suffices to prove that TorR
1 (R/IR, ϕR) = 0. In other

words, it suffices to show that if

(**)
Rb2 d2−→ Rb1 d1−→ R → R/I → 0 is exact

=⇒ Rb2
d
[p]
2−−→ Rb1

d
[p]
1−−→ R → R/I [p] → 0 is exact.
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In other words, it suffices to show that

(***) I [p] ∩ C = (I ∩ C)[p] + I [p]C.

I will show that (***) implies (**). (This is a rather grubby calculation. I do it
to show that our goal is very concrete! One can read the calculation backwards to
show that (**) implies (***).)

I make my calculation at the P -level. Let a1, . . . , ab1 generate I in P ; so,

d1 = [ a1 . . . ab1 ]

and
d
[p]
1 = [ a

p
1 . . . ap

b1
] .

We think of d2 as having two pieces:

d2 = [ d′
2 d′′

2 ]

where

P b2
′ d′

2−→ P b1 d1−→ P

is exact (and d′′
2 is all of the extra columns that describe elements of I which are

also in C.) Recall that Kunz’s Theorem (ingredient (B) of the other direction) tells
us that

P b2
′ (d′

2)[p]

−−−−→ P b1
d
[p]
1−−→ P

is exact.
Suppose v is in P b1 with d

[p]
1 (v) ∈ C. In other words,

d
[p]
1 (v) ∈ I [p] ∩ C = (I ∩ C)[p] + I [p]C.

So, there exist s1, . . . , st ∈ I ∩ C; α1, . . . , αt in P ; and c1, . . . cb1 in C so that

d
[p]
1 (v) =

t∑

i=1

αis
p
i +

b1∑

i=1

ap
i ci.

Of course, there exists vi ∈ P b1 with d1(vi) = si (and therefore also d
[p]
1 v

[p]
1 = sp

i ).
So,

d
[p]
1 (v) = d

[p]
1





t∑

i=1

αiv
[p]
i +





c1
...

cb1







 .
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So,

v −

t∑

i=1

αiv
[p]
i −





c1
...

cb1





is killed by d
[p]
1 ; hence is in the image of (d′

2)
[p]. Finally, d1(vi) = si ∈ I ∩ C, so

vi = d′′
2(wi) for some wi; hence, v

[p]
i = (d′′

2)[p](w
[p]
i ). Thus,

v ∈ im d
[p]
2 + CP b1 ,

as desired.

To be continued ...


