THE COHOMOLOGY OF THE KOSZUL
COMPLEXES ASSOCIATED TO THE TENSOR
PRODUCT OF TWO FREE MODULES
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ABSTRACT. Let E and G be free modules of rank e and g, respectively, over a
commutative noetherian ring R. The identity map on E* ® G induces the Koszul
complex

oo SmE* @ SnGONP(E*QG) = Smi1E* @ Sni1GONP Y E*®G) — ...
and its dual
it 3 Dy 1E®Q@Dpi1G* QNP HE®G*) 5 DnE®D,G*QNP(EQG*) — ... .
Let Har(m, n,p) and Haq(m, n,p) be the homology of the above complexes at
SmE*® ShGRAP(E*®G) and DnE® DpG* @ AP(E® G*),

respectively. In this paper, we investigate the modules Har(m, n,p) and Haq(m, n, p)
when —e < m —n < g. We record the fact, already implicitly calculated by Bruns
and Guerrieri, that Hpr(m,n,p) & Hpaq(m/,n/,p'), provided m+m/ = g—1,n+n' =
e—L,p+p =(e—1)(g—1),and1—e<m—n<g—1. If m —n is equal to either
g or —e, then we prove that the only non-zero modules of the form Har(m,n,p) and
Haq(m, n,p) appear in one of the split exact sequences

0 = Ha(g,0,9') = A" (E® G*) = Hy(0,¢,p) = 0, or
0 — Ha(0,e,0') = AT (E® G*) = Har(g,0,p) — 0,

where p+p' = (e — 1)(g — 1) — 1. The modules that we study are not always free
modules. Indeed, if m = n, then the module Hpr(m, n,p) is equal to a homogeneous
summand of the graded module Torf’ o(T, R), where P is a polynomial ring in eg
variables over R and T is the determinantal ring defined by the 2 X 2 minors of the
corresponding e X g matrix of indeterminates. Hashimoto’s work shows that if e and
g are both at least five, then Har(2,2, 3) is not a free module when R is Z, and when
R is a field, the rank of this module depends on the characteristic of R. When the
modules Hpq(m,n,p) are free, they are summands of the resolution of the universal
ring for finite length modules of projective dimension two.
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Throughout the paper, R is a commutative noetherian ring with one, £ and G
are free R-modules of rank e and g, respectively, and « is the integer (e —1)(g —1).
The identity map on E* ® G induces the Koszul complex

01) «--=>Nm-1,n—-1,p+1) > N(m,n,p) > Nm+1,n+1,p—1)—---
and its dual
0.2) --- > M(m+1,n+1,p—1) 5> M(m,n,p) > M(m—1,n—1,p+1) — --- .
where N'(m,n,p) = S E* ® S,G ® \P(E* ® G) and

M(m,n,p) = Dy E ® D, G* @ \P(E ® G*).

Let Hpr(m,n,p) be the homology of (0.1) at N (m,n,p) and Haq(m,n,p) be the
cohomology of (0.2) at M(m,n,p). We investigate the modules Hpr(m,n,p) and
Ha¢(m,n,p) when —e <m —n < g. Theorem 1.1 records the fact, already im-
plicitly calculated by Bruns and Guerrieri [2], that Ha/(m,n,p) = Hp(m/, 0, p'),
providled m+m'=g—1,n+n'=e—1,p+p ' =a,and1 —e<m-n<g-—1.
If m — n is equal to either g or —e, then we prove in Theorem 2.1 that the only
non-zero modules of the form Hx/(m,n,p) and Haq(m, n,p) appear in one of the
split exact sequences

0 — Hae(g,0,p') = A*(E ® G*) = Hp (0, e,p) = 0, or
0 — Hpt(0,e,9') = AP (E ® G*) = Hyr(g,0,p) = 0,

where p+p' = a — 1.

The cohomology modules H 4 (m, n, p) have forced themselves into consideration.
Hochster 7, Thm. 7.2] established the existence of a commutative noetherian ring
R and a universal resolution

(0.3) U: 0-Re—-RI - RI—0,
such that for any commutative noetherian ring S and any resolution
V: 08>8 58950,

there exists a unique ring homomorphism R — S with V= U ®x S. In [10], we
found a free resolution F of the universal ring R over an integral polynomial ring,
P, in the case that the module resolved by U has finite length. The resolution F is
comprised of maps from four Koszul complexes, one of which is (0.2). The resolution
F is coordinate free and straightforward, but much too large. It is imperative to
understand the homology of (0.2) in order to split F down to a manageable size.
In particular, the ring R is Gorenstein of projective dimension eg + 1. The module
in position eg + 1 in the resolution of R is Ha¢(0,e,eg — €), which, according to
Theorem 2.1, is isomorphic to A“(E ® G*) = R. Section 5 of the present paper
contains many results that are used in [10] to split summands off F. One of the
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more general results along these lines is the vanishing statement in Theorem 5.4. In
section 4 we use the Eagon-Northcott and Buchsbaum-Rim complexes to calculate
the homology of (0.1) when e = 2.

The grade of a proper ideal I in a commutative noetherian ring P is the length of
the longest regular sequence on P in I. An P-module M is called perfect if the grade
of the annihilator of M is equal to the projective dimension of M. If M is a perfect
P-module of projective dimension ¢, then Ext% (M, P) is also a perfect P-module
of projective dimension c; furthermore, if F is a length ¢ projective resolution of
M, then * = Homp(F,P) is a resolution of Ext%:(M,P). We record below one
well-known and very useful property of perfect modules. An excellent reference on
perfect modules is [4, Sect. 16C].

Observation 0.4. If M and N are perfect P-modules of projective dimension c,
then the P modules

Ext, (M, Ext% (N, P)) = Ext), (N, Exth (M, P))
for all j.

Proof. Let T be a length c resolution of M, G be a length ¢ resolution of N, and
T be the total complex of the double complex X = Homp(F ® G,P). When one
views X as Hom(IF, G*), one sees that

Extd, (M, Ext% (N, P)) = H*7/(T).
On the other hand, when one views X as Hom(G,F*), then one obtains
Extd, (N, ExtS (M, P)) = H*7(T). O
If P =@, P; is a graded ring, and M = @, M; and N = P, N; are graded
P-modules, then the module Tor” (M, N) is a bi-graded P-module. Indeed, if
Xe oo Xy > Xo—> M
is a P-free resolution of M, homogeneous of degree zero, then

ker[(X, ® N)g = (Xp_1 ® N),]
im[(Xp11 ® N)g = (X, @ N)g|

P —
Tor,, ,(M,N) =

In particular, if N = P /Py is a field, X is a minimal resolution, and X, is equal to
@, P(—i)P»i, then TorZiq(M, N) is equal to NP»e. Recall, also, (see, for example
[3, Thm. 1.5.9]) that *Homp (M, N) is the graded P-module

@HomP(Ma N)ja
J

where *Homp (M, N); consists of all P-module homomorphisms ¢: M — N with
©(M;) C N,y for all 4. In particular, if N is concentrated in degree zero, then

(0.5) *Homp (M, N); = Homp, (M_;,N).

The statement and proof of the next result illustrate the importance of the
modules Hpr(m, n,p) as well as the fact that these modules are significantly more
delicate than they might appear at first glance.
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Observation 0.6. The R-modules Hy/(m,n,p) are not always free.

Proof. (This argument was suggested by a referee of an earlier version of this paper.
The author uses it with much thanks.) Let S be the R-algebra S¢E* ® S.G. If we
fix bases v1,...,v. for E*, and z1,...,z4 for G, then one may think of S as the
polynomial ring S = Rv1,..., %, Z1,...,Z4]. Let T be the subring

T = ZSmE* ® SmG

of S. One may think of T' as the subring R[v;z;] of S. Let P be the R-algebra
Se(E* ® G). One may think of P as a polynomial ring over R in the eg indeter-
minates {v; ® z;}. It is convenient to let z;; represent the element v; ® z; of P.
The identity map on E* ® G induces a surjective map ¢: P — T. Let Z be the
e X g matrix whose entry in row ¢ column j is the indeterminate z;;. It is clear
that the grade a perfect ideal I5(Z) is contained in the kernel of ¢. Dimension
considerations show that if R = Z, then kerp = I5(Z); and therefore, it follows
that ker ¢ is equal to I2(Z) for all choices of R. The R-algebras S, T, and P all are
graded using “the degree in G”; that is, S;, E* ® S,,G has grade n in S; S, E*® S,,G
has grade n in T, and S,,(E* ® G*) has grade n in P. The map ¢ is a homoge-
neous map of degree zero of graded rings, and S is a graded module over both T
and P. Significant information about the modules Hy(n,n,p) is contained in the
graded module Tor?’,(T, R), where R is the graded P-module P /P, concentrated
in degree zero. Hashimoto [6] is interested in the P-resolution of the determinantal
ring 7. He has shown that if R is equal to the ring of integers, and e and g are
both at least five, then Tor?,i5 (T, R) is not a free R-module. On the other hand, the
Koszul complex P @ A\°*(E* ® G) is a homogeneous resolution of the P-module R.
It follows that Tor?’,(T, R) may be computed as the graded homology of

Teor N (E*®G) = D.,., N(n,n,p).

The summand N (n,n,p) has homological position p and is part of the graded
summand of grade n + p. In other words,

(0.7) Tor) (T, R) = Hy(n,n,p). O

Corollary 0.8. Assume that e and g are both at least 5. If R is equal to Z,
then Har(2,2,3) and Hpaq(1,1,4) are not free R-modules. If R is a field, then the
dimension of Har(2,2,3), Har(1,1,4), Ham(2,2,3), and Haq(1,1,4) all depend on
the characteristic of R.

Proof. Hashimoto proved that if R = Z, then Tor§5(T, R), which is equal to

Har(2,2,3), has a summand of (Z/(3))Y, for some positive integer N. The com-
plexes

= N(1,1,4) - N(2,2,3) ... and - — M(2,2,3) &> M(1,1,4) — ...

are dual to one another. The only places in these complexes with non-zero homology
are the places labeled (2,2,3) or (1,1,4). The Euler characteristic of the homology
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of these complexes does not change when one changes the characteristic of the base
field. O

See [12, Chapt. 4] for more insight into the connection between the non-freeness
of Tor”, (T, R), when R is Z, and the dependence of Tor’, (T, R) on the characteristic
of R, when R is a field. One consequence of Corollary 0.8 is that the universal ring
R of (0.3) does not posses a generic minimal resolution over Z when e and g are
both at least 5; see [10, Thm. 6.3].

1. Duality inside the Cohen-Macaulay range.

We begin by summarizing and extending the ideas in the proof of Observation
0.6. Let E* and G be free modules of rank e and g, respectively, over the commu-
tative noetherian ring R. Let S be the ring S, E* ® S,G, T be the subring

T = ZSmE* ® S, G

of S, and for each integer ¢, let M, be the T-submodule

M, = Z SnE*® S,G

m—n=4£{

of S. Give S a grading by saying that S,,E* ® S,,G has grade n, for all m and n.
We see that T is a graded ring, and € M, is a direct sum decomposition of S into
graded T-submodules. Let P be the polynomial ring S,(E* ® G). The ring P is
graded; each element of S,,(E* ® G) is homogeneous of grade n. The identity map
on E* ® (G induces a graded ring homomorphism ¢ from P onto 7. Each graded
T-module is automatically a graded P-module.

Theorem 1.1. [Bruns and Guerrieri] Let R be an arbitrary commutative noether-
ian ring and fix £ with 1 —e < ¢ < g — 1. Adopt the above notation. The following
statements hold.

(a) The P-module M, is perfect of projective dimension c.

(b) The P-module M,_. is isomorphic to Extz(T,P).

(c) The P-modules My_._¢ and Exty (Mg, P) are isomorphic.

(d) If R is a field, then the Hilbert series of My is

2 () Ot

HMe(t) == (1 _ t)€+g—1

(e) IfF is a graded P-free resolution of My of length o, then F*[—a, g —eg| is graded
P-free resolution of My_._y. The shift —o is the homological shift. The other
shift is the shift as a graded module.

) fm+m'=g—1,n+n =e—1,p+p =a,andl —e<m—-n<g—1, then

HN(ma nap) = HM (m,anlapl)'

Remarks.
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(1) The present approach for proving (f) was suggested to the author by a referee
of an earlier version of this paper. Much appreciation is offered to the referee.

(2) If R is a field, then Hpr(m,n,p) and Hpq(m,n,p) are isomorphic for all triples
(m,n,p); consequently, in this situation, the conclusion of (f) could read

Hy (m, n,p) = Hy(m/, 0/, p').

Notice, however, that the most recent display is false over Z. The correct way
to express the result is given in (f).

Proof. Fix £ with 1 —e < ¢ < g — 1. Assume first that R is a field. Bruns and
Guerrieri [2, Cor. 3| proved that M, is a Cohen-Macaulay T-module. It is clear
that M, is faithful over T' and graded over P. It follows (see, for example, [4, Prop.
16.19]) that M, is a perfect P-module of projective dimension equal to

proj.dim.p, T' = grade I(Z) = «.

Now take R = Z. The module My is free over Z and M, ®y Z/(p) is a perfect
P ®z 7./ (p) module for all prime integers p. It follows (see, for example, [4, Thm.
3.3]) that M, is a perfect P-module. A very readable discussion of the divisor class
group of a normal domain may be found in [1]. The class group of T is known (see,
for example, [4, Cor. 8.4]) to be Z and [2] shows why n +— [M,] is an isomorphism
from Z — C¢(T'). The canonical class of T is [My_.], (see, for example, [4, Thm.
8.8]). A given divisorial class contains exactly one rank one reflexive T-module, up
to isomorphism; consequently, Ext(P,T) and M,_. are isomorphic as T-modules
and as P-modules. The arithmetic in the class group C/¢ (T) is given by

[Homyp (M, M,)] = [Mp—n)-

When £ is in the Cohen-Macaulay range, 1 —e < ¢ < g — 1, then Hom¢ (M, M,_.)
and M,_._¢ are both automatically reflexive; so,

My_c_¢ =2 Homp (M, My_.) = Homp (M, Ext% (T, P)) = Ext (M, P).

The right most isomorphism is Observation 0.4 with N and j taken to be 7" and
0, respectively. Keep in mind that there is no difference between a 7T-module
homomorphism and a P-module homomorphism of 7T-modules.

Let F be a length a resolution of M, by free P-modules. In this case, F* is
a resolution of M, _._,. The P-modules M, and M, _._, are generically perfect.
Use the transfer of perfection [4, Thm. 3.5] to see that F ®; R and F* ®; R are
free P ®z R resolutions of M, ® R and My_._, ® R for all commutative rings R.
Assertions (a), (b), and (c) are established in full generality.

The formula for Hyy,(t), from (d), when R is a field, is given in [2]. We have
shifted the indices to make the grading in M, be given by “the degree in G”. In
particular, the generators for M, live in degree zero when 0 </, but live in degree
—~¢, when ¢ < 0.

We now prove (e). It is clear that F*[—a, N] is a homogeneous resolution of
My_._¢, for some integer N. We must determine the value of N. The formula for
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Hyy,(t) in (d) continues to be meaningful for all choices of commutative noetherian
ring R. Recall that the graded module M, is equal to ) (M;y),, where the ho-
mogeneous summand of grade n is the free R-module (M), = S¢inE* ® S,G. It
follows that the given formula for Hyy, (t) is always equal to the formal power series

ZrankR(Mg)nt".

n

It is easy to calculate that
(1.2) Hag,__,(t) = (=1)°T97 179 Hay, (1/2).

One may read the rational function Hpy,(t) from the resolution F of M,. One
may also read Hys,_,_,(t) from the homogeneous resolution F*[—a, N] of My_._,.
Apply (1.2) to see that N = g — eg.

We prove (f). Fix £ = m —n. We know that M, and M,_._, are perfect P-
modules of projective dimension . Let [F be a resolution of M, of length o and let G
be the resolution F*[—a, g—eg] of My_._,. In other words, Go_p = F};[g—eg]. The
inclusion map R < P makes every graded P-module become a graded R-module.
Consider the double complex

De-* :*HOIIlR(IF R /\.(E* &® G),R),

with D% =*Hompg(F; ® N’ (E* ® G), R). Let T be the total complex of ID. The
proof consists of computing the cohomology of T in two different ways.

First, we focus on the column D*7, for some fixed j, with 0 < j < eg. We know
that 0 - F — M, — 0 is an exact complex of P-modules. Every module in this
complex is a free R-module; so, the complex is a split exact complex of R-modules.
It follows that

05For N (E*®G) > My N(E*®G) — 0

and
0 —*Homp(M; @z N (E* @ G),R) — D% — ... - D™ —

are split exact sequences of free R-modules. So, the only non-zero cohomology in the
column D*7 occurs at position zero and is equal to *Homg(M,; ®r A’ (E* ® G), R).
It follows that the cohomology of T is equal to the cohomology of the complex

0 —»*Homg(M; ®r N\°(E* ® @), R) —»*Homp (M, @z N'(E* ® G),R) — - - -
<o —>*H0mR(Mg QR /\eg(E* &® G),R) — 0.

Apply (0.5) to see that H”4(T) is equal to the cohomology of

Homp((Me @ AP~ (E* ® G))—g, R) — Homp((M; ® A (E* ® G))—y, R)
— Hompg((M; ® N°T'(E* ® Q))_,, R).
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Recall that the summand N (s +4, s,t) of the graded module M, ® A\*(E* ® G) has
grade s+ t. Recall also, that M(m,n,p) is the R-dual of N (m,n,p). We conclude
that

(1.3) HP4(T) = Hm(¢ — ¢ —p,—q — p,p).
Now we look at the i*" row D**® of . The Koszul complex
PRrN(E*®G): 0-=PRrAYE*®G) = - = Por N\ (E*®G) > R—0

is an exact sequence of P-modules, which is also a split exact sequence of R-modules.
It follows that
0> Feor N\ (E*®G)— F,er R—0

and
0 >*Hompg(F; ® R, R) — D0 5 ... 5 DI 5 ()

are split exact sequence of R-modules. The only non-zero cohomology in the row
D** of D occurs at position zero and is equal to *Hompg(F; ® R, R). Thus, the
cohomology of T is equal to the cohomology of the complex

0 =*Hompg(Fo ® R, R) »*Hompg(F1 ® R,R) — --- »*Hompg(F, ® R, R) — 0.

Notice that
*HomR(Fi ®Rp R, R) = HOIIIR(Fi ®p R, R)

because the graded R-modules F; ®p R and R are concentrated in grade zero.
Furthermore, the natural P-module homomorphism

Homp (F;, P) — Homp(F; ®p R, R),
which is given by ¢ — ¢ ® 1, induces an isomorphism
Homp(F;,P) ®p R = Hompg(F; ®p R, R).
Thus, the cohomology H??(T) is the cohomology of
(Fpo1 ® R)qg = (Fy, ® R)g — (Fjp 1 @ R)g-

We have seen that Fy = Go_pleg — g], where G is a homogeneous P-resolution of
Mg _c_p. It follows that

HPY(T) = Tora—p eg—grq(Mg—e—z, R).
The same thinking that led to (0.7) tells us that
(1.4) Tor} (Mg, R) = Hx' (¢ + ¢ — p,q — p, D).

We conclude that H?4(T) = Hy(9g—1—£+ g+ p,e — 1+ g+ p,a — p), and the
proof is completed by comparing this result with (1.3). O



KOSZUL COHOMOLOGY 9
2. Duality at the boundary of the Cohen-Macaulay range.

In Theorem 1.1 (f) we learned about the homology Has(m,n,p), provided the
parameters satisfy 1 —e < m —n < g — 1. The main result of the present section
is the following theorem.

Theorem 2.1. Assume that m — n is equal to either g or —e. The only non-zero
modules of the form Har(m,n,p) and Haq(m,n,p) appear in one of the split exact
sequences

0 — Hae(g,0,p') = A*(E® G*) = Hp(0,e,p) = 0, or
0 — Hat(0,e,9') = AP (E ® G*) = Hyr(g,0,p) = 0,

where p + p' = a — 1. All of the modules in the above eract sequences are free
modules.

We may use (1.4) to translate the above result into a statement about the ho-
mogeneous resolutions of the modules M, and M_. of Theorem 1.1. Recall that
P/I:(Z) = T is the determinantal ring defined by the 2 X 2 minors of a generic
e X g matrix Z over the commutative noetherian ring R. The set {M; | £ € Z} is a
family of rank one reflexive T-modules, with M, a perfect P-module of projective
dimension o, for 1 —e </ < g-—1.

Corollary 2.2. Adopt the language of Theorem 1.1.
(a) The projective dimension of the P-module M, is eg— g, and pdp M_, = eg —e.
(b) The homogeneous resolution of My by free P-modules is linear for £ equal to g
or —e.
(c) The betti numbers in the resolutions of (b) satisfy

Bt (M) + By (043) = (),

provided p + p' = eg — e — g. In particular,

€g
e(M_.) = ora<p<eg—e, and
IBP,P+ ( ) (e+p> [ p g

5p,p(Mg)=< 7 > fora<p<eg—g.

Remark. The argument in [2] shows that the eg — g is the projective dimension of
M, for all sufficiently large ¢. It is interesting to notice that the maximal possible
projective dimension is already attained at the least possible £.
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Examples 2.3. (a) If e = g = 3, then the betti numbers

Be,6(M3) =1
Bs,5(M3) =9
Ba,4(M3) = 36
Bo,3(M_3) =10 B3 3(M3) =74
Br,a(M_3) =45 [a2(M3) = 81
Bas(M_3) =81 [1,1(M3) =
Bs6(M_3) =74 [oo(Ms) =
Ba7(M_3) = 36
Bs8(M_3) =9
Beo(M_3) =1

are exhibited in [11, Ex. 5.5]. Notice that 10 + 74 = (3) and 45 + 81 = (}), as
expected.

(b) If e = 3 and g = 2, then the computer program Macaulay will quickly calculate
the betti numbers

Baa(Ma) =1
Bs,3(Ms) =6
BQ’Q(MQ) =15
Bos(M_3) =4 pr11(Mz) =16
Bra(M_3) =9 [oo(Mz) =6
Ba,5(M_3) =6
Ba6(M_3) =1

Once again, we see that 4 + 16 = (g) and 9+ 6 = (2), as expected.

The proof of Theorem 2.1 appears at the end of the section. We begin by giving
names to the complexes which first appeared as (0.1) and (0.2).

Definition 2.4. Fix integers P and Q. Let N(P, Q) be the complex
0> N(P—eg,Q—eg,eq) > ... > N(P-1,Q —1,1) = N(P,Q,0) = 0
and M(P, Q) be
0—> M(P,Q,0) > MP-1,Q—-1,1) > ... > M(P —eg,Q — eg,eg) — 0.
The module N (P,Q,0) is in position zero in N(P,Q); M(P,Q,0) is in position
P+ Q+1in M(P,Q). The differential N'(m,n,p) - N(m +1,n+ 1,p— 1) sends
UQY @ (u1 Y1) Ao A (up ®yp)

o —

= (DU @ueY @ (ur @ y1) A A (Ue @ yi) A A (Up ® gp).

Remarks 2.5.
(a) The module N (m,n,p) is equal to [N(P,Q)]; if i = p, Q = n+p, and P = m+p.
(b) The module M(m,n,p) is equal to [M(P,Q)]; ifi=m+n+p+1, Q =n+p,
and P =m+ p.
(c) The graded complexes N(P,Q)*[—(P + Q + 1)] and M(P,Q) are isomorphic,
where __* is the functor Hompg(__, R).
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Lemma 2.6. If Q = P + e, then the homology of N(P, Q) and the cohomology of
M(P,Q) are free and concentrated in position (0,e, P). If P = g+ Q, then the
homology of N(P, Q) and the cohomology of M(P,Q) are free and concentrated in
position (g,0,Q).

Proof. We prove that @ = P + e implies that the homology of N(P, Q) is concen-
trated in Har(0, e, P). The proof is by induction on the rank of G. If G has rank
one, then N(P, @) is the Koszul complex

0 SoE*@N E*— - > SpE* @ \" E* — 0,

and the assertion is clear. For GG of large rank, decompose G as G ® Rz. Form the
modules N (m, n,p) and the complexes N(P, Q) using the rank g — 1 free module G
in place of G. Multiplication z: S,,_1G — S,,G gives a short exact sequence

0— N(m,n—1,p) = N(m,n,p) —)Z/\A/’(m,n,p—ﬁ)@/\zE* -0
£

of modules, which induces a short exact sequence of complexes

0-NP,Q-1)=NP,Q) =Y NP-£,Q-0)® N\ E*—0.
b4

Part (f) of Theorem 1.1 shows that the homology of N(P, @ — 1) is concentrated in
Hx (0,e—1, P). Induction on g shows that the homology of N(P—£,Q — ) ® /\e E*
is concentrated at Hpr(0,e, P — {) ® /\(f E*. The long exact sequence of homology
completes the proof.

The homology of the complex N(P, P + e), which is equal to Hxr(0, e, P), is
a submodule of the free module N (0,e, P). The complex N(P, P + €), over the
arbitrary ring R, is obtained from the complex N(P, P + e), over the ring Z, by
way of a base change. It follows that, for any commutative noetherian ring R,
Har(0, e, P) is a free module R-module and N(P, P + e) is the direct sum of a split
exact sequence plus Har(0, e, P). The analogous result about N(g + @, Q) may be
obtained using similar methods. The assertions about the complexes M(P, Q) then
follow using Remark 2.5 (¢). O

Lemma 2.6 proves most of Theorem 2.1. To finish the proof, we consider com-
plexes €%P which concatenate N(p,p + €¢) and M(p’ + g,p’). The complexes are
introduced in Definition 2.9. The relevant maps are in Definition 2.8. Every free
R-module that we consider is oriented; in the sense that, if F' is a free module of
rank f, then wp is the name of our preferred generator for /\f F'. The orientations
of F and F* are always compatible in the sense that wr(wp+) = 1 and wp« (wr) = 1.

Notation 2.7. Let m be an integer. Each pair of elements (U,Y), with U € D,, E
and Y € \™ G*, gives rise to an element of \"(E ® G*), which we denote by
U Y. We now give the definition of U > Y. Consider the composition

DpnE ® TpG* 224 T, E® T,,G* % \™(E ® G¥),
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wherezp((Ul®...®Um)®(Yl®...®Ym)> — (UL QY1) A ... A (Upn & Yy), for

U; € E and Y; € G*. 1t is easy to see that the above composition factors through
D, ,E®N"G*. Let URY + U <Y be the resulting map from D,,E® \™ G* to
A" (E ® G*). Notice, for example, that if u € E and Y; € G*, then

™ (VA AY ) =w®Y)A...A(u® Yy).
The map
A™ E® DnG* — N™(E® G*),

which sends U ®Y to U Y, for U € A" E and Y € D,,G*, is defined in a
completely analogous manner.

Definition 2.8. Fix an integer p. Define p’ by p + p’ = a — 1. Define homomor-
phisms
v M(0,e,p) > NP (E® G7),
v: M(g,0,p) = N“P(E© G*),
r': N°(E®G*) = N(g,0,p' +¢€), and
T': ANP(E®G*) = N(0,e,p’ + g)-

A
A

_)
_>
_>

fl1®Y ®Zisin M(0,e,p) and U ® 1® Z is in M(g,0,p), then
Y1®Y ®Z)=(wg><Y)AZ and y({U®1® Z)= (U xwg~) A Z.

If Z is in A\”(E ® G*), then I'(Z) is the element of N'(g,0,p’ +e€) (or N(0,e,p" +g),
respectively) with

[L(2)UT) = V(T) A Z)(we+ea)
for all T in M(g,0,p" +¢e) (or M(0,e,p’ + g), respectively).

Definition 2.9. Fix an integer p. Define p’ by p + p’ = a — 1. Define €%P to be
the complex

0— M(p +g,p/,0) = - = M(g,0,p') > N"T(E © G*)

£)'/\/'(anap) — —>N(p,p+e,0) — 0,
with A (p,p + e,0) in position zero. Define €¢T9P+9 to be the complex

0= M@, p +e0) = - — M(0,e,p) L AN TEGY)

E)N(g,O,p)—)—)N(p-i—g,p,O)—)O,

with M(p + g,p,0) is position zero.

Remark 2.10. The right side of €%P is equal to N(p,p + €). The left side of €% is

equal to a shift of Mi(p’ + g,p’). The complexes €%P and ¢etor'+9" are isomorphic
to one another (after an appropriate shift). Observation 2.11 shows that €™ is a
complex for all integers s when r =0 or e + g.
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Observation 2.11. IfY € D.G* and U € DyE, then
(wg >X<Y)A (U x<wgx)

is equal to zero in N\T(E ® G*).

Proof. 1t suffices to prove the result when the base ring is the ring of integers. In
light of Lemma 2.12, we may assume that U = u(9) and Y = y(®) for some non-zero
u € E and y € G*. There exists v € E*, with v(u) not equal to zero. Use the
identity u A v(wg) = [u(v)](wg) to see that v(u) times the indicated expression is

(uAv(wg) > y@) A @ xwg)
= (-1 (v(wn) y ) A @I sy Awe-]) =0. O

The next result is well-known. One proof of it appears in [10].

Lemma 2.12. Suppose R is a polynomial ring over the ring of integers, E and
G are free R—modules, and ¢: Dy, E — G is an R—module homomorphism. If
o(u™) =0 for all u € E, then ¢ is identically zero.

In Lemma 2.17 we prove that the complex €¢T9P*9 is exact at N(g,0,p) by
taking advantage of the enormous homogeneity of the maps of the Koszul complex
N(p + ¢,p). Fix a basis z1,...,z, for G. In Observation 2.16 we show that the
complex N(p + g,p) decomposes into a direct sum of subcomplexes, one for each
monomial of degree p in the variables z1,...,z,. We set up the notation in 2.13 —
2.15.

Definition 2.13. Let ¢ = (¢1,...,¢qy) be a g-tuple of integers.

g
(a) Let |g| represent > g;.
=1
(b) Let A\? E* represent A" E* ® ---®@ A\ E*.
(c) For each integer a, let N(a;q) be the free module S,E* ® \? E*.
(d) The differential d; carries N(a;b_,bg,by) to N(a + 1;b—,b — 1,by) by way of
the following composition:

N(a,b) 1229 5. o \'- E* @ B* © A" E* @ \P E* 2225

« mult®1

SEQE QN-E* o \* 'E*o \*E N(a+1;b_, by — 1,b),
for b_ = (b1,...,bk—1) and by = (bgy1,...,by). The rearrangement map
p: N\~ E*® E* - E* @ \~ E*
sends V ® v to (—1)*~lv @ V, where V € /\b‘ E* and v € E*; and
mult: S,E* ® E* — S, 1 E*

is multiplication in the symmetric algebra S E*.
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Definition 2.14. Let K[E*, g] be the generalized Koszul complex
_>KJ _>Kj—1 — e

where K; is the free module K; = @ N(a;b). The sum is taken over all integers a
and all g-tuples of integers, b, with |b| = j. The differential of K[E*, g] is >7_; Ox-

Definition 2.15. For each integer P and each g-tuple g, let K[E*, g, P;q] be the
following subcomplex of K[E*, g]:

KIE*, g, P;q] = €D N(a;).

The sum is taken over all g + 1 tuples (a;b) with a + |b| = P, and b; < g; for
1<1<g.

Observation 2.16. If P and () are integers, then

where the sum is taken over all g-tuples q¢ with |q| = Q

Proof. For each g-tuple of integers ¢ = (qi1,...,q4) with |g| = @, let 22 be the
monomial £ - - - 22?, of degree Q, in S,G, let N[z?] represent the subcomplex which
consists of all elements of N(P, ) which involve exactly g1 z1’s, g2 z2’s, etc. Observe
that N(P, Q) is equal to the direct sum of the subcomplexes ®N[z?], as z? varies
over the monomials of degree @. It is not difficult to see that N[z?] is isomorphic
to the subcomplex K[E*, g, P;q| of K[E*, g]. Indeed, the isomorphism

E: K[E*, g, P;q] — N[z?]
sends the element V@ Vi ® ... ® V, in N(a;b) to the element

Ve w‘{l_bl . .wgg_bg ) (Vl > ;Ijgbl)) FANAN (Vg X ingg)) € N(CL,Q - |b|a |b|) O

Lemma 2.17. If fori = p or i = p + 2, then H;(€%P?) and H;(€°t9P+9) are both
zero.

Proof. We prove
(2.18) APY9(E* ® G) =% N(g,0,p) = N(g+1,1,p— 1)

is exact. A similar argument takes care of H,(€%?). Duality completes the proof.
We know, from Observation 2.16 that = gives an isomorphism from

> (N(g;p) RLLN > N(g+1p _Ek)>

p k

to N(g,0,p) > N(g+1,1,p—1), where }_ is taken over all g-tuples p with [p| = p.
P
Fix p with [p| = p. Lemma 2.20 tells us that = gives a map of complexes from

§10---084
(2.19) N(O;p+ > er) ——> N(g,p) > »_N(g+ 1;p— &%)
to (2.18). Lemma 2.22 shows that (2.19) is exact. O
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Lemma 2.20. Ifp is a g-tuple, with |p| = p, then the diagram

61 O--'O(sg

N(@O;pr +1,...,py+ 1) N(g;p)

=| =|

/\P+Q(E* ® G)

—
A PUERG) —— N(g,0,p)

commutes up to sign.

Proof. Take T = U ®1® Z € M(g,0,p) and S € N(O;p1 +1,...,pys+1). We
compare

A=[Eodio--08)(S)I(T) and B= T ([E(S)(wrsc-))]| (T).
We see that A =+7 ((U ®1®1)|[(Eodio---0 69)(5)]>. It is clear that

(2.21) U®101)[(Eo0dyo--08,)(S)] ==+ ((U > wee ) © 5) (S).

Indeed, one may test this formula at U = u¥) foru e Fand S=V1 ® ... ® Vy. In

this case, each side of (2.21) is equal to +u(Vy) < xﬁpl) Ao Au(Vy) m_,(]pg). It
follows that A is equal to

+[(U s we-) A Z)(E(S)) = £(T)I(E(S))
=+ [4(1) A (B wsse) ) | (@s-e6),

and this is equal to +B. [

Lemma 2.22. Fiz an integer w and a g-tuple of integers q. Let € be the g-tuple
(0,...,0,1,0...,0) with the 1 in position k. FEach sum is taken over all k, with
1<k<g.

(a) If g < w, then the complex

(51 0---0(59

Nw—g;g+ Y er) 2227 N(w;q) =2 S N(w + 1;q — ex)

s exact.
(b) If 1 < w, then the complex

6 50...069
Y N(w—1;q + &) &)N(w;q) ——5 N(w+g;9 — Y €x)

18 exact.

Remark. Assertion (a) is false if w < g — 1 and assertion (b) is false if w = 0, since
the complexes

0 —» N(w;q1,0,...,0) > N(w+1;¢1 — 1,0,...,0)
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and 0 — N(0;0,...,0) — 0 are not exact.

Proof. The result holds when g = 1. We complete the proof by induction on g and
gg- We assume that the results hold at g —1 for all g1,...,g4—1 and at g and g5 — 1
for all q1,...,qg—1-

We now prove that (b) holds at g and g,. We start with A € N(w;q1,...,qy),
1 <w, and d10...0684(A) =0. Apply (a) at gg —1 to d2 0...09,4(A) to find B
with 1 0...064(B) =d20...00,(A). Observe that A & 61(B) € kerda 0...04,
since 6;0; + d,;0; = 0. Use assertion (b) at g — 1 to complete the argument.

We now prove (a) at g and g,. We start with A € N(w;q1,...,94), 9 < w, and
drA = 0 for all k. Apply (a) at g — 1. We see that dx(A) =0for 1 <k <g-—-1
and g —1 < w. So, there exists B with §;0...06,_1B = A. Use (b) at g, to find
Bi,...,By with ) 6x(Bx) = B. It follows that A =61 0...94(By), as desired. [

At this point we know that the homology of the the complex ¢%P is free and
is concentrated in one position. The next result is the final step in our proof of
Theorem 2.1.

Lemma 2.23. If p is an integer, then the complezes %P and €*19P+9 eqch have
Euler charateristic equal to zero.

Proof. Remark 2.10 shows that it suffices to prove the result for €%P. Let p’ =
a — 1 — p. We prove that (pe_fe) = A+ B, for

P
A= Z(—l)irankM(g—i—i,i,p' —1), and

B = Z ) rank N (i, e +4,p — i).

It is not difficult to see that

A= E (—1)i<g+z+6_1><g+z_1>< ¢9 > and
vy e—1 g-—1 g+p+ett

B <e+z—1><g+e+i—1)<eg>
Zoq e+1 p—i)

The binomial coefficient (}) is defined for all integers a and b; see [8] or [9] for more
details and elementary results. We have A = A; + As, with

(g+i+e—1\[(g+i—1 eg
A = -1) d
SE (I ) (T =
(g+it+e—1 g—{—i—l)( eg )
Ay = — ST (=1) .
2 2 ( )< e—1 )< g—1 J\g+p+e+i

i<—1

Apply Lemma 2.24 with m replaced by g+p+e+i,abyeg, zby -p—e—1,p
by g—1, w by —p—1, and ¢ by e — 1, to get

w=r S5O
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A term in A; is zero unless 0 < g—1—/fand 0 < e—1—eg + £. That is, the
non-zero terms of A; have

(g—1D+1<e(g—1)+1=eg—e+1<t<g-—1;

hence, A; is zero. In As, if —g+ 1 < ¢ < —1, then the middle binomial coefficient
is zero; if © = —g, then the resulting term in A, is ( cJ ); if —g—e+1<i<—g-—1,

pte
then the first binomial coefficient is zero. It follows that A = (p‘fe) + A’, for
U Z (_1)i<g+i+e—1><g+i—1>< eg )
e—1 g—1 g+p+e+i

i<—g—e

(—1)b(b_‘g_1), which holds for all integers a and b, to see

; —g—1—1\[(—1—1 eg
= 2 o CIT)GE) a e
Z() e—1 g—1 gt+tptett

i<—g—e

Use the identity, (})
that

The parameters —g — ¢ — 1 and —i — 1 are non-negative; thus,
; —g—t1—1\[—1—1 eg
Al = Z (_1)1—|—e+g+1 .
<o —g—i1—eJ\—t—g/\g+pt+e+i
Replace i by —e —g—j toget A+ B=0,and A+ B = (p‘ffe), as desired. [

Lemma 2.24. Let a, z, p, w, and c be integers with 0 < a. Then

S ) =R () )

MmeEZ

Proof. 1f a = 0, then both sides of the equation equal (;) (Z’) If 1 < a, then Pascal’s
identity, which holds for all integers, gives that the left side is 77 + T», with

e S ()

meZ

=S e () (") ()

mEZ
Induction on a gives

n-co (7)) () (v, ) e

LEZ

n=cy () (L)
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Apply Pascal’s identity again to write Tp = Ty + T/, where

=0 (7)) (") (el e

LEZ

w-co ()T

=2 () G5

Apply Pascal’s identity to the third binomial coefficient to see that Ty + T is
2

26

Finally, we apply Pascal’s identity to the middle binomial coefficient in (77 +T7%)+T%’
to complete the proof. [

Proof of Theorem 2.1. 1t suffices to prove the result when R = 7Z; the general case
follows by way of a base change. Fix p and p’. Let € = ¢%?, Lemma 2.6 shows
that

(2.25) 0 — Hp(g,0,0') — NP H9(E ® G*) — Hp(0,e,p) — 0

is a complex of free modules which is homologically equivalent to €. Lemma 2.17
shows that

N H(E® G*) = Hy(0, e, p)

is a surjection; hence, a split surjection. The map
M(g,0,p") — /\p/+g(E ®G*) isdualto APT(E®G*) = N(g,0,p);

s0, Ha(g,0,p') — AP 9(E ® G*) in (2.25) is a split injection. It follows that
the homology of (2.25) is concentrated in the middle and is equal to Hpyq(€).
Furthermore, the complexes

0— Hp+1 (Q:) — 0,

(2.25), and € all are complexes of free modules with the same Euler characteristic,
which by Lemma, 2.23 is zero. A dual calculation may be applied to €¢+t9-P+9, ]

One by-product of our proof of Theorem 2.1 is the following result which is used
as the base case in [11] where an explicit quasi-isomorphism

M(PaQ)_)N(eg_e_Paeg_g_Q)[a_1_P_Q]

is given, provided 1—e < P—(Q) < g—1. This quasi-isomorphism yields an alternate
proof of Theorem 1.1 (f).

Corollary 2.26. For each integer p, the complexes €%P and €*t9Pt9 are split
exact.
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3. Splittable complexes.

In some calculations it is advantageous to assume that the base ring is Z. The
results of the present section enable us to pass conclusions to arbitrary base rings.
The results of this section are well-known and/or obvious; it is convenient to have
a careful record of them.

Definition 3.1. The complex L is splittable if L is the direct sum of two sub-
complexes " and L', with L' split exact, and the differential on L.” identically
ZEro.

Proposition 3.2. IfF is a bounded complex of projective modules, then IF is split-
table if and only if H;(IF) s projective for all j.

Proof. Suppose F is equal to the direct sum of the two subcomplexes I.” and L
with I split exact and the differential on I/ identically zero. The short exact
sequence of complexes 0 — I/ — F — L’ — 0 shows that H,(F) is equal to the
projective module L;-' for all 5. We prove the converse by induction on the least
integer ¢ with H; # 0. We know that

. d;_ d;_
0—>1mdi—>Fi_1 —1>Fi_2 —2)

is a split exact complex; hence, in particular, im d; is a projective module. We know
that
0 — kerd; —» F; —imd; — 0

is a split exact sequence. Let v: imd; — F; be a retract of d; : F; — imd;. We
have F; = kerd; @ im~y. We know that

0— imdi_H — kerdi — H,L(]F) —0

is exact with the two right most modules projective; hence, this short exact sequence
splits and imd;y; is a projective module. Let +': H;(F) — kerd; be a retract of
ker d; — H;(F). We have

F; =kerd; ®im~y =imd;;; ®im~' ®im+.

Observe that [F is the direct sum of the following three complexes. Each is a complex
of projective modules.

---—>Fi+2—>Fi+1—>imdi+1—>0
0—)im’)’—)FZ’_1—>E_2—>...
0—imvy — 0

The bottom complex has zero differential. The middle complex is split exact.
The induction hypothesis applies to the top complex because its i*® homology is
zero. Thus, each complex is splittable and the direct sum of splittable complexes
is splittable. [J
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Corollary 3.3. Let F be a bounded complex of projective R-modules and S be an
R-algebra.

(a) IfF is splittable, then F* and F ®g S are splittable.

(b) If H;(F) is free for all j, then H;(IF*) and H;(F ®r S) are free for all j.

Proof. In each case F is the direct sum of complexes I and ", with I/ split exact
and the differential of I/ identically zero. It is clear that I.”* and ' ® S are split
exact and that I and I ® S have zero differential. Furthermore, if LY is free,
then so are Li* and L7 ® S. [

Observation 3.4. Let F be a bounded complex of projective modules. If H;(F) is

d; d; ,
zero for j < i, then the complez 0 — coker(d} ;) —— Fj,y — > Ff\s — ... isa

complex of projective modules which has the same homology as F*.

Proof. This result is well known. We record only a few details from the proof. The
hypothesis ensures the existence of homotopy maps s;: F; — Fji1, which satisfy
dj+1 085 + sj_1 0 d; is the identity on Fj, for j < i. One may form the dual of
these equations. In particular, d;,; o s; od;, ; = d, ;. It follows that F , is equal
to the direct sum imd;, ; ® kerd},, o s;; and therefore, cokerd;, , is a projective
module. [J

In the next result we apply Observation 3.4 to the complexes N(P, Q) and
M(P, Q) of Definition 2.4. The hypothesis in (a) concerns the right side of N(P, Q)
and the conclusion is about the left side of M(P, Q).

Corollary 3.5. Fiz integers m, n, and p.

(a) If Hy(m+q,n+q,p—q) = 0 for all positive q, then Hyq(m+q,n+q,p—q) =0
for all positive q. Furthermore, if the base ring is Z, then Haq(m,n,p) is a free
module.

(b) IfHp(m—q,n—q,p+q) =0 for all positive q, then Hyr(m —q,n—q,p+q) =0
for all positive q. Furthermore, if the base ring is Z, then Har(m,n,p) is a free
module.

Proof. The statements are dual to one another. We prove (a). Let P = m + p and
Q = n+p. We are told that the homology of the complex N(P, Q) is zero at all
positions to the right of AN'(m,n,p). Apply Observation 3.4 to see that the complex

M(m,n,p)
im(M(m+1,n+1,p—1))
is a complex of projective modules which has the same homology as the complex

M(P, Q). If the base ring is Z, then Hxq(m,n,p) is a submodule of a finitely
generated projective Z-module; and is therefore free. [

Corollary 3.6. If the complezes N(P, Q) and M(P, Q) both have all of their homol-
ogy concentrated in position (m,n,p), then the homology of N(P,Q) and M(P, Q)
18 free.

0—

- Mm—-1n—-1,p+1)—...

Proof. In light of Corollary 3.3, we may assume that the base ring is Z. We know
that Har(m + q,n + ¢,p — q) = 0 for all positive g. Corollary 3.5 reminds us that
Ha(m,n,p) is a free module; thus, all of the homology of M(P, Q) is free and
Corollary 3.3 guarantees that the homology of N(P, Q) is also free. [
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4. The case e = 2.

In this section we use the Eagon-Northcott and Buchsbaum-Rim complexes to
calculate the homology of the complex (0.1) when e = 2. The case g = 2 may be
treated in analogous manner. Once one knows that the homology of the complex
N(P, Q) is free, then one also knows that the homology of M(P, Q) is also free by
Corollary 3.3.

Theorem 4.1. If e = 2, and P and @ are integers with QQ — 2 < P, then the
complez N(P, Q) has free homology.
(a) If P = Q — 2, then the homology of N(P, Q) is concentrated in position (0,2, P)
and has rank (P+2) (P+3) (P+2)
(b) If @ —1 < P <2Q — 2, then the homology of N(P, Q) is concentrated in position
(P—Q+1,1,Q — 1) and has rank (2Q — 1 — P)(g)
(¢) If P=2Q — 1, then N(P,Q) is split exact.
(d) If2Q < P, then the homology of N(P, Q) is concentrated in position (P—Q,0, Q)
and has rank (P — 2Q + 1) (é’?)

Proof. Theorem 2.1, together with (d), takes care of (a). Henceforth, the param-
eters (P, Q) satisfy —1 < P — Q. The p** homology of N(P,Q) is also called
Hp (P —p,@Q — p,p) and, by (1.4), this homology is equal to TorZ:Q (Mp_g, R), in
the notation which is given at the beginning of section 1. The ring T' = P/I2(¢p)
is defined by the 2 x 2 minors of a 2 X g matrix of indeterminates. The minimal
homogeneous P resolution C¢ of M, is known (see, for example, [5, Thm. A2.10])

for all £ with —1 < £. Let E = E®r7P, G = G®grP, and @: G—)Ebethemap
which is defined by
vel)pz1l)]=vxeP

for all v € E* and = € G. Notice that the matrix for , with respect to the bases
z1®1,...,2,®1 and u; ® 1,up ® 1, for G and E respectively, is the 2 x g matrix
Z of Observatlon 0.6. The entry of Z in row ¢ column j is the indeterminate z;;
which is equal to the element v; ® z; of P = S.(E* ® G), where vy, v, is the basis
for E* which is dual to the basis uq, us for E. The resolution C* is

0Dy 1 E*QNG— - = DE*® \'G, forf=—1,
0= Dy 2E*QNG— ...
o D E*QNTPG 5 SHEQNG— - SSEQNG, for0<£<g—1,
0—>Se_gE®/\gé—)"'—>SgE’®/\Oé, forg—1<V/.

The augmentation map P — Mo = T is the map ¢ of Observation 0.6. The
augmentation map £ = EQr P — M, is

u® f = (u(we) ®1) - ¢(f).

The multiplication takes place in § = S¢(E*) ® S¢G. Recall that M; is the sub-
module ) S,11E* ® S,G of S. If 2 < /, then the augmentation map from

%E’ — M, is induced by the augmentation from C' to M;. The augmentation
G=GRrP—->M_j1isz® f— (1) ¢(f).



22 ANDREW R. KUSTIN

Each map in each C¢, with —1 < ¢, is linear everywhere, except
DoE*@ NG — SoE@ NG

has degree two. In other words, if C* is -+ — C; — Cp, with C,, = Do P(—Q)Pra,
then the summand Sg_pE ® NP G of C! is P(—p)Pr», and DQ_g_le?* @ N°G is
P(—Q)Pe-1.2. This grading holds for £ = —1 because the generators 1@z, of M_;
all have degree 1. See, for example, the proof of Theorem 1.1 (d).

We see that differential in each complex C¢!®p R is identically equal to zero. Also,
E®pR = E and G®p R = G. It is clear that if =1 < P—Q, then Tor} o (Mp_q, R)
is the free R-module

SpqpE®@N'G, ifp=Qandp<P-Q,
Dayg-p2E*@ \°G, ifp=Q—1land P—Q+1<p,

0, otherwise. [

5. Vanishing results.

Corollaries 5.1 and 5.2 and Theorem 5.7 are all used in [10]. Theorem 5.4 is the
main new result in the section. Everything else is a consequence of Theorem 1.1 or
2.1.

Corollary 5.1.

(a) Assumel—e< P—-Q <g-—1. Ifeithereg—g+1<Q oreg—e+1< P, then
M(P, Q) and N(P,Q) are split ezact.

(b) IfQ = e+P, then M(P, Q) and N(P, Q) have free homology which is concentrated
in position (0, e, P); furthermore, if eg +1 < Q, then M(P, Q) and N(P,Q) are
split exact.

(c) If g+ Q = P, then the extended complex M(P, Q), which is defined to be

has free homology which is concentrated in the position of /\g+Q (E® G*); fur-
thermore, if a < @, then M(P, Q) is split exact.

Proof. Theorem 1.1 (f) and Remark 2.5 tell us that if 1 —e < P — Q < g — 1, then
H;(N(P, Q)) = Hy (M(P", Q")),

provided P+ P' =eg—e, Q+Q =eg—g,and i =i+eg— P —(Q. Assertion (a) is
now obvious. The other two assertions follow immediately from Theorem 2.1. [

Corollary 5.2. Fix integers m, n, and p. Let P =m+p and Q = n+p. Assume
that 1 —e < P — Q@ < g — 1. Consider the truncation

T O%M(PaQaO)_)_)M(manap)_)()
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of M(P,Q). If g— 1 < m ore—1<mn, then ¥ has free homology concentrated in
position (m,n,p).

Proof. In light of Corollary 3.3, we may take the base ring to be Z. Apply Theorem
1.1 (f) to the complex N(P, @) to see that

Hy(m+gn+q¢p—q =Huy(g-1-m—-—qe—1—-n—qa—p+q)

for all integers q. If q is positive, then the hypothesis on the size of m or n ensures
that Hyr(m + q,n + ¢,p — q) is zero. Apply Corollary 3.5 (a). O

The idea behind the decomposition of M(P,Q) in 5.3, is similar to the idea
behind N(P, Q) = ®&N[z?], from Observation 2.16.

Notation 5.3. Fix bases
z1,...,%4 for G; y1,...,yq for G*; uy,...,u. for E; and vy, ...,v, for E*,

with {z;} dual to {y;}, and {u;} dual to {v;}. Let N be a monomial of degree
m+pin uy,...,u. and let M be a monomial of degree n+p in yy,...,y,. f N =

ut . ube and M =yt - yo?, then define M(m, n,p)|n,m to be the submodule
of M(m,n,p) which consists of those elements which are homogeneous of degree
¢; in u; and of degree A; in y; for all ¢ and all j. The submodules M(m,n,p)|n
and M(m,n,p)|m, homogeneous in just the {u;} or just the {y;}, are defined in
an analogous manner. The differential of M is homogeneous in the w’s and y’s;
and therefore, the complex M(P, Q) naturally decomposes into a direct sum of
subcomplexes M(P, Q)|n,ar, where the sum is taken over all monomials N and M
of degree P and @, respectively. Take Haq(m,n,p)|n,pm to mean the homology of
the complex M(m + p,n + p)|n,pm at M(m,n,p)|n . We see that Haq(m,n,p) is

equal to EBN,M Hum(m,n,p)|n,m-

Theorem 5.4. Let m, n, and p be integers.
(a) If ng—n+1<p, then Hyp(0,n,p) = 0.
(b) If me —m+ 1 < p, then Hxq(m,0,p) = 0.
(c) Ife+g—2<p, then Hy(1,1,p) = 0.

Proof. We prove (b) and (c) using the same set up, in (c) we take m = 1. Let
N = ufl -+~ u’e be a monomial of degree p+m. There is an index i with e/; < p+m.
For notational convenience, we say that i = e. Let £ represent £., N = N/u., and
N = N/u! . Consider the short exact sequence of complexes

L M(m+1,1,p— )| ®N G ——— M(m,0,p— 0|3 N G ——— 0

| o]

4 M(malap_ 1)|N —_— M(m_ 1a0ap)|N — 0,

where each module M is formed using the free module E = Ru1 ®...® Rue_1 in
place of E. The map “v.” represents v, ® 1 ® 1 and the map “incl” sends T'® w to

T A [ug) > w).
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The assertion in (b) is obvious if e = 1 or m = 0. Henceforth, we take 2 < e and
1 < m. Induction on m ensures that Hxq(m — 1,0,p) = 0. Observe that

me—1)—m+1<p—~.
There is nothing to prove if £ < m. If m + 1 </, then
mle—1)—m+1<({l—-1)(e—1)—m+1=Fe—m)—L+(2—¢e)<p—L

Induction on e gives H \(m,0,p — £) = 0. The long exact sequence of homology
yields that Haq(m,0,p)|n = 0. The proof of (b) is complete. Assertion (a) follows
by symmetry. We prove (c). If g = 1, then the result is obvious. Henceforth, we
assume that 2 < g. The statement is symmetric in e and g; so, without loss of
generality, we may assume g < e. Consider the short exact sequence of complexes
which is analogous the the above short exact sequence but has M(1,1,p)|n in the
place of M(m+1,1,p—1)|n. Apply (a) to see that Hx(0,1,p) = 0. Observe that

(e—1)+g—2<p—L
There is nothing to prove if £ < 1. If 2 </, then
et+g—3+£0<2ee—-3+4<le—1<np.

The middle inequality holds because 0 < (/—2)(e—1). We may now apply induction
to see that H (1,1,p — £) = 0. The long exact sequence of homology yields that
HM(lalap)|N =0. O

Remark. The constraints in Theorem 5.4 are necessary, at least in the base cases.
In (a),if g = 2,n = e—1, and ng—n = p, then Theorem 1.1 (f) shows Hp,(0,n,p) =
Hpr(1,0,0) # 0. In (¢), if g = 2 and e + g — 3 = p, then Hx(1,1,p) is isomorphic
to Har(0,e — 2,0) # 0.

Observation 5.5. If M(P,Q) has free homology when rank E = P and rank G =

Q, then M(P,Q) has free homology for all e and g. If Hp(m,n,p) = 0 when
rank E = m + p and rank G = n + p, then Hyq(m,n,p) = 0 for all e and g.

Proof. We saw in 5.3 that M(P, Q) is a direct sum of subcomplexes of the form
M(P,Q)|n,m where N is a monomial of degree P in S, E and and M is a monomial
of degree ) in S,G*. [

Observation 5.6. For each integer p, there are isomorphisms

Hu(0,1,p) = S,E @ NPT G*, Hp(1,0,p) 2 AP E ® 5,G7,
Hpr(0,1,p) 2 D, E* @ NPT G, and Hu(1,0,p) = AP E* @ D,G.

Proof. We establish the isomorphism which is listed first. The others follow by
symmetry and duality. We define a homomorphism p: M(0,1,p) — S,E® A’ g
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by describing the action of p(1 ® y ® Z), for y € G* and Z € A\P(E ® G*), on the
arbitrary element V ® X of D,E* @ APT" G. We define

p(ley® Z2)[Ve X]=Z]V~xy(X)] €R.
It is easy to see that
M(1,2,p—1) = M(0,1,p) & S,E@ NPT G* = 0
is a complex. Also, in the language of 5.3, it is easy to see that

PL®Yi,, ® (uj, ui) Ao Ay, ®Yi,)) = (uj, - uj,) @ (Yiy Ao Ay iy ),

(u®y)[V > X' = u(V) pay(X’),

forue E,y € G,V € D,E*, and X’ € APG. The most recent claim may be
verified by checking it at V' = v(P) as v varies over E*. It follows that p is surjective.
Finally, it is not difficult to see that M(0,1,p)/im(M(1,2,p — 1)) is generated by

{1®yip+1®(uj1®yi1)/\"'/\(ujp ®yip)|i1<"'<ip+1 and ]1§§JP}

Thus, p carries a generating set for Ha((0,1,p) onto a basis for S,E ® A’ g,
and therefore, p induces the desired isomorphism. [J

In the next result we gather a large amount of information about the homology
of the complexes M(P, Q) and N(P, Q) into one place. Notice we need to prove
only one eighth of what we state. First of all, as soon as we prove that M(P, Q)
has free homology, then N(P, Q)) automatically also has free homology by Corollary
3.3. Secondly, a valid statement remains valid if the roles of P and () are reversed,
along with the roles of e and g. Finally, as soon as we identify the homology
of M(P,Q), then by Theorem 1.1 (f), we have also identified the homology of
N(eg —e— P,eg—g— Q). Indeed, an alternate method for proving Theorem 1.1 (f)
is to exhibit a quasi-isomorphism

M:M(P,Q) > Neg—e— Peg—g—Q)la—1—P —Q)].

This approach is carried out in [11].

Theorem 5.7. Let M = M(P,Q) and N = N(P,Q) for integers P and Q which
satisfyl —e<P-Q <g—1.

(1) If (P,Q) is equal to (1,1) or (eg —e — 1,eg — g — 1), then M and N are split
ezact.

(2) If2 < P =@ < 4, then M and N have free homology concentrated at spot
(1,1,P —1).

(3) If2<eg—e—P =eg—g—Q < 4, then Ml and N have free homology concentrated
at spot (9 —2,e—2,P — g+ 2).

(4) If2Q — 1 < P, then M and N have free homology concentrated at spot

(P - Q7 07 Q)
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(5) If 2P — 1 < Q, then M and N have free homology concentrated at spot
(0,Q — P, P).

(6) Ifeg—2g+e—1<2Q — P, then M and N have free homology concentrated at
spot (P—Q—1+ee—1,Q+1—e).

(7) Ifeg—2e+g—1<2P —Q, then Ml and N have free homology concentrated at
spot (9—1,Q —P+g—1,P—g+1).

(8) If (P,Q) = (3,4) or (eg —e —3,eg — g—4), then M and N have free homology.
The non-zero homology modules have rank

2
<Z> <e—§ ) at spot (0,1,3) or (9 —1,e —2,a — 3) and

2\3 3

(9) If (P,Q) = (4,3) or (eg—e —4,eg — g — 3), then M and N have free homology.
The non-zero homology modules have rank

1
g(e) <g+ ) at spot (1,2,2) or (g —2,e — 3, — 2).

2
<Z> (g-zl; ) at spot (1,0,3) or (9 —2,e —1,a — 3) and

1
g(g) (e;— ) at spot (2,1,2) or (g —3,e —2,a — 2).

Proof. Assertion (1) is obvious. We prove (4). Assume first that 2Q) < P. Notice
@ < P — @Q; so, Observation 5.5 shows that it suffices to establish the result for
(e',g") = (P,P — Q). In this case, P = Q + ¢’, so Theorem 2.1 tells us that the
homology of N(P, Q) and M(P, Q) is concentrated in position (P — @Q,0,Q). Now
assume that 2Q) — 1 = P. It suffices to establish the result for (¢/,¢') = (P, Q). In
this case, Corollary 5.2 applies since M(P, Q) is

0—>M(2Q-1,0,0) > - > M(Q—-1,0,Q) — 0,

with @ —1 = g’ — 1. The proof of (4) is complete. Assertion (6) follows from (4)
by way of Theorem 1.1 (f). The same technique yields (5); hence also (7).

We now prove (2). According to Observation 5.5, it suffices to prove the assertion
fore=g=P=Q. If P=Q = 2, then assertion (6) applies. If P = @ = 3, then
Theorem 1.1 (f) yields

HM(3’3’O) = 0’ HM(2’2’1) %HN(0,0,:%), HM(17172) EHN(1’1’2)7

Hr(0,0,3) 2 Hpr(2,2,1), and Hy(3,3,0) = 0.

Theorem 5.4 tells us that Hx(0,0,3) = 0; so, Corollary 3.5 tells us that Har(0,0, 3)
is also zero. The complexes M(3,3) and N(3,3) both have all of their homology
concentrated in position (1,1, 2), so Corollary 3.6 completes the proof in the present
case. If P = Q = 4, then it is clear that Hx4(0,0,4) is zero. In light of Corollary



KOSZUL COHOMOLOGY 27

3.3, we may take the base ring to be Z. Theorem 1.1 (f) shows that Hp4(4,4,0) = 0,
Hai(3,3,1) = Hp(0,0,8),

HM(2)2a2) gHN(l)la’?)) and HM(1)1a3) %HN(2a2’6)
On the other hand, Theorem 5.4 ensures that
Hp(0,0,8) =0 and Ham(1,1,7) =0

thus, Corollary 3.5 guarantees that Hx(0,0,8) = 0, Hyr(1,1,7) = 0, and Har(2, 2, 6)
is a free module. The proof of (2) is complete; assertion (3) follows by way of
Theorem 1.1 (f).

For (8) and (9) it suffices to study the homology of M(4,3) when the base ring is
Z. Observation 5.6 tells us that Ha¢(1, 0, 3) is free of rank (§ ("f). Apply Observa-
tion 5.5. Theorem 1.1 (f), with e = 4 and g = 3, yields Ha(4, 3,0) and Hp4(3,2,1)
are zero, and that Hx(2,1,2) is isomorphic to the free module Hxr(0,2,4). To
compute the rank of Ha(2,1,2), use the fact that M(P, Q) and H(M(P, Q))) have
the same Euler characteristic. [

Remark. The proof of Theorem 5.7 shows that assertions (4) and (5) continue to
hold even if the hypothesis 1 —e < P — Q < g — 1 is not satisfied.
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