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ABSTRACT. Let k be a field of characteristic zero, n < N be positive integers, P be the polynomial ring k[x,y,z,w],
F be the homogeneous polynomial xn +yn + zn +wn, K be the ideal (xN ,yN ,zN ,wN), and P be the hypersurface ring
P = P/(F). We describe the minimal multi-homogeneous resolution of P/KP by free P-modules, the socle degrees
of P/KP, and the minimal multi-homogeneous resolution of the Gorenstein ring P/(K : F) by free P-modules. Our
arguments use Stanley’s theorem that every Artinian monomial complete intersection over a polynomial ring with
coefficients from a field of characteristic zero has the strong Lefschetz property as well as a multi-grading on P
for which both ideals K and (F) are homogeneous. The resolution of P/KP by free P-modules is obtained from
a Differential Graded Algebra resolution of P/(K : F) by free P-modules, together with one homotopy map. The
multi-grading is used to prove that the resulting resolution is minimal.

CONTENTS

1. Introduction. 1
2. The setup and the outline of the argument. 3
3. Notation, conventions, and preliminary results. 4
4. The multi-homogeneous Hilbert function of R. 7
5. The generators of I. 9
6. The main theorem. 18
7. Consequences of the main theorem. 25
8. The case when N is a multiple of n. 29
9. The generators of (xd ,yd ,zd) : (x+ y+ z)d and (xd ,yd+1,zd) : (x+ y+ z)d+1. 31
References 35

1. INTRODUCTION.

Let k be a field of characteristic zero, n < N be positive integers, and P be the hypersurface ring

P = k[x,y,z,w]/(xn + yn + zn +wn).

We describe the minimal multi-homogeneous resolution of P/(xN ,yN ,zN ,wN)P by free P-modules.

For an arbitrary graded algebra R, over an arbitrary field k, with maximal homogeneous ideal m= (x1, . . . ,

xm), it is very natural to ask how the bracket powers, m[N] = (xN
1 , . . . ,x

N
m), of m are related. In particular, how

is the resolution of R/m[N] by free R-modules related to the resolution of R/m[qN] for various exponents N and
qN? One wonders how many truly different infinite resolutions appear as q varies and one wonders what the
least positive value of q is for which the infinite tail of the resolution of R/m[qN] is isomorphic to a shift of the
infinite tail of the resolution of R/m[N].

An important special case of the question takes place when k has positive characteristic and bracket power
is replaced by Frobenius power. Of course, Frobenius powers play a fundamental role in providing invariants
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(such as Hilbert-Kunz multiplicity, F-signature, and F-pure threshold) of the ring R. Much is still unknown
about these invariants, even for hypersurfaces. On the other hand, there are times that an investigation of
Frobenius power really amounts to an investigation of bracket power; see, for example, [11].

We focus on hypersurfaces of the form P = P/( f ), where P is a polynomial ring over a field, and f is a
homogeneous polynomial in P. The most interesting feature of the P-resolution of P/m[N]P is the infinite tail
of the resolution, which is a matrix factorization of f , see [4].

The situation has been fairly seriously studied when P = k[x,y,z], m is the maximal ideal (x,y,z), and k is
a field of characteristic p. If f = xn + yn + zn, then the Betti numbers of P/m[q]P are calculated in [14] and
the resolution of P/m[q]P is given in [11]. If f is a general homogeneous form of P, then the Betti numbers of
P/m[q]P are calculated in [19].

The infinite tail of the resolution of P/m[N] is intimately related to the socle degrees of P/m[N]. It is shown
in [15] how the behavior of socle degrees under the application of the Frobenius homomorphism can be used
to detect that a quotient ring has finite projective dimension. Furthermore, the following result is established in
[14, Thm. 1.1] and [11, Thm. 8.18] and is the starting point for [19].

Theorem. Let kkk be a field, n, N1, and q be positive integers, N2 = qN1, P = k[x,y,z]/(xn +yn + zn) and Ai = P-
module P/(xNi ,yNi ,zNi). Assume that A1 and A2 both have infinite projective dimension over P. Let Fi,• be the
minimal homogeneous resolution of Ai by free P-modules. Then there is an integer w with socAN2 isomorphic
to socAN1(−w) as graded vector spaces if and only if the complexes F2,≥2 and F1,≥2(−w) are isomorphic.

Let k be a field of characteristic zero, n < N be positive integers, P = k[x,y,z,w],

P =
P

(xn + yn + zn +wn)
, A =

P
(xN ,yN ,zN ,wN)P

, and R =
P

(xN ,yN ,zN ,wN) : (xn + yn + zn +wn)
.

The main result in the paper is Theorem 6.2 which gives the multi-graded Betti numbers in the minimal homo-
geneous resolution of R by free P-modules. Theorem 6.2 is applied in Section 7 to give the multi-graded Betti
numbers in the minimal homogeneous resolution of A by free P-modules and to calculate the socle degrees of
A.

In the case of interest, n < N and n does not divide N. Indeed, if n divides N, then everything can be done
over the polynomial ring k[x,y,z,w]/(x+y+z+w) and then be passed to P by way of a flat ring extension; see,
Section 8. Furthermore, if N < n, then (xn + yn + zn +wn)⊆ (xN ,yN ,zN ,wN) are nested complete intersection
ideals, (xN ,yN ,zN ,wN)P is a quasi-complete intersection ideal of P, in the sense of [1], and the two-step Tate
complex [12, 5] is the minimal homogeneous resolution of A by free P-modules.

One of the main ingredients in the argument is the introduction of a multi-grading M on P for which both
ideals (xN ,yN ,zN ,wN) and (xn + yn + zn +wn) are homogeneous. This multi-grading is the key to proving that
the resolutions we produce are minimal resolutions.

Another significant piece of the argument is the conversion of the problem of describing generators for the
ideal

(xN ,yN ,zN ,wN) : (xn + yn + zn +wn),

into the problem of finding generators for the ideals (xd1 ,yd2 ,zd3) : (x+ y+ z)d4 , where di = d + εi, for all
choices of ε1,ε2,ε3,ε4 ∈ {0,1} and d =

⌊N
n

⌋
. Codimension three Gorenstein rings are understood much better

than codimension four Gorenstein rings.
The resolution of A by free P-modules is built from a Differential Graded Algebra resolution of R by free

P-modules, together with one homotopy map. The details of this construction are given in [10].
The starting point for the present paper is Stanley’s theorem that every Artinian monomial complete inter-

section over a polynomial ring k[x1, . . . ,xn], where k is a field of characteristic zero, has the strong Lefschetz
property.

In addition to the main theme of the paper we highlight two other results which are probably of independent
interest. Lemma 5.6 provides a technique for bounding the number of linear relations on a set of homogeneous
forms of the same degree in a polynomial ring in three variables over a field.
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The ideals (xd ,yd ,zd) : (x+ y+ z)d and (xd ,yd+1,zd) : (x+ y+ z)d+1 in k[x,y,z], when k is a field of char-
acteristic zero, define compressed Gorenstein rings with odd socle degree. The general theory gives bounds on
the graded Betti numbers of such ideals. However, in order to produce the graded Betti numbers on the nose,
we found minimal generating sets for the ideals. Proposition 9.1 gives some explicit generators for these ideals.
Once these explicit generators were found, we applied Lemma 5.6 in order to bound the number of linear rela-
tions on these generators. The complete minimal generating sets for these ideals are given in Proposition 5.7.
It turns out that these ideals have the same graded Betti numbers as the ideals (G1,G2,G3) : G4 have where the
G’s are general forms of degrees d,d,d,d or d,d +1,d,d +1 in the sense of [17, Prop. 4.1].

2. THE SETUP AND THE OUTLINE OF THE ARGUMENT.

Data 2.1. Let k be a field, n, d, and r be positive integers, with r < n, N = dn+ r, P be the standard graded
polynomial ring P = k[x,y,z,w], I be the ideal I = (xN ,yN ,zN ,wN) : (xn + yn + zn +wn) of P, and R be the
quotient ring R = P/I. Let f = x+ y+ z+w ∈ P.

Remark. In all of our important results, the field k of Data 2.1 has characteristic zero; however in many of our
preliminary calculations, the characteristic is not relevant. Each time we use the symbol k, we identify whether
it is an arbitrary field or a field of characteristic zero.

Definition 2.2. Retain Data 2.1. Let M be the Abelian group M = Z×Zn×Zn×Zn×Zn. We impose a
multi-grading by M on the polynomial ring P. If D ∈ Z and r̄i ∈ Zn, then the (D, r̄1, r̄2, r̄3, r̄4) component of
P, denoted P(D,r̄1,r̄2,r̄3,r̄4), is the k-span of the monomials xρ1yρ2zρ3wρ4 , with ρ1 + ρ2 + ρ3 + ρ4 = D and the
image of ρi in Zn is r̄i for each i. Notice that P(D,r̄1,r̄2,r̄3,r̄4) is equal to zero unless the image of D in Zn is
r̄1 + r̄2 + r̄3 + r̄4. If M is a k-module which is multi-graded by M, then let HM(−) denote the Hilbert function
of M with respect to the M-grading on M. In other words, for each element m in M, let HM(m) denote the
vector space dimension of the component of M of degree m.

In the language of 2.1 and 2.2, one can easily check that P is graded by M in the sense that

Pm1 ·Pm2 ⊆ Pm1+m2 ,

for mi ∈M. The ideals (xN ,yN ,zN ,wN) and (xn +yn + zn +wn) are both homogeneous under the multi-grading
of 2.2. It follows that the ideal I =(xN ,yN ,zN ,wN) : (xn+yn+zn+wn) is homogeneous under the multi-grading,
and the multi-grading is inherited by R = P/I. The Hilbert function of R with respect to this multi-grading is
given in Proposition 4.2.

In Section 5, we describe the generators of I. In Proposition 5.1 we take advantage of the multi-grading to
show that the generators of I can be obtained from the generators of the ideals

(1) (xd+ε1 ,yd+ε2 ,zd+ε3 ,wd+ε4) : f ,

where each εi is either 0 or 1. In Observation 5.2 we obtain the generators of the ideals of (1) from ideals of
the form

(2) (xd+ε1 ,yd+ε2 ,zd+ε3) : (x+ y+ z)d+ε4 .

The ideals of (2) are precisely the ideals that exhibit the fact that monomial complete intersections in a poly-
nomial ring over a field of characteristic zero have the strong Lefschetz property. Much numerical information
about these ideals is known. The ideals define compressed quotient rings, and therefore the number and degree
of the generators are completely known in the case when the socle degree is even, (i.e., ∑

4
i=1 εi = 1,3). In

the case when the socle degree is odd (i.e., ∑
4
i=1 εi = 0,2,4), then the general theory provides some bounds

on the generator degrees. In order to learn the precise generator degrees, we exhibit explicit generators in
Proposition 5.7.
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3. NOTATION, CONVENTIONS, AND PRELIMINARY RESULTS.

Let Z represent the ring of integers and Zn represent the quotient ring Z/(nZ) for each integer n in Z. If r is
an integer, then r̄ is the image of r in Zn.

Notation 3.1. For a polynomial g in a polynomial ring, let g[n] denote the result of replacing each variable in g
by the nth power of the variable. Note that g→ g[n] is an injective ring homomorphism.

Example 3.2. In the language of 2.1 and 2.2, every polynomial of P(D,r̄1,r̄2,r̄3,r̄4) has the form

g[n]xρ1yρ2zρ3wρ4 ,

where the ρi are integers with 0≤ ρi ≤ n−1, the image of ρi in Zn is r̄i, D= kn+∑
4
i=1 ρi for some non-negative

integer k, and g is a homogeneous polynomial in P of degree k.

Observation 3.3. Let k be an arbitrary field. Adopt the language of 2.1 and 2.2. Let k, ρ1, ρ2, ρ3, and ρ4 be
non-negative integers with 0≤ ρi ≤ n−1, then there is an isomorphism of k-vector spaces

Pk −→ P(nk+ρ1+ρ2+ρ3+ρ4,ρ̄1,ρ̄2,ρ̄3,ρ̄4),

given by
g 7→ g[n]xρ1yρ2zρ3wρ4 ;

where k is an element of Z and (nk+ρ1 +ρ2 +ρ3 +ρ4, ρ̄1, ρ̄2, ρ̄3, ρ̄4) is an element of M.

Proof. This assertion is an immediate consequence of Example 3.2. �

The following notation makes sense in light of Observation 3.3 and it allows us to convey all of the infor-
mation about an element of M with a minimal amount of writing.

Notation 3.4. Adopt the data of 2.1 and 2.2. Consider the homomorphism of Abelian groups

Z5→M,

which is given by
(k,ρ1,ρ2,ρ3,ρ4) 7→ m(k,ρ1,ρ2,ρ3,ρ4),

where
m(k,ρ1,ρ2,ρ3,ρ4) = (kn+ρ1 +ρ2 +ρ3 +ρ4, ρ̄1, ρ̄2, ρ̄3, ρ̄4) in M.

The 5-tuple of integers (k,ρ) = (k,ρ1,ρ2,ρ3,ρ4) is in standard form if 0≤ k and 0≤ ρi ≤ n−1 for all i.

3.5. Let k be a field. The graded algebra R =
⊕

0≤i Ri is a standard graded k-algebra if R0 is equal to k, R1 is
a finitely generated R0-module, and R is generated by R1 as an algebra over R0.

3.6. If F is a module graded by the Abelian group (G,+) and a ∈ G, then F(−a) is the graded module with
F(−a)b = Fb−a for all b ∈ G.

3.7. Let I be an ideal in a ring R, N be an R-module, and L and M be submodules of N. Then

L :I M = {x ∈ I | xM ⊆ L} and L :M I = {m ∈M | Im⊆ L}.

Any undecorated “:” means :R where R is the ambient ring.

3.8. Let k be an arbitrary field, R be a standard graded k-algebra, m be the maximal homogeneous ideal of R,
and M =⊕iMi be a finitely generated graded R-module.

(a) Let HM(−) denote the Hilbert function of M with respect to the standard grading on M. In other words,

HM(i) = dimk Mi.

The integer HR(1) is called the embedding dimension of R.
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(b) The relationship between the Hilbert function HP(−) of Definition 2.2 and the Hilbert function HP(−) of
(a) is explained in Observation 3.3. If (k,ρ) is a 5-tuple of integers in standard form (in the sense of 3.4),
then

HP(m(k,ρ)) = HP(k).

Of course, the value of HP(k) is well known:

HP(k) =
(

k+3
k

)
,

for P = k[x,y,z,w]. In particular, HP(k) = 0, if k < 0.

3.9. Let (G,+) be an Abelian group and R be a ring which is graded by G, with R0 equal to a field k,⊕
g∈G\{0}Rg equal to the maximal homogeneous ideal of R, and R finitely generated as an R0-algebra. Let

M be a finitely generated R-module which is also graded by G.
(a) The socle of M is the vector space

socleM = 0 :M m.

(b) If R is Artinian, then R is Gorenstein if socleR is a one-dimensional vector space over k.
(c) There is an isomorphism of graded R-modules

socle M ∼=
⊕

i

k(−si),

for some finite set of elements {si} from G. The elements {si} are called the socle degrees of M.
(d) If a is a homogeneous ideal of R with R/a Artinian, local, and Gorenstein with socle degree δ, and f is a

homogeneous element of R in Rd for some d ∈ G. Then a : f is a homogeneous ideal of R with R/(a : f )
Artinian, local, and Gorenstein with socle degree δ−d.

Indeed, the R-module homomorphism R(−d)→ R, which is given by multiplication by f induces a
homogeneous injection

socle
R

(a : f )
(−d)−→ socle

R
a
.

(e) If R = k[x1, . . . ,xn] is a polynomial ring, with each xi a homogeneous element of R, then the socle degrees
of M may be read from the back twists in a minimal homogeneous resolution

0→Cn =
⊕s

i=1 P(−βi)→ ··· →C0

of M by free R-modules.
Indeed, the computation of TorR

n (M,k) in each coordinate yields a graded isomorphism

socleM ∼=
s⊕

i=1

k(κ−βi),

where ∏i xi ∈ Pκ.

3.10. We use two symmetries that are associated to a graded Artinian Gorenstein algebra R over a field k.

3.10.1. The Hilbert function HR(−) is symmetric in the sense that HR(i) = HR(s− i), for all i, where s is the
socle degree of R. This property follows from the fact that the multiplication map Ri⊗Rs−i→ Rs is a perfect
pairing.

3.10.2. If R = P/I, where P is a polynomial ring over k, then the minimal homogeneous resolution,

0→ P(−β) = Fg→ Fg−1→ ··· → F1→ F0 = P,

of R by free P-modules, is self-dual, in the sense that

HomP(Fi,P)(−β)∼= Fg−i.

This property follows from the fact that ExtPg (R,P)∼= R(β).
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3.11. The notion of a compressed Artinian algebra over a field was introduced by Iarrobino [8]. Rossi and
Şega [22, Prop. 4.2] extended the definition to be meaningful for local Artinian Gorenstein rings which do not
necessarily contain a field. The Rossi-Şega definition can be extended further to be meaningful for rings that
are not Gorenstein [13, Def. 2.5].

Definition 3.11.1. Let k be an arbitrary field, R be a standard graded, Gorenstein, local Artinian k-algebra of
socle degree s and embedding dimension e with 1 < e. If

(3) HR(i) = min
{(

e−1+ i
e−1

)
,

(
e−1+ s− i

e−1

)}
,

for 0≤ i≤ s, then R is a compressed ring.

We apply Definition 3.11.1 when R is an Artinian ring of the form R = P/I, where P = k[x1, . . . ,xe] is a
standard graded polynomial ring over a field, I a homogeneous ideal of P, and I ⊆ (x1, . . . ,xe)

2. In this case,
equation (3) becomes

HR(i) = min{HP(i),HP(s− i)} .

3.12. (a) A linear transformation φ : V1→V2 of finite dimensional vector spaces over the field k has maximal
rank if

rankφ = min{dimk V1,dimk V2}.
In particular, if φ has maximal rank, then φ is injective or surjective.

(b) Let A=
⊕

Ai be a standard graded Artinian algebra over the field k. Then A has the weak Lefschetz property
if there exists a linear form L of A1 such that multiplication by L from Ai→ Ai+1 has maximal rank for each
index i. In this case, L is called a Lefschetz element of A. The set of Lefschetz elements forms a (possibly
empty) Zariski open subset of A1. The algebra A has the strong Lefschetz property if there exists a linear
form L of A1 such that multiplication by Lt from Ai → Ai+t has maximal rank for each index i and each
exponent t.

(c) If k is an infinite field, P = k[x1, . . . ,xn] is a standard graded polynomial ring, and A = P/I is defined by a
complete intersection ideal generated by monomials, then A has the weak Lefschetz property if and only if
x1 + · · ·+ xn is a Lefschetz element. See [18, Prop. 2.2].

(d) The starting point for the present paper is the theorem of Stanley [23, Thm. 2.4] that every Artinian mono-
mial complete intersection over a polynomial ring k[x1, . . . ,xn], where k is a field of characteristic zero,
has the strong Lefschetz property. Stanley’s proof used algebraic topology. Other proofs have been given
by Watanabe [25, Cor. 3.5], using representations of sl2, and Reid, Roberts, and Roitman [21, Thm. 10],
using commutative algebra. In Observation 3.13, we appeal to one of the preliminary results from [21]; the
proof, given in [21, Thm. 5], is remarkably elementary.

Observation 3.13. Let k be a field of characteristic zero, P = k[x1, . . . ,xm] be a standard graded polynomial
ring, d1, . . . ,dm+1 be positive integers, K be the ideal (xd1

1 , . . . ,xdm
m ) of P, F be the element x1 + · · ·+ xm in P,

and J be the ideal K : Fdm+1 of P. Then the following statements hold.
(a) The graded k-algebra P/J has socle degree s = ∑

m
i=1 di−m−dm+1.

(b) If θ is a non-zero homogeneous element of

ker
(

P
K

(x1+···+xm)
dm+1

−−−−−−−−−−→ P
K
(dm+1)

)
,

then
⌈ s+1

2

⌉
≤ degθ.

(c) The socle degree of P/K is σ = ∑
m
i=1 di−m and

min{HP/K(i),HP/K(i+1)}=

{
HP/K(i), if 0≤ i < σ

2 , and
HP/K(i+1), if σ

2 ≤ i.

(d) If m = 3 and there are integers d and εi with di = d+εi and εi ∈ {0,1}, for 1≤ i≤ 4, then the initial degree
of J is at least

⌈ s+1
2

⌉
and P/J is a compressed ring.
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Proof. (a) Recall that xd1−1
1 xd2−1

2 · · ·xdm−1
m represents a socle generator for P/K. Apply 3.9.(d) to compute the

socle degree of P/J.

(b) The field k has characteristic zero, hence, [21, Thm. 5] applies and⌈
(d1 + · · ·+dm−m)−dm+1 +1

2

⌉
≤ degθ.

Apply (a) in order to complete the proof of (b).

(c) The socle of P/K is represented by ∏
m
j=1 x

d j−1
j . Apply (b), with dm+1 = 1, in order to see that

HP/K(i)≤ HP/K(i+1)

for i <
⌈

d1+···+dm−m
2

⌉
=
⌈

σ

2

⌉
. Use the symmetry HP/K(i) = HP/K(σ− i) of the Hilbert function to finish the

argument.

(d) We first verify that the extra hypotheses of (d) ensure that the elements xd1
1 , xd2

2 , and xd3
3 of J have degree at

least
⌈ s+1

2

⌉
. In other words, we must show that

(4)
⌈

2d−2+ ε1 + ε2 + ε3− ε4

2

⌉
≤min{d + ε1,d + ε2,d + ε3}.

On the other hand, it is clear that⌈
ε1 + ε2 + ε3− ε4

2

⌉
≤
⌈

ε1 + ε2 + ε3

2

⌉
≤min{1+ ε1,1+ ε2,1+ ε3}.

Add d−1 to both sides to obtain (4).
Combine (b) with (4) to see that the initial degree of J is at least

⌈ s+1
2

⌉
. It follows that if 0≤ i < d s+1

2 e, then
i≤ s− i and

(5) HR(i) = HP(i) = min{HP(i),HP(s− i)};

and, if d s+1
2 e ≤ i≤ s, then s− i < d s+1

2 e ≤ i and

(6) HR(i) = HR(s− i) = HP(s− i) = min{HP(i),HP(s− i)}.

(The left-most equality in (6) holds because the Hilbert function of a graded Artinian Gorenstein ring is sym-
metric and the middle equality in (6) is a consequence of (5).) At any rate

HR(i) = min{HP(i),HP(s− i)},

for 0≤ i≤ s and R is a compressed ring, see Definition 3.11.1. �

3.14. Let R= k[x1, . . . ,xm] be a polynomial ring, I be a homogeneous ideal of R which contains a homogeneous
complete intersection ideal K = ( f1, . . . , fm). The ideal K : I is linked to I. If K is the Koszul complex which
resolves R/K, F is a resolution of R/I of length g, and α : K→ F is a map of complexes which extends the
identity map in degree zero, then the dual of the mapping cone of α is a resolution of R/(K : I). These results
are due to Peskine and Szpiro (see [20, Props. 1.3 and 2.6] or [3, Props. 5.1 and 5.1a]).

4. THE MULTI-HOMOGENEOUS HILBERT FUNCTION OF R.

In Proposition 4.2 we calculate the Hilbert function of the ring R of Data 2.1 with respect to the multi-grading
M of Definition 2.2. Proposition 4.2 requires the base field k to have characteristic zero.

Lemma 4.1. Let k be an arbitrary field. Adopt the data of 2.1 and 2.2. Let (k,ρ) be a 5-tuple of integers in
standard form in the sense of 3.4 and

(7) εi =

{
1, if ρi < r, and
0, otherwise.
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Then the component of I of multi-degree m(k,ρ) is equal to{
xρ1yρ2zρ3wρ4g[n]

∣∣∣g is a homogeneous polynomial of degree k in (xd+ε1 ,yd+ε2 ,zd+ε3 ,wd+ε4) :P f
}
.

Proof. Let θ be an arbitrary element of Pm(k,ρ) . Recall from Example 3.2 that θ = xρ1yρ2zρ3wρ4g[n] for some
homogeneous polynomial g in P of degree k. Observe that

θ ∈ I ⇐⇒ xρ1yρ2 zρ3wρ4g[n] f [n] ∈ (xN ,yN ,zN ,wN)

⇐⇒ g[n] f [n] ∈ (xN ,yN ,zN ,wN) : xρ1yρ2zρ3wρ4

⇐⇒ g[n] f [n] ∈ (xN−ρ1 ,yN−ρ2 ,zN−ρ3 ,wN−ρ4).

Thus, θ ∈ I if and only if there are multi-homogeneous polynomials c1, . . . ,c4 in P with

xdn+r−ρ1c1 + ydn+r−ρ2c2 + zdn+r−ρ3c3 +wdn+r−ρ4c4 = g[n] f [n] ∈ Pm(k+1,0,0,0,0) .

The multi-degree of c1 is

m(k+1,0,0,0,0)−m(d,r−ρ1,0,0,0) =

{
m(k+1−d,ρ1−r,0,0,0), if r ≤ ρ1, and
m(k−d,n+ρ1−r,0,0,0), if ρ1 < r

in M. If r ≤ ρ1, then 0 ≤ ρ1− r < n, and c1 is of the form c1 = xρ1−rd[n]
1 , for some homogeneous polynomial

d1 in P of degree k+1−d. If ρ1 < r, then 0 < n+ρ1− r < n, and c1 is of the form c1 = xn+ρ1−rd[n]
1 , for some

homogeneous polynomial d1 in P of degree k−d. Use (7) to combine the two cases as

xdn+r−ρ1c1 = d[n]
1 x(d+ε1)n,

for some homogeneous polynomial d1 in P of degree k−d +1− ε1. The same calculation holds for the other
terms. Thus, θ is in I if and only if there exist homogeneous polynomials d1, . . . ,d4 in P with

g[n] f [n] = x(d+ε1)nd[n]
1 + y(d+ε2)nd[n]

2 + z(d+ε3)nd[n]
3 +w(d+ε4)nd[n]

4 .

Recall that the map φ : P→ P, given by φ(g1) = g[n]1 , for g1 ∈ P, is an injective ring homomorphism. It follows
that θ is in I if and only if

g f ∈ (xd+ε1 ,yd+ε2 ,zd+ε3 ,wd+ε4). �

Proposition 4.2. Let k be a field of characteristic zero. Adopt the data of 2.1 and 2.2. Let (k,ρ) be a 5-tuple
of integers in standard form in the sense of 3.4. Then

(8) HR(m(k,ρ)) =


HP(k+ ε)−

4
∑

i=1
HP(k+ ε−d− εi)+ ∑

1≤i< j≤4
HP(k+ ε−2d− εi− ε j)

− ∑
1≤i< j<`≤4

HP(k+ ε−3d− εi− ε j− ε`)+HP(k+ ε−4d−
4
∑

i=1
εi),

where

εi =

{
1, if ρi < r, and
0, otherwise,

and ε =

0, if k < 2d−2+ ∑
4
i=1 εi
2 , and

1, if 2d−2+ ∑
4
i=1 εi
2 ≤ k.

Proof. Apply Lemma 4.1 to see that
HR(m(k,ρ)) = HS(k),

where

S =
k[x,y,z,w]

(xd+ε1 ,yd+ε2 ,zd+ε3 ,wd+ε4) : f
.

Let

Cε1,ε2,ε3,ε4 =
k[x,y,z,w]

(xd+ε1 ,yd+ε2 ,zd+ε3 ,wd+ε4)
.

The Hilbert function of Cε1,ε2,ε3,ε4 can be found from the Koszul complex resolution. It is
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(9) HCε1 ,ε2 ,ε3 ,ε4
(k) =


HP(k)−

4
∑

i=1
HP(k−d− εi)+ ∑

1≤i< j≤4
HP(k−2d− εi− ε j)

− ∑
1≤i< j<`≤4

HP(k−3d− εi− ε j− ε`)+HP(k−4d−
4
∑

i=1
εi).

Note that the graded component of

(xd+εr1 ,yd+εr2 ,zd+εr3 ,wd+εr4 ) : f

(xd+εr1 ,yd+εr2 ,zd+εr3 ,wd+εr4 )

of degree k is the kernel of the map given by multiplication by f : [Cε1,ε2,ε3,ε4 ]k → [Cε1,ε2,ε3,ε4 ]k+1. The field k
has characteristic zero; hence, Cε1,ε2,ε3,ε4 has the weak Lefschetz property; and therefore the multiplication by
f map has maximal rank. It follows that

HS(k) = min{HCε1 ,ε2 ,ε3 ,ε4
(k),HCε1 ,ε2 ,ε3 ,ε4

(k+1)}=

HCε1 ,ε2 ,ε3 ,ε4
(k) if k < 2d−2+ ∑

4
i=1 εi
2

HCε1 ,ε2 ,ε3 ,ε4
(k+1) if 2d−2+ ∑

4
i=1 εi
2 ≤ k.

See Observation 3.13.(c). �

5. THE GENERATORS OF I .

Proposition 5.1. Let k be an arbitrary field. Adopt the data of 2.1. Then the ideal

I = (xN ,yN ,zN ,wN) : (xn + yn + zn +wn)

is generated by all the elements of the form (x1−ε1y1−ε2z1−ε3w1−ε4)rg[n] with g∈ (xd+ε1 ,yd+ε2 ,zd+ε3 ,wd+ε4) : f ,
for all choices of ε1,ε2,ε3,ε4 ∈ {0,1}.

Proof. The ideal I is homogeneous. It is generated by elements of the form xρ1yρ2zρ3wρ4g[n] with

g ∈ (xd+ε1 ,yd+ε2 ,zd+ε3 ,wd+ε4) : f ,

as described in Lemma 4.1. Each such xρ1yρ2zρ3wρ4g[n] is a multiple of xs1ys2zs3ws4g[n], where

si =

{
r, if r ≤ ρi, and
0, otherwise. �

Remark. When k has characteristic zero, we reduce this list to a minimal set of generators in Proposition 5.12.

Observation 5.2. Let k be an arbitrary field, P = k[x1, . . . ,xt ] be a standard graded polynomial ring, L be
the linear form ∑

t
i=1 xi in P, and d1, . . . ,dt be positive integers. Then there is a homogeneous isomorphism of

P-modules

(10)
(xd1

1 , . . . ,xdt−1
t−1 ) :

(
t−1
∑

i=1
xi

)dt

(xd1
1 , . . . ,xdt−1

t−1 )
(−dt +1) Φ−→

(xd1
1 , . . . ,xdt

t ) : (L)

(xd1
1 , . . . ,xdt

t )
,

which is induced by multiplication by the polynomial

xdt
t −

(
−

t−1
∑

i=1
xi

)dt

L .

Remark. The module on the left side of (10) is naturally a k[x1, . . . ,xt−1]-module. This module acquires the
structure of a P-module by way of the k-algebra homomorphism φ : P→ k[x1, . . . ,xt−1], with φ(xi) = xi, for
1≤ i≤ t−1, and φ(xt) =−(x1 + · · ·+ xt−1).
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Proof. This result is essentially [16, Thm. 2.1]. We reproduce part of the proof. It is not difficult to see that
Φ is a well-defined P-module homomorphism. We describe the inverse of Φ, which we call Ψ. If G is a
homogeneous element in (xd1

1 , . . . ,xdt
t ) : L, then

(11) LG =
t
∑

i=1
Bix

di
i ,

for some homogeneous Bi ∈ k[x1, . . . ,xt ]. The Ψ is defined to send the class of G in the right side of (10)
(denoted [G]) to the class of φ(Bt) in the left side of (10) (denoted [φ(Bt)]). Once again, it is not difficult to see
that Ψ is a well-defined homomorphism of P-modules. We compute Φ◦Ψ.

Notice that if B ∈ P, then B−φ(B) ∈ ker(φ) = (L). In particular, for each Bi in (11), there is an element B′i
in P with

(12) φ(Bi) = Bi +LB′i.

Apply the k-algebra homomorphism φ to both sides of (11) to obtain

(13) 0 =
t−1
∑

i=1
φ(Bi)x

di
i +φ(Bt)

(
−

t−1
∑

i=1
xi

)dt

.

It follows that

(Φ◦Ψ)([G]) = Φ([φ(Bt)]) =


xdt

t φ(Bt)−
(
−

t−1
∑

i=1
xi

)dt

φ(Bt)

L



=


t
∑

i=1
xdi

i φ(Bi)

L

 , by (13),

=


t
∑

i=1
xdi

i Bi +L
t
∑

i=1
xdi

i B′i

L

 , by (12),

=

[
G+

t

∑
i=1

xdi
i B′i

]
, by (11),

= [G].

�

Remark 5.3. Observations 5.1 and 5.2 show that in order to find generators for the ideal I of Data 2.1, it
suffices to find generators for the ideals (xd1 ,yd2 ,zd3) : (x+ y+ z)d4 , where di = d + εi, for all choices of
ε1,ε2,ε3,ε4 ∈ {0,1}.

According to Observation 3.13.(d), the ideals of Remark 5.3 all define compressed quotient rings, when
the characteristic of k is zero. Boij has obtained significant information about the graded Betti numbers of
compressed quotient rings. In Corollary 5.5, we apply Boij’s results to the ideals of Remark 5.3, when the
characteristic of k is zero. When the quotient ring has even socle degree, then the graded Betti numbers are
completely described in Corollary 5.5. However, when the quotient ring has odd socle degree, then more work
is required in order to give a complete description of the graded Betti numbers. This work is carried out in
Proposition 5.7.

Lemma 5.4. Let k be an arbitrary field, Q be the standard graded polynomial ring Q = k[x,y,z], and J be
a homogeneous ideal in Q which defines a compressed Artinian quotient ring with socle degree s. Then the
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minimal homogeneous resolution of Q/J by free Q-modules has the form

0→ Q(−s−3)→ Q(− s
2 −2)s+3→ Q(− s

2 −1)s+3→ Q,

if s is even; and

0→ Q(−s−3)−→
Q(−( s+1

2 )−1)ν

⊕
Q(−( s+1

2 )−2)(s+3)/2
−→

Q(−( s+1
2 ))(s+3)/2

⊕
Q(−( s+1

2 )−1)ν

−→ Q,

for some non-negative integer ν, if s is odd.

Proof. Let t be the initial degree of J and F be the minimal homogeneous resolution of Q/J by free Q-modules.
Apply [2, Prop. 3.2] to see that the beginning of F has the form

Q(−t)b′1 ⊕Q(−t−1)b′′1 → Q,

for some non-negative integers b′1 and b′′1 . The socle degree of Q/J is s and the codimension of Q/J is 3. It
follows that the final module in F is Q(−s−3); see 3.9.(e). The complex F is self-dual (see 3.10.2); hence F
has the form

(14) 0→ Q(−s−3)−→
Q(−s−2+ t)b′′1

⊕
Q(−s−3+ t)b′1

−→
Q(−t)b′1

⊕
Q(−t−1)b′′1

−→ Q,

for some integers b′1 and b′′1 , with 0 < b′1 and 0≤ b′′1 .
The fact that Q/J is a compressed ring guarantees that

⌈ s+1
2

⌉
≤ t; see Definition 3.11.1. The complex F is

a minimal resolution. The component

Q(−s−3+ t)b′1 → Q(−t)b′1 ⊕Q(−t−1)b′′1

of F can not be the zero map and can not be a map of constants. Thus,

t < s+3− t and
⌈ s+1

2

⌉
≤ t < s+3

2 .

It follows that t = d s+1
2 e.

If b′′1 is positive, then the component

Q(−s−2+ t)b′′1 → Q(−t)b′1 ⊕Q(−t−1)b′′1

of F can not be the zero map and can not be a map of constants. Thus,

t < s+2− t and
⌈ s+1

2

⌉
≤ t < s+2

2 .

Of course, this is impossible if s is even. Thus, b′′1 is zero when s is even. In this case, the resolution of F
is pure and resolves a Gorenstein quotient ring with a matrix of linear forms in the middle. One may apply
the Herzog-Kühl formula [7, Thm. 1] or the Buchsbaum-Eisenbud Theorem [3, Thm. 2.1] to calculate that
b1 = s+3.

If s is odd, then

b′1 = HQ(t)−HQ/J(t)

= HQ(t)−HQ/J(s− t), because Q/J is graded and Gorenstein,

= HQ(t)−HQ(t−1), because Q/J is compressed and s− t = t−1 < t,

= t +1.

Rename b′′1 to be ν. The proof is complete. �

Corollary 5.5. Let k be a field of characteristic zero, d be a positive integer, and

J1 = (xd ,yd ,zd) : (x+ y+ z)d , J2 = (xd ,yd ,zd) : (x+ y+ z)d+1,

J3 = (xd ,yd+1,zd) : (x+ y+ z)d+1, and J4 = (xd+1,yd+1,zd) : (x+ y+ z)d+1

be ideals of Q = k[x,y,z]. Then
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(a) J2 is minimally generated by 2d−1 elements of degree d−1, and all of the relations on these generators
are linear,

(b) J4 is minimally generated by 2d +1 elements of degree d, and all of the relations on these generators are
linear,

(c) J1 and J3 are each minimally generated by d generators of degree d− 1 and ν generators of degree d,
where ν is the dimension of the vector space of linear relations on the generators of degree d−1.

Proof. According to Observation 3.13.(d) and (a), each ring Q/Ji is compressed and has socle degree si, where
s1 = 2d−3, s2 = 2d−4, s3 = 2d−3, and s4 = 2d−2. Apply Lemma 5.4 to obtain the result. �

Lemma 5.6 is a key step in the direction of obtaining more precise information about the ideals J1 and J3
of Corollary 5.5. Item (a) of Lemma 5.6 is a result which probably is of independent interest. It provides a
technique for bounding the number of linear relations on a set of homogeneous forms of the same degree in a
polynomial ring in three variables over a field.

Lemma 5.6. Let k be an arbitrary field, d and m be positive integers, and f1, . . . , fd be homogeneous forms of
degree m in k[x,y,z]. Assume that for each s, with 1≤ s≤ d, fs has degree exactly m+1− s in y when viewed
as an element of (k[x,z])[y]. For each s, let Fs−1,s in k[x,z] be the coefficient of ym+1−s in fs. Assume further
that Fs−1,s does not divide Fs,s+1 in k[x,z] for any s with 2≤ s≤ d−1. Then the following statements hold.

(a) The vector space of linear relations on f1, . . . , fd has dimension at most one.
(b) Assume that there is a non-zero linear relation on f1, . . . , fd . Let h be a homogeneous form of degree m+1

in k[x,y,z]. Assume that h has degree exactly m+1−d in y when viewed as an element of (k[x,z])[y]. Let Hd
in k[x,z] be the coefficient of ym+1−d in h. Assume that Hd is not divisible by Fd−1,d , then h /∈ ( f1, . . . , fd).

Proof. The hypothesis that fs has degree m+1− s in y for each s, with 1≤ s≤ d, ensures that d ≤ m+1.
We first prove (a). Write the polynomial fs in the form

fs =
m+1−s

∑
`=0

Fm−`,sy`,

with Fi,s a homogeneous form in k[x,z] of degree i and Fs−1,s is not zero. Assume that there is a linear relation

(15) (a1x+b1y+ c1z) f1 + . . .+(adx+bdy+ cdz) fd = 0,

with ai, bi, and ci elements of the field k. We will prove that the relation (15) is completely determined by the
choice of b2. View the expression on the left hand side of (15) as a polynomial in y with coefficients in k[x,z].
For 0≤ s≤ d, the coefficient of ym+1−s in (15) is equal to zero; thus,

(16)


b1Fs,1 = 0, if s = 0,
(a1x+ c1z)Fs−1,1 + . . .+(asx+ csz)Fs−1,s +b1Fs,1 + . . .+bsFs,s +bs+1Fs,s+1 = 0, if 1≤ s≤ d−1,
(a1x+ c1z)Fs−1,1 + . . .+(asx+ csz)Fs−1,s +b1Fs,1 + . . .+bsFs,s = 0, if s = d.

Recall that F0,1 is a unit in k. It follows from equation (16), with s = 0, that b1 = 0. For s = 1, equation (16) is

(a1x+ c1z)F0,1 +b1F1,1 +b2F1,2 = 0;

hence
(a1x+ c1z)F0,1 +b2F1,2 = 0.

For any fixed choice of b2, there is at most once choice of (a1,c1) ∈ k2 for which this equation holds.
Fix b2. We claim that for every s, with 1 ≤ s ≤ d− 1, the values of a1,c1, . . . ,as,cs,b1, . . . ,bs,bs+1 such

that (16) holds are unique. For s > 1, we prove this by induction on s. Assume that a1,c1, . . . ,as−1,cs−1,b1,
. . . ,bs−1,bs are uniquely determined. We solve for as,cs,bs+1 so that (16) holds. Let

Gs = (a1x+ c1z)Fs−1,1 + . . .+(as−1x+ cs−1z)Fs−1,s−1 +b1Fs,1 + . . .+bsFs,s.
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The inductive hypothesis ensures that all the coefficients of Gs have been solved for uniquely in terms of the
value of b2. Apply (16) to see that

(17) Gs +bs+1Fs,s+1 =−(asx+ csz)Fs−1,s.

Therefore the value of bs+1 is such that Gs + bs+1Fs,s+1 is divisible by Fs−1,s. The fact that Fs,s+1 is not
divisible by Fs−1,s implies that there is a nonzero remainder when Fs,s+1 is divided by Fs−1,s. (These are
homogeneous polynomials in two variable; they can be translated into polynomials in one variable T = z/x by
de-homogenization, so the notion of remainder makes sense.) Let Rs be this remainder. There is at most one
value of bs+1 that makes bs+1Rs equal to the remainder obtained when Gs is divided by Fs−1,s. Once bs+1 has
been found, as and cs are obtained by dividing both sides of (17) by Fs−1,s.

When s = d, Equation (16) becomes

(a1x+ c1z)Fd−1,1 + . . .+(ad−1x+ cd−1z)Fd−1,d−1 +(adx+ cdz)Fd−1,d +b1Fd,1 + · · ·+bdFd,d = 0.

Since there is at most one solution (once b2 has been fixed) for a1,c1, . . . ,ad−1,cd−1,b1, . . . ,bd that solve the
previous equations, it follows that there are also unique values of ad ,cd that make this term equal to zero. This
concludes the proof of part (a).

For part (b), fix b2 as above and assume that there is a (unique) solution for a1,c1, . . . ,ad−1,cd−1,b1, . . . ,
bd−1,bd that satisfy (16) for all 1≤ s≤ d−1. The assumption that there is a non-zero linear relation on f1, . . . ,
fd means that for these values of a1,c1, . . . ,as−1,cs−1,b1, . . . ,bs−1,bs, there are values for ad ,cd such that

(18) (a1x+ c1z)Fd−1,1 + . . .+(ad−1x+ cd−1z)Fd−1,d−1 +(adx+ cdz)Fd−1,d +b1Fd,1 + · · ·+bdFd,d = 0,

Assume, by way of contradiction, that h ∈ ( f1, . . . , fd). It follows that there exist constants a′i, b′i, and c′i with

(19) (a′1x+b′1y+ c′1z) f1 + . . .+(a′dx+b′dy+ c′dz) fd = h.

The degree of h in the variable y is m+1−d; hence the coefficients of ym+1,ym, . . . ,ym+2−d in (19) must be zero.
Therefore, b′1 = 0, and a′1,c

′
1, . . . ,a

′
d−1,c

′
d−1,b

′
1, . . . ,b

′
d−1,b

′
d satisfy the equations (16) for all 1 ≤ s ≤ d− 1.

Choose b2 = b′2. It follows that ai = a′i and ci = c′i for 1≤ i≤ d−1, and bi = b′i for 1≤ i≤ d.
The coefficient of ym+1−d in (19) is

(a1x+ c1z)Fd−1,d + . . .+(ad−1x+ cd−1z)Fd−1,d−1 +(a′dx+ c′dz)Fd−1,d +b1Fd,1 + · · ·+bdFd,d = Hd

Compare the most recent equation with (18) in order to see that

Hd = ((a′d−ad)x+(c′d− cd)z)Fd−1,d ,

which contradicts the hypothesis that Hd is not divisible by Fd−1,d . �

Proposition 9.1 gives explicit elements of degree d−1 for the ideals J1 and J3 of Corollary 5.5. (The proof of
Proposition 9.1 is fairly long, but it is self-contained and is given in Section 9.) Once these explicit generators
are found one may apply Lemma 5.6 in order to bound the number of linear relations on these generators. As a
consequence, one learns a complete minimal generating set for these ideals and all of the graded Betti numbers
in a minimal resolution of these ideals.

It is convenient to record the polynomials { f j,ε} of Proposition 9.1 at this point. Let j, d, ε, and σ be integers
with

1≤ j ≤ d, 0≤ ε≤ 1, and j−1≤ σ≤ d−1.

Let

(20) Fσ, j,ε =
j−1

∑
k=0

(−1)σ+k
(

d−1− k
d− j

)(
d−1−σ+ k

k

)(
σ+ ε

j−1+ ε

)
xkzσ−k

and

(21) f j,ε =
d−1

∑
s= j−1

Fs, j,εyd−1−s.
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Proposition 5.7. Let k be a field of characteristic zero and d be a positive integer. For integers j and ε, with
1≤ j ≤ d and 0≤ ε≤ 1, let f j,ε be the polynomial of (21) viewed as an element of k[x,y,z]. Then

(xd ,yd+ε,zd) : (x+ y+ z)d+ε is minimally generated by

{
f1,ε, . . . , fd,ε, if d is odd, and
f1,ε, . . . , fd,ε,zd , if d is even,

as an ideal in k[x,y,z].

Proof. Fix ε. Recall that the ideal (xd ,yd+ε,zd) : (x+ y+ z)d+ε is called J1+2ε in Corollary 5.5. The inclusion
( f1,ε, . . . , fd,ε) ⊆ J1+2ε is established in Proposition 9.1. We verify that f1,ε, . . . , fd,ε satisfy the hypothesis in
Lemma 5.6.(a). That is, we verify that Fs,s+1,ε is not divisible by Fs−1,s,ε for 2 ≤ s ≤ d−1, where the F’s are
given in (20):

Fs,s+1,ε =
s

∑
k=0

(−1)s−k
(

d−1− k
d− s−1

)(
d−1− s+ k

k

)
xkzs−k

=

[
(−1)s

(
d−1

d− s−1

)
zs + . . .− (d− s)

(
d−2
s−1

)
xs−1z+

(
d−1

s

)
xs
]

and

Fs−1,s,ε =

[
(−1)s−1

(
d−1
d− s

)
zs−1 + . . .− (d− s+1)

(
d−2
s−2

)
xs−2z+

(
d−1
s−1

)
xs−1

]
.

Assume, by way of contradiction, that Fs−1,s,ε divides Fs,s+1,ε, and write

(22) (ax+bz)Fs−1,s,ε = Fs,s+1,ε

with a,b ∈ k. Compare the coefficients of zs, xs, and xs−1z in equation (22) and conclude that

b(−1)s−1
(

d−1
d− s

)
= (−1)s

(
d−1

d− s−1

)
,(23)

a
(

d−1
s−1

)
=

(
d−1

s

)
, and(24)

−a(d− s+1)
(

d−2
s−2

)
+b
(

d−1
s−1

)
=−(d− s)

(
d−2
s−1

)
.(25)

To complete the calculation, we use two identities about binomial coefficients which hold for all integers a and
b:

b
(

a
b

)
=

(
a

b−1

)
(a−b+1) and(26) (

a
b

)
+

(
a

b+1

)
=

(
a+1
b+1

)
.(27)

Apply (26) to (23) and (24) to see that

a =−b =
d− s

s
.

(The relevant numbers are non-zero because 2≤ s≤ d−1.) Multiply both sides of (25) by −s/(d− s) and use
(27) to see that

(d− s+1)
(

d−2
s−2

)
+

((
d−2
s−2

)
+

(
d−2
s−1

))
= s
(

d−2
s−1

)
.

It follows that

(d− s+2)
(

d−2
s−2

)
= (s−1)

(
d−2
s−1

)
.

Apply (26) again to obtain

(d− s+2)
(

d−2
s−2

)
=

(
d−2
s−2

)
(d− s).
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Thus, 2
(d−2

s−2

)
= 0; which of course is a contradiction because 2 ≤ s ≤ d− 1. The claim that Fs,s+1,ε is not

divisible by Fs−1,s,ε, for 2≤ s≤ d−1, is verified.
Apply Lemma 5.6.(a) to see that the vector space of linear relations on f1,ε, . . . , fd,ε has dimension at most

one. Therefore, according to Corollary 5.5, the ideal J1+2ε, has at most one minimal generator of degree d and
either

(28) { fi,ε | 1≤ i≤ d} or { fi,ε | 1≤ i≤ d}∪{h},
for some homogeneous form h of degree d, is a minimal generating set for J1+2ε. However, J1+2ε is a grade
three Gorenstein ideal, therefore, J1+2ε has an odd number of minimal generators (see [24] or [3, Cor. 2.2]).
If d is odd, then J1+2ε is equal to the left hand candidate from (28). If d is even, then J1+2ε is equal to the
right hand candidate from (28), and, according to Corollary 5.5, there is a non-zero relation on f1,ε, . . . , fd,ε.
When d is even, we apply Lemma 5.6.(b) to see that zd /∈ ( f1,ε, . . . , fd,ε). (It is clear that zd is not divisible by
Fd−1,d,ε = zd−1 + · · ·+xd−1). On the other hand, it is obvious that zd ∈ J1+2ε. When d is even, the vector space
[J1+2ε/( f1,ε, . . . , fd,ε)]d has dimension one, and h in (28) may be taken to be zd . The proof is complete. �

Corollary 5.8. Let k be a field of characteristic zero, P be the standard graded polynomial ring P= k[x,y,z,w],
d be a positive integer, and ε1, ε2, ε3, and ε4 be elements of {0,1}. Then the ideal

(29) (xd+ε1 ,yd+ε2 ,zd+ε3 ,wd+ε4) : (x+ y+ z+w)

of P is minimally generated by
(a) xd+ε1 ,yd+ε2 ,zd+ε3 ,wd+ε4 , and d additional generators of degree 2d−2, when ∑

4
i=1 εi = 0, for 2≤ d;

(b) xd+ε1 ,yd+ε2 ,zd+ε3 ,wd+ε4 , and 2d−1 additional generators of degree 2d−1, when ∑
4
i=1 εi = 1, for 2≤ d;

(c) xd+ε1 ,yd+ε2 ,zd+ε3 ,wd+ε4 , and d additional generators of degree 2d−1, when ∑
4
i=1 εi = 2, for 2≤ d; and

(d) xd+ε1 ,yd+ε2 ,zd+ε3 ,wd+ε4 , and 2d additional generators of degree 2d, when ∑
4
i=1 εi = 3.

Remark. Note that the result is symmetric in x,y,z,w.

Proof. The assertion follows from Observation 5.2, Corollary 5.5, and Proposition 5.7. When one applies the
technique of Observation 5.2 to the modules of Corollary 5.5 it is important to notice that a minimal generating
set of J2 represents a minimal generating set of J2/(xd ,yd ,zd); however, zd never represents a minimal generator
of J4/(xd+1,yd+1,zd), J1/(xd ,yd ,zd), or J3/(xd ,yd+1,zd), even though zd is always a minimal generator of J4
and sometimes is part of a minimal generating set of J1 or J3, as described in Proposition 5.7. �

Remark 5.9. If d = 1, then the elements of (a), (b), and (c) continue to generate the ideal (29); however, they
do not form a minimal generating set. We return to this theme in the proof of Proposition 5.12.

Recall the data of 2.1. Proposition 5.1 and Corollary 5.8 combine to describe a list of generators for the
ideal

I = (xN ,yN ,zN ,wN) : (xn + yn + zn +wn),

of the standard graded polynomial ring P = k[x,y,z,w], where k is a field of characteristic zero. Propositions
5.10 and 5.11 remove redundant elements from the list. A minimal generating set for I is given in Proposi-
tion 5.12.

Proposition 5.10. Let k be a field of characteristic zero. Recall the data of 2.1. The generators of I on the list
given in Proposition 5.1 that are obtained when ∑

4
i=1 εi = 1 are redundant.

Proof. We show that these generators are linear combinations of the generators listed in Proposition 5.1 that
are obtained when ∑

4
i=1 εi = 2.

Consider ε1 = ε2 = ε3 = 0,ε4 = 1. The other cases are similar. We claim that

(30) (xd ,yd ,zd ,wd+1) : f ⊆
(
(xd+1,yd ,zd ,wd+1) : f

)
+
(
(xd ,yd+1,zd ,wd+1) : f

)
.

Once we establish Claim (30), then a generator of I of the form (xyz)rg[n], with g ∈ (xd ,yd ,zd ,wd+1) : f , can
be written as

(xyz)rg[n] = xr(yrzrh[n])+ yr(xrzrk[n])
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with h ∈ (xd+1,yd ,zd ,wd+1) : f and k ∈ (xd ,yd+1,zd ,wd+1) : f such that g = h+k. In order to prove the claim,
recall from Observation 5.2 that every g ∈ (xd ,yd ,zd ,wd+1) : f can be written as g = pg0, plus an element of
(xd ,yd ,zd ,wd+1), where g0 is in (xd ,yd ,zd) : (x+ y+ z)d+1 and p is the polynomial

(31) p =
(

wd+1− (−(x+ y+ z))d+1
)
/(x+ y+ z+w).

It is therefore sufficient to prove

(32) (xd ,yd ,zd) : (x+ y+ z)d+1 =
(
(xd+1,yd ,zd) : (x+ y+ z)d+1

)
+
(
(xd ,yd+1,zd) : (x+ y+ z)d+1

)
.

The inclusion ⊇ is obvious. We know from Corollary 5.5 that J2 = (xd ,yd ,zd) : (x+ y+ z)d+1 is minimally
generated by 2d−1 elements of degree d−1; consequently, it is enough to show that the inclusion⊆ claimed in
(32) holds for the graded components of degree d−1. We know from Corollary 5.5 that the graded component
of degree d−1 of each ideal on the right hand side of (32) has dimension d. By the inclusion-exclusion formula
for vector space dimensions, it is enough to show that the d−1 graded component of

(33)
(
(xd+1,yd ,zd) : (x+ y+ z)d+1

)
∩
(
(xd ,yd+1,zd) : (x+ y+ z)d+1

)
has dimension at most one. Observe that the ideal of (33) is equal to

(34) (xd+1,yd+1,xdyd ,zd) : (x+ y+ z)d+1.

Let u,v be two elements in (34) of degree d−1. Observe that

u(x+ y+ z)d+1 ≡ αxdyd and v(x+ y+ z)d+1 ≡ βxdyd mod (xd+1,yd+1,zd),

for some α,β ∈ k. Therefore, βu−αv ∈ (xd+1,yd+1,zd) : (x+ y+ z)d+1. We know from Corollary 5.5 that the
ideal J4 = (xd+1,yd+1,zd) : (x+ y+ z)d+1 is generated in degree d, and therefore βu−αv = 0 as desired. �

Proposition 5.11. Let k be a field of characteristic zero. Recall the data of 2.1. The generators of I on the list
given in Proposition 5.1 that are obtained when ∑

4
i=1 εi = 3 are redundant.

Proof. We show that these generators are linear combinations of the generators listed in Proposition 5.1 that
are obtained when ∑

4
i=1 εi = 2 and ∑

4
i=1 εi = 4.

Consider ε1 = ε2 = ε4 = 1,ε3 = 0. The other cases are similar. We claim that

(35) (xd+1,yd+1,zd ,wd+1) : f ⊆ x[(xd ,yd+1,zd ,wd+1) : f ]+ (xd+1,yd+1,zd+1,wd+1) : f .

Once we establish Claim (35), then a generator of I of the form zrg[n], with g ∈ (xd+1,yd+1,zd ,wd+1) : f can be
written as

zrg[n] = xn−r(xrzrh[n])+ zrk[n],
with

h ∈ (xd ,yd+1,zd ,wd+1) : f and k ∈ (xd+1,yd+1,zd+1,wd+1) : f .
In order to prove the claim, recall from Observation 5.2 that every g ∈ (xd+1,yd+1,zd ,wd+1) : f can be written
as g = pg0, plus an element of (xd+1,yd+1,zd ,wd+1), where g0 ∈ (xd+1,yd+1,zd) : (x+y+ z)d+1 and p is given
in (31). It is therefore sufficient to prove

(36) (xd+1,yd+1,zd) : (x+ y+ z)d+1 =

{
x[(xd ,yd+1,zd) : (x+ y+ z)d+1]

+(xd+1,yd+1,zd+1) : (x+ y+ z)d+1

The inclusion⊇ is obvious. We know from Corollary 5.5 that J4 = (xd+1,yd+1,zd) : (x+y+z)d+1 is minimally
generated by 2d+1 elements of degree d; consequently, it suffices to show that the inclusion⊆ claimed in (36)
holds for the graded components of degree d.

The first ideal on the right hand side of (36) is xJ3, whose degree d component has dimension d, and the
second ideal on the right hand side of (36) is the version of J1 obtained when d+1 is used in the role of d, and
therefore its degree d component has dimension d + 1. We count vector space dimension. It suffices to show
that

(37) x[(xd ,yd+1,zd) : (x+ y+ z)d+1]∩ [(xd+1,yd+1,zd+1) : (x+ y+ z)d+1]
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xN ∈ Pm(d,r,0,0,0) ,

yN ∈ Pm(d,0,r,0,0) ,

zN ∈ Pm(d,0,0,r,0) ,

wN ∈ Pm(d,0,0,0,r) ,

(xyzw)ra[n]i ∈ Pm(2d−2,r,r,r,r) , for 1≤ i≤ d, ai ∈ (xd ,yd ,zd ,wd) : f , and deg(ai) = 2d−2,

(zw)rb[n]1i ∈ Pm(2d−1,0,0,r,r) , for 1≤ i≤ d, b1i ∈ (xd+1,yd+1,zd ,wd) : f and deg(b1i) = 2d−1,

(yw)rb[n]2i ∈ Pm(2d−1,0,r,0,r) , for 1≤ i≤ d, b2i ∈ (xd+1,yd ,zd+1,wd) : f and deg(b2i) = 2d−1,

(xw)rb[n]3i ∈ Pm(2d−1,r,0,0,r) , for 1≤ i≤ d, b3i ∈ (xd ,yd+1,zd+1,wd) : f and deg(b3i) = 2d−1,

(yz)rb[n]4i ∈ Pm(2d−1,0,r,r,0) , for 1≤ i≤ d, b4i ∈ (xd+1,yd ,zd ,wd+1) : f and deg(b4i) = 2d−1,

(xz)rb[n]5i ∈ Pm(2d−1,r,0,r,0) , for 1≤ i≤ d, b4i ∈ (xd ,yd+1,zd ,wd+1) : f and deg(b5i) = 2d−1,

(xy)rb[n]6i ∈ Pm(2d−1,r,r,0,0) , for 1≤ i≤ d, b6i ∈ (xd ,yd ,zd+1,wd+1) : f and deg(b6i) = 2d−1,

c[n]i ∈ Pm(2d,0,0,0,0) , for 1≤ i≤ d +1, ci ∈ (xd+1,yd+1,zd+1,wd+1) : f , and deg(ci) = 2d.

TABLE 1. The multi-homogeneous generating set for I as described in Proposition 5.12.

has no elements of degree d.
On the other hand, this assertion is obvious. Any homogeneous element of (37) of degree d has the form xu

with u a homogeneous element of (xd ,yd+1,zd+1) : (x+ y+ z)d+1 of degree d− 1, because, x, yd+1, zd+1 is a
regular sequence in k[x,y,z]. It follows from Corollary 5.5 (or [21, Thm. 5]) that u = 0. �

Proposition 5.12. Adopt the data of 2.1, 2.2, and 3.4, with k a field of characteristic zero. The generators on the
list given in Proposition 5.1 that are obtained when ∑

4
i=1 εi is equal to 0,2 and 4, together with xN ,yN ,zN ,wN ,

form a minimal set of generators for the ideal I.

Proof. Apply Propositions 5.8, 5.10, and 5.11 to see that the multi-homogeneous elements listed in Table 1
generate I. The polynomials ai, bhi, and ci in P, from Table 1, all are homogeneous. The polynomials a1, . . . ,ad
are linearly independent; as are the polynomials bh1, . . . ,bhd , for each h, and the polynomials c1, . . . ,cd+1. We
prove that the list of generators given in Table 1 is a minimal generating set for I.

Notice that if m1 and m2 are distinct elements of M selected from

(38)
{

m(2d−2,r,r,r,r), m(2d−1,0,0,r,r), m(2d−1,0,r,0,r), m(2d−1,r,0,0,r),
m(2d−1,0,r,r,0), m(2d−1,r,0,r,0), m(2d−1,r,r,0,0), m(2d,0,0,0,0)

}
,

then Pm1−m2 = 0. For example,

Pm(2d,0,0,0,0)−m(2d−1,r,r,0,0) = Pm(−1,n−r,n−r,0,0) = 0,

Pm(2d,0,0,0,0)−m(2d−2,r,r,r,r) = Pm(−2,n−r,n−r,n−r,n−r) = 0,

Pm(2d−1,r,r,0,0)−m(2d−1,r,0,r,0) = Pm(−1,0,r,n−r,0) = 0, and

Pm(2d−1,r,r,0,0)−m(2d−2,r,r,r,r) = Pm(−1,0,0,n−r,n−r) = 0.

As a consequence, any relation, on the generators of Table 1, which has a non-zero constant coefficient, can
only involve the generators, xN , yN , zN , wN and generators from one of the multi-degrees from the list (38).

Proposition 5.8 establishes that

5.12.1. xd ,yd ,zd ,wd ,a1, . . . ,ad is a minimal generating set for the ideal (xd ,yd ,zd ,wd ,a1, . . . ,ad), provided
2≤ d;

5.12.2. xd ,yd ,zd ,wd ,bh1, . . . ,bhd is a minimal generating set for the ideal (xd ,yd ,zd ,wd ,bh1, . . . ,bhd), for each
h, provided 2≤ d; and

5.12.3. xd ,yd ,zd ,wd ,c1, . . . ,cd+1 is a minimal generating set for the ideal (xd ,yd ,zd ,wd ,c1, . . . ,cd+1), for 1≤ d.
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It quickly follows that none of the generators from Table 1 is redundant, except possibly when d = 1. Indeed,
for example, if

(39) λ1xN +λ2yN +λ3zN +λ4wN +(xyzw)ra[n] = 0

in Pm(2d−2,r,r,r,r) is a multi-homogeneous equation with

λ1 ∈ Pm(d−2,0,r,r,r) , λ2 ∈ Pm(d−2,r,0,r,r) , λ3 ∈ Pm(d−2,r,r,0,r) , λ4 ∈ Pm(d−2,r,r,r,0) ,

and some k-linear combination of a of a1, . . . ,ad in P2d−2, then

λ1 = yrzrwrµ[n]1 , λ2 = xrzrwrµ[n]2 , λ3 = xryrwrµ[n]3 , and λ4 = xryrzrµ[n]4 ,

for some µi ∈ Pd−2. The polynomial ring P is a domain; hence (39) implies

µ[n]1 (xd)[n]+µ[n]2 (yd)[n]+µ[n]3 (zd)[n]+µ[n]4 (wd)[n]+a[n] = 0.

The homomorphism g 7→ g[n] is an injection. Apply (5.12.1) to conclude that the coefficients of a as a k-linear
combination of a1, . . . ,ad are all zero.

If d = 1, then the polynomial a1 of Table 1 is a1 = 1. It is not true that x,y,z,w,1 is a minimal generat-
ing set for the ideal (x,y,z,w,1); but it is true, and obvious, that xn+r,yn+r,zn+r,wn+r,(xyzw)r is a minimal
generating set for the ideal (xn+r,yn+r,zn+r,wn+r,(xyzw)r). Also, if d = 1, then the polynomial b11 of Ta-
ble 1 is b11 = x− y. It is not true that x,y,z,w,x− y is a minimal generating set for the ideal (x,y,z,w,x− y);
but it is true, and obvious, that xn+r,yn+r,zn+r,wn+r,zrwr(xn− yn) is a minimal generating set for the ideal
(xn+r,yn+r,zn+r,wn+r,zrwr(xn− yn)). When d = 1, one can treat bh1, for all h in the same manner. �

6. THE MAIN THEOREM.

Adopt the language of 2.1 and 2.2 with k a field of characteristic zero. Theorem 6.2 gives the multi-graded
Betti numbers in the minimal homogeneous resolution of P/I by free P-modules.

Notation 6.1. In the statement of Theorem 6.2, each of the symbols e1, e2, e3, and e4, is either the integer
0 or the integer 1. The sums ⊕∑ei=0, ⊕∑ei=1, ⊕∑ei=2, ⊕∑ei=3, and ⊕∑ei=4, have 1, 4, 6, 4, and 1 summand
respectively. In particular, for example, the sum ⊕∑ei=2 has six summands; these summands correspond to
(e1,e2,e3,e4) equal to (1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1), and (0,0,1,1).

The notation m(k,ρ1,ρ2,ρ3,ρ4) is explained in 3.4.

Theorem 6.2. Let k be a field of characteristic zero, n, d, and r be positive integers, with r < n, N be the
integer N = dn+ r, P be the standard graded polynomial ring P = k[x,y,z,w], I be the ideal

I = (xN ,yN ,zN ,wN) : (xn + yn + zn +wn)

of P, and R be the quotient ring R = P/I. Give P the multi-grading of Definition 2.2. Then the minimal
multi-homogeneous resolution of R by free P-modules has the form

F : 0→ F4→ F3→ F2→ F1→ F0,

with F0 = P,

F1 =


⊕

∑ei=1 P(−m(d,re1,re2,re3,re4))

⊕
⊕

∑ei=4 P(−m(2d−2,re1,re2,re3,re4))
d

⊕
⊕

∑ei=2 P(−m(2d−1,re1,re2,re3,re4))
d

⊕
⊕

∑ei=0 P(−m(2d,re1,re2,re3,re4))
d+1,

F3 =


⊕

∑ei=3 P(−m(3d−1,re1,re2,re3,re4))

⊕
⊕

∑ei=0 P(−m(2d+1,re1,re2,re3,re4))
d

⊕
⊕

∑ei=2 P(−m(2d,re1,re2,re3,re4))
d

⊕
⊕

∑ei=4 P(−m(2d−1,re1,re2,re3,re4))
d+1,

F2 =

{ ⊕
∑ei=3 P(−m(2d−1,re1,re2,re3,re4))

2d+1

⊕
⊕

∑ei=1 P(−m(2d,re1,re2,re3,re4))
2d+1,

and F4 =
⊕

∑ei=4

P(−m(4d−1,re1,re2,re3,re4)).
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Remark. If one ignores the M-grading on P and merely views P as a standard graded polynomial ring, then
the minimal homogeneous resolution F of Theorem 6.2 is F0 = P,

F1 = P(−(nd + r))4⊕P(−(2nd−2n+4r))d⊕P(−(2nd−n+2r))6d⊕P(−2nd)d+1,

F2 = P(−(2nd−n+3r))8d+4⊕P(−(2nd + r))8d+4,

F3 = P(−(3nd−n+3r))4⊕P(−(2nd +n))d⊕P(−(2nd +2r))6d⊕P(−(2nd−n+4r))d+1, and

F4 = P(−(4nd−n+4r)).

Proof. The module F1 may be read from Proposition 5.12. The socle of P/(xN ,yN ,zN ,wN) is represented by
xN−1yN−1zN−1wN−1; hence, the multi-degree of the socle of P/(xN ,yN ,zN ,wN) : (xn + yn + zn +wn) is

δ0 = m(4d−1,r−1,r−1,r−1,r−1);

see 3.9.(d). Apply 3.9.(e) to see that F4 = P(−δ), where

δ = the multi-degree of xyzw+δ0

= m(0,1,1,1,1)+m(4d−1,r−1,r−1,r−1,r−1) = m(4d−1,r,r,r,r).

(40) The resolution F is self-dual, see 3.10.2. If F1 =⊕P(−βi) and F4 = P(−δ), then F3 =⊕P(−δ+βi).

The situation is straightforward. We know the multi-graded Hilbert function of all of the modules in the
exact sequence

0→ F4→ F3→ F2→ F1→ P→ R→ 0,

except for the module F2. However the multi-graded Hilbert function is additive on exact sequences; so we
can solve for the multi-graded Hilbert function of F2 and then describe F2 as a multi-graded free P-module. In
particular, rank is additive on exact sequences and R has rank zero; hence

(41) F2 is a free P-module of rank 16d +8.

(Recall that the rank of the P-module M is the dimension of the vector space K⊗P M where K is the quotient
field of P.)

The only difficulty comes from the fact that it is difficult to manipulate the formula of Proposition 4.2. On
the other hand, it is easy to use Proposition 4.2 to compute HR(m) for any m ∈ M; consequently, we will
determine the structure of F2 by evaluating the equation

(42) HF2(m) = HR(m)−HP(m)+HF1(m)+HF3(m)−HF4(m),

which holds for all m ∈M, at a few carefully chosen m ∈M.
Let

S =

{
(β,γ)

∣∣∣∣ (β,γ)is a 5-tuple of integers in standard form in the sense of 3.4
and P(−mb,γ) is a summand of F2

}
and, for each (β,γ) ∈ S , let

#(β,γ) equal the number of summands of P(−m(β,γ)) in F2.

Thus,

(43) F2 =
⊕

(β,γ)∈S
P(−m(β,γ))

#(β,γ) .

It is necessary to determine the elements of S and the value of #(β,γ) for each element (β,γ) of S . To that
end, we evaluate HF2(m) at various m ∈M. Let (k,ρ) be a five-tuple of integers in standard form. Recall the
description of F2 which is given in (43). Observe that

HF2(m(k,ρ)) = ∑
(β,γ)∈S

#(β,γ)HP(m(k,ρ)−m(β,γ))(44)
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Use 3.8.(b) to convert the Hilbert function which corresponds to the multi-grading M on P into the Hilbert
function that corresponds to the standard grading on P. In particular, if (`,σ) is a five-tuple of integers in
standard form in the sense of 3.4, then

HP(m(`,σ)) = HP(`).

It follows that the expression HP(m(k,ρ)−m(β,γ)), which appears in (44), is equal to HP(k−β−E), where E is
the cardinality of the set {i |ρi < γi}.

For each fixed triple of integers (β,s,u), with 0≤ β and 0≤ s,u≤ 4, we count

νβ,s = ∑
{γ |(β,γ)∈S and exactly s of the γi satisfy 0 < γi}

#(β,γ),

ν
′
β,s = ∑

{γ |(β,γ)∈S and exactly s of the γi satisfy r ≤ γi}
#(β,γ),(45)

µβ,u = ∑
{γ |(β,γ)∈S and exactly u of the γi satisfy r < γi}

#(β,γ), and

µ′
β,u = ∑

{γ |(β,γ)∈S and exactly u of the γi satisfy n−1 < γi}
#(β,γ).

Notice that for each fixed β, s0, and u0,

(46)
4

∑
s=s0

ν
′
β,s ≤

4

∑
s=s0

νβ,s and
4

∑
u=u0

µ′
β,u ≤

4

∑
u=u0

µβ,u.

Furthermore, µ′
β,u is equal to zero unless u = 0.

First calculation. We evaluate (42) at m(k,0,0,0,0) and m(k,r−1,r−1,r−1,r−1), for k ≤ 2d +2, to learn that

ν
′
β,s = νβ,s = 0, if β+ s≤ 2d,

∑
β+s=2d+1

ν
′
β,s = ∑

β+s=2d+1
νβ,s = 8d +4,(47)

∑
β+s=2d+2

ν
′
β,s = ∑

β+s=2d+2
νβ,s = 8d +4, and

ν
′
β,s = νβ,s = 0, if 2d +3≤ β+ s.

Observe that

HF1(m(k,r−1,r−1,r−1,r−1)) = HF1(m(k,0,0,0,0)) =

{
4HP(k−d−1)+dHP(k−2d−2)
+6dHP(k−2d−1)+(d +1)HP(k−2d),

HF3(m(k,r−1,r−1,r−1,r−1)) = HF3(m(k,0,0,0,0)) =

{
4HP(k−3d−2)+dHP(k−2d−1)
+6dHP(k−2d−2)+(d +1)HP(k−2d−3), and

HF4(m(k,r−1,r−1,r−1,r−1)) = HF4(m(k,0,0,0,0)) = HP(k−4d−3).

Use Proposition 4.2 with εi = 1 for all i and

ε =

{
0, if k ≤ 2d−1,
1, if 2d ≤ k,

to calculate

HR(m(k,r−1,r−1,r−1,r−1)) = HR(m(k,0,0,0,0))

=

{
HP(k)−4HP(k−d−1)+6HP(k−2d−2)−4HP(k−3d−3)+HP(k−4d−4), if k ≤ 2d−1, and
HP(k+1)−4HP(k−d)+6HP(k−2d−1)−4HP(k−3d−2)+HP(k−4d−3), if 2d ≤ k.
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For k ≤ 2d−1, the left side of equation (42) is

∑
β

4

∑
s=0

νβ,sHP(k−β− s), when evaluated at m(k,0,0,0,0), and(48)

∑
β

4

∑
s=0

ν
′
β,sHP(k−β− s), when evaluated at m(k,r−1,r−1,r−1,r−1);

and the right side is

(d +1)HP(k−2d−3)+(7d +6)HP(k−2d−2)+7dHP(k−2d−1)+(d +1)HP(k−2d) = 0,

when evaluated at either multi-index. (Keep in mind that HP( j) = 0 for j < 0.) It follows that

0 = HP(0)
(

∑
β+s=k

νβ,s

)
+HP(1)

(
∑

β+s=k−1
νβ,s

)
+ · · ·

= HP(0)
(

∑
β+s=k

ν
′
β,s

)
+HP(1)

(
∑

β+s=k−1
ν
′
β,s

)
+ · · ·

and by induction one concludes that νβ,s = 0 = ν′
β,s whenever β+ s ≤ 2d− 1. For k = 2d, the left side of

equation (42) is

HP(0)
(

∑
β+s=2d

νβ,s

)
, when evaluated at m(k,0,0,0,0), and

HP(0)
(

∑
β+s=2d

ν
′
β,s

)
, when evaluated at m(k,r−1,r−1,r−1,r−1);

and the right hand side is

HP(2d +1)−HP(2d)−4HP(d)+4HP(d−1)+(d +1) =
(

2d +3
2

)
−4
(

d +2
2

)
+d +1 = 0,

when evaluated at either multi-index. Therefore ν′
β,s = νβ,s = 0 whenever β+ s = 2d. (Recall that the Hilbert

function that corresponds to the standard grading on P is well known; see 3.8.(b). We also used the Pascal
triangle identity for binomial coefficients (27).) For k = 2d +1, the left side of equation (42) is

HP(0)
(

∑
β+s=2d+1

νβ,s

)
+HP(1)

(
∑

β+s=2d
νβ,s

)
, when evaluated at m(k,0,0,0,0), and

HP(0)
(

∑
β+s=2d+1

ν
′
β,s

)
+HP(1)

(
∑

β+s=2d
ν
′
β,s

)
, when evaluated at m(k,r−1,r−1,r−1,r−1);

and the right hand side is

HP(2d +2)−HP(2d +1)−4HP(d +1)+4HP(d)+(7d +6)+4(d +1) = 8d +4,

when evaluated at either multi-index. It follows that

∑
β+s=2d+1

νβ,s = 8d +4 = ∑
β+s=2d+1

ν
′
β,s.

For k = 2d +2, the left hand side of equation (42)(
∑

β+s=2d+1
νβ,s

)
HP(1)+

(
∑

β+s=2d+2
νβ,s

)
HP(0) = 4(8d +4)+ ∑

β+s=2d+2
νβ,s,

when evaluated at m(k,0,0,0,0), and

(
∑

β+s=2d+1
ν
′
β,s

)
HP(1)+

(
∑

β+s=2d+2
ν
′
β,s

)
HP(0) = 4(8d +4)+ ∑

β+s=2d+2
ν
′
β,s,
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when evaluated at m(k,r−1,r−1,r−1,r−1);

and the right hand side is

HP(2d +3)−HP(2d +2))−4(HP(d +2)−HP(d +1))+7dHP(0)+(7d +6)HP(1)+(d +1)HP(2)
= 40d +20,

when evaluated at either multi-index. Thus,

∑
β+s=2d+2

νβ,s = 8d +4 = ∑
β+s=2d+2

ν
′
β,s.

Recall from (41) that the rank of F2 is 16d + 8; consequently, ν′
β,s = νβ,s = 0 whenever 2d + 3 ≤ β+ s. This

completes the first calculation.

Observe that the first calculation has the following consequences.

6.2.1. If (β,γ) is in S , then β plus the number of non-zero γi is either 2d +1 or 2d +2.

6.2.2. If (β,γ) is in S , 2d−3≤ β≤ 2d +2.

6.2.3. Every positive γi that occurs in a direct summand of F2 must be at least r.

Assertion 6.2.1 is obvious now that (47) has been established; 6.2.2 is a consequence of 6.2.1 because there
are four γi. The fact that

∑
β+s=k

ν
′
β,s = ∑

β+s=k
νβ,s,

for each k ∈ {2d+1,2d+2}, together with (46), ensures that ν′
β,s = νβ,s for all β and s. Thus, every positive γi

that occurs in a direct summand of F2 must be at least r, and this is 6.2.3.

The parameters µβ,u and µ′
β,u are defined in (45). It follows from (6.2.2) that

(49) µβ,u and µ′
β,u are both zero unless 2d−3≤ β+u≤ 2d +2.

Second calculation. We evaluate (42) at m(k,r,r,r,r) and m(k,n−1,n−1,n−1,n−1), for 2d−3≤ k ≤ 2d, to learn that

µ′
β,u = µβ,u = 0, if 2d−3≤ β+u≤ 2d−2,

∑
β+u=2d−1

µ′
β,u = ∑

β+u=2d−1
µβ,u = 8d +4,(50)

∑
β+u=2d

µ′
β,u = ∑

β+u=2d
µβ,u = 8d +4, and

µ′
β,u = µβ,u = 0, if 2d +1≤ β+u≤ 2d +2.

Use 3.8.(b) to compute that

HF1(m(k,r,r,r,r)) = HF1(m(k,n−1,n−1,n−1,n−1)) =

{
4HP(k−d)+dHP(k−2d +2)
+6dHP(k−2d +1)+(d +1)HP(k−2d),

HF3(m(k,r,r,r,r)) = HF3(m(k,n−1,n−1,n−1,n−1)) =

{
dHP(k−2d−1)+6dHP(k−2d)
+(d +1)HP(k−2d +1)+4HP(k−3d +1), and

HF4(m(k,r,r,r,r)) = HF4(m(k,n−1,n−1,n−1,n−1)) = HP(k−4d +1).
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Apply (44) and (49) to see that

HF2(m(k,r,r,r,r)) = ∑
{(β,γ)∈S}

#(β,γ)HP(m(k,r,r,r,r)−m(β,γ))

=
4

∑
u=0

∑
{(β,γ)∈S | |{i|r<γi}|=u}

#(β,γ)HP(k−β−u)

=
4

∑
u=0

∑
β

µ(β,u)HP(k−β−u)

=
2d+2

∑
U=2d−3

(
∑

β+u=U
µ(β,u)

)
HP(k−U).

A similar calculation yields

HF2(m(k,n−1,n−1,n−1,n−1)) =
2d+2

∑
U=2d−3

(
∑

β+u=U
µ′(β,u)

)
HP(k−U).

Use Proposition 4.2 with εi = 0 for all i and

ε =

{
0, if k ≤ 2d−3,
1, if 2d−2≤ k,

to calculate

HR(m(k,r,r,r,r)) = HR(m(k,n−1,n−1,n−1,n−1)) =

{
HP(k+ ε)−4HP(k−d + ε)+6HP(k−2d + ε)

−4HP(k−3d + ε)+HP(k−4d + ε).

Equation (42) now yields

2d+2

∑
U=2d−3

( ∑
β+u=U

µβ,u)HP(k−U)

= HF2(m(k,r,r,r,r))

= HR(m(k,r,r,r,r))−HP(m(k,r,r,r,r))+HF1(m(k,r,r,r,r))+HF3(m(k,r,r,r,r))−HF4(m(k,r,r,r,r))

=


HP(k+ ε)−HP(k)−4HP(k−d + ε)+4HP(k−d)+dHP(k−2d +2)

+6HP(k−2d + ε)+(7d +1)HP(k−2d +1)+(7d +1)HP(k−2d)
+dHP(k−2d−1)−4HP(k−3d + ε)+4HP(k−3d +1)+HP(k−4d + ε)−HP(k−4d +1).

(51)

In a similar manner,
2d+2

∑
U=2d−3

( ∑
β+u=U

µ′
β,u)HP(k−U)(52)

= HF2(m(k,n−1,n−1,n−1,n−1))

=

{
HR(m(k,n−1,n−1,n−1,n−1))−HP(m(k,n−1,n−1,n−1,n−1))+HF1(m(k,n−1,n−1,n−1,n−1))

+HF3(m(k,n−1,n−1,n−1,n−1))−HF4(m(k,n−1,n−1,n−1,n−1))

= HR(m(k,r,r,r,r))−HP(m(k,r,r,r,r))+HF1(m(k,r,r,r,r))+HF3(m(k,r,r,r,r))−HF4(m(k,r,r,r,r)),

which is given in (51). When k = 2d−3, then (51) and (52) become

∑
β+u=2d−3

µ′
β,u = ∑

β+u=2d−3
µβ,u = 0;
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hence, µ′
β,u = µβ,u = 0 for β+u = 2d−3. When k = 2d−2, then (51) and (52) become

∑
β+u=2d−2

µ′
β,u = ∑

β+u=2d−2
µβ,u = HP(2d−1)−HP(2d−2)−4HP(d−1)+4HP(d−2)+dHP(0) = 0.

It follows that if β+u = 2d−2, then µ′
β,u = µβ,u = 0. When k = 2d−1, then (51) and (52) become

∑
β+u=2d−1

µ′
β,u = ∑

β+u=2d−1
µβ,u = HP(2d)−HP(2d−1)−4HP(d)+4HP(d−1)+dHP(1)+(7d +7)HP(0)

= 8d +4.

When k = 2d, then (51) and (52) become

(8d +4)HP(1)+ ∑
β+u=2d

µ′
β,u = (8d +4)HP(1)+ ∑

β+u=2d
µβ,u

=

{
HP(2d +1)−HP(2d)−4HP(d +1)
−4HP(d)+dHP(2)+(7d +7)HP(1)+(7d +1)HP(0)

= 40d +20.

It follows that

∑
β+u=2d

µβ,u = ∑
β+u=2d

µ′
β,u = 8d +4.

Recall from (41) that the rank of F2 is 16d + 8; consequently, µ′
β,u = µβ,u = 0 whenever 2d + 1 ≤ β+ u. This

completes the second calculation.

Observe that the second calculation has the following consequences.

6.2.4. The parameters µβ,u and µ′
β,u are equal for all β and u.

6.2.5. The values of γi that occur in the direct summands of F2 are either 0 or r.

6.2.6. There are 8d +4 direct summands of F2 with β = 2d−1, and 8d +4 direct summands with β = 2d.

Assertion 6.2.4 is an immediate consequence of (50) and (46). The parameter γi is required to satisfy
0≤ γi ≤ n−1; thus, µ′

β,u is zero whenever u is positive. Apply 6.2.4 to conclude that µβ,u is zero whenever u is
positive and all γi that occur in the direct summands of F2 are less than or equal to r. On the other hand, 6.2.3
ensures that all non-zero γi are at least r. Assertion 6.2.5 has been established. We have seen that µβ,u is zero
unless u = 0 and that µβ0,0 is equal to the number of summands of F2 with β = β0. (The definition of µ is given
in (45).) Assertion 6.2.6 now follows from (50).

Third calculation. We evaluate HF2(m(k,r,r,0,0)) for 2d−1≤ k. For w∈ {0,1,2} and β in {2d−1,2d}, let ψβ,w
denote the number of summands in F2 that have the fixed value of β, and satisfy

|{i | 3≤ i≤ 4 and γi = r}|= w

The parameter β+w satisfies 2d−1≤ β+w≤ 2d +2. Observe that

HF1(m(k,r,r,0,0)) = 2HP(k−d)+2HP(k−d−1)+dHP(k−2d +1)+(6d +1)HP(k−2d)+dHP(k−2d−1)

HF3(m(k,r,r,0,0)) =

{
dHP(k−2d)+(6d +1)HP(k−2d−1)+dHP(k−2d−2)

+2HP(k−3d−1)+2HP(k−3d),

HF4(m(k,r,r,0,0)) = HP(k−4d−1).

Use Proposition 4.2 to calculate HR(m(k,r,r,0,0)), for 2d−1 ≤ k. Observe that ε1 = ε2 = 0, ε3 = ε4 = 1, ε = 1,
and

HR(m(k,r,r,0,0)) =

{
HP(k+1)−2HP(k−d)−2HP(k−d +1)+HP(k−2d−1)+4HP(k−2d)

+HP(k−2d +1)−2HP(k−3d)−2HP(k−3d−1)+HP(k−4d−1).
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The right hand side of equation (42), evaluated at m(k,r,r,0,0), with 2d−1≤ k, is{
HP(k+1)−HP(k)−2HP(k−d +1)+2HP(k−d−1)+(d +1)HP(k−2d +1)

+(7d +5)HP(k−2d)+(7d +2)HP(k−2d−1)+dHP(k−2d−2).

The left hand side of equation (42) evaluated at m(k,r,r,0,0) is

2d+2

∑
W=2d−1

(
∑

β+w=W
ψβ,w

)
HP(k−W )

When k = 2d−1, equation (42), evaluated at m(k,r,r,0,0), becomes

∑
β+w=2d−1

ψβ,w = HP(2d)−HP(2d−1)−2HP(d)+2HP(d−2)+d +1 = 0

Thus, there are no summands of F2 that have β = 2d− 1 and γ3 = γ4 = 0. The same calculation applies to
any choice of two out of γ1, . . . ,γ4. Therefore, for every summand of F2 with β = 2d−1, and every choice of
{i, j} ⊆ {1,2,3,4}, we must have γi = r or γ j = r. It follows that every such summand of F2 has at least three
of γ1, . . . ,γ4 equal to r.

Recall from 6.2.1 that if P(−m(β,γ)) is a summand of F2 then β plus the number of non-zero γi is either 2d+1
or 2d+2. Therefore, it is not possible for γ1, . . . ,γ4 all to be non-zero. Due to symmetry and the fact that there
are 8d + 4 summands with β = 2d− 1, it follows that there are 2d + 1 summands of F2 with β = 2d− 1 and
γi = γ j = γ` = r for each choice of a three element subset {i, j, `} of {1,2,3,4} (and the remaining γ equal to
zero).

Furthermore, 6.2.1 also yields that the 8d + 4 summands of F2 that have β = 2d must satisfy β plus the
number of non-zero γi is equal to 2d + 1. In other words, for each such summand, there is exactly one of
γ1, . . . ,γ4 equal to r. By symmetry, it follows that there are 2d + 1 summands with β = 2d, γi = r and γ j = 0
for all j ∈ {1,2,3,4}\{i}, for each choice of i = 1,2,3,4.

This concludes the proof of the theorem. �

7. CONSEQUENCES OF THE MAIN THEOREM.

Adopt the language of 2.1 and 2.2 with k a field of characteristic zero. Corollary 7.1 gives the multi-graded
Betti numbers in the minimal homogeneous resolution of A = P/(xN ,yN ,zN ,wN)P by free P-modules, for

P = P/(xn + yn + zn +wn).

Corollary 7.2 gives the resolution of A by free P-module, as well as the socle degrees of A.
The notation m(k,ρ) is described in 3.4 and the notation involving (e1,e2,e3,e4) is described in 6.1.

Corollary 7.1. Let k be a field of characteristic zero, n, d, and r be positive integers, with r < n, N be the
integer N = dn+ r, P be the standard graded polynomial ring P = k[x,y,z,w], and P be the quotient ring
P/(xn + yn + zn + wn). Give P the multi-grading of Definition 2.2. Then the minimal multi-homogeneous
resolution of P/(xN ,yN ,zN ,wN)P by free P-modules has the form

G : · · · → G4→ G3→ G2→ G1→ G0,

with G0 = P, G1 =
⊕

∑ei=1 P(−m(d,re1,re2,re3,re4)),

G2 =


⊕

∑ei=4 P(−m(2d−1,re1,re2,re3,re4))
d

⊕
⊕

∑ei=2 P(−m(2d,re1,re2,re3,re4))
d+1

⊕
⊕

∑ei=0 P(−m(2d+1,re1,re2,re3,re4))
d+1,

Gi =

{ ⊕
∑ei=3 P(−m(2d+ i−3

2 ,re1,re2,re3,re4)
)2d+1

⊕
⊕

∑ei=1 P(−m(2d+ i−1
2 ,re1,re2,re3,re4)

)2d+1,
for i odd with 3≤ i, and
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Gi =


⊕

∑ei=4 P(−m(2d+ i−4
2 ,re1,re2,re3,re4)

)2d+1

⊕
⊕

∑ei=2 P(−m(2d+ i−2
2 ,re1,re2,re3,re4)

)2d+1

⊕
⊕

∑ei=0 P(−m(2d+ i
2 ,re1,re2,re3,re4)

)2d+1,

for i even with 4≤ i.

Remark. If one ignores the M-grading on P and merely views P as a standard graded polynomial ring, then
the minimal homogeneous resolution G of Corollary 7.1 is G0 = P, G1 = P(−(nd + r))4,

G2 = P(−(2nd−n+4r))d⊕P(−(2nd +2r))6d+6⊕P(−(2nd +n))d+1,

Gi = P(−(2nd + (i−3)n
2 +3r))8d+4⊕P(−(2nd + (i−1)n

2 + r))8d+4, for i odd with 3≤ i, and

Gi = P(−(2nd + (i−4)n
2 +4r))2d+1⊕P(−(2nd + (i−2)n

2 +2r))12d+6⊕P(−(2nd + in
2 ))

2d+1,

for i even with 4≤ i.

Proof. We apply [10, Thm. 9.1, part 2]. Let F be the minimal multi-homogeneous resolution of

R = P/(xN ,yN ,zN ,wN) : (xn + yn + zn +wn)

by free P-modules which is given in Theorem 6.2, ¯ be the functor P⊗P−, and 0 represent the four-tuple of
integers (0,0,0,0). Let K1 and F12 be the summands

K1 =
⊕

∑ei=1

P(−m(d,re1,re2,re3,re4)) and F12 =


⊕

∑ei=4 P(−m(2d−2,re1,re2,re3,re4))
d

⊕
⊕

∑ei=2 P(−m(2d−1,re1,re2,re3,re4))
d

⊕
⊕

∑ei=0 P(−m(2d,re1,re2,re3,re4))
d+1

of F1, F32 be the summand

F32 =


⊕

∑ei=0 P(−m(2d+1,re1,re2,re3,re4))
d

⊕
⊕

∑ei=2 P(−m(2d,re1,re2,re3,re4))
d

⊕
⊕

∑ei=4 P(−m(2d−1,re1,re2,re3,re4))
d+1

of F3, and Ki be
∧i K1. Notice that the differential of F sends K1 onto the complete intersection ideal (xN ,yN ,

zN ,wN) and that degree considerations show that F32 is the annihilator of K1 in the perfect pairing F1⊗F3→ F4
which is induced by the multi-homogeneous Differential Graded (DG) Algebra structure on F . Let α1 : K1→F1
be the inclusion map,

∧•K1 be the Koszul complex, α• :
∧•K1 → F be a multi-homogeneous map of DG

complexes which extends the identity map in degree zero and α1 in degree one. The multi-homogeneous maps
βi : Fi → Ki are defined in [10] in such a way that the multi-degree of βi ◦αi is equal to the multi-degree of
multiplication by xn+yn+zn+wn, which is m(1,0). In particular, K4 =P(−m(4d,r,r,r,r)), F4 =P(−(m(4d−1,r,r,r,r)),
the multi-homogeneous version of β4 is

β4 : F4→ K4(m(1,0)),

and the multi-homogeneous version of [10, (3.2.1)] is

0 // K4 //

α4

��

K3 //

α3

��

K2 //

α2

��

K1 //

α1

��

P

α0=

��
0 // F4 //

β4
��

F3 //

β3
��

F2 //

β2
��

F1 //

β1
��

P

β0
��

0 // K4(m(1,0)) // K3(m(1,0)) // K2(m(1,0)) // K1(m(1,0)) // P(m(1,0)).

Apply [10, Thm. 9.1, part 2] to obtain the multi-homogeneous resolution

(53) G : · · · −→ G2 −→ G1 −→ G0



THE RESOLUTION OF (xN ,yN ,zN ,wN) 27

of P/(xN ,yN ,zN ,wN)P by free P-modules, where the modules of G are

Gi =



P, if i = 0,
K1, if i = 1,
F1,2(−m(1,0))⊕K2, if i = 2,
F2(−m( i−1

2 ,0)), if 3≤ i and i is odd, and

F12(−m( i
2 ,0)

)⊕K2(−m( i
2−1,0))⊕F32(−m( i

2−1,0)), if 4≤ i and i is even.

No shifts are given in [10]; however, the differentials are explicitly given and the shifts can be calculated from
the differentials.

Theorem 9.1 in [10] does not guarantee that the resulting resolution is minimal; however, now that we have
determined the multi-homogeneous shifts in G, it is quite obvious that G is a minimal resolution. Indeed, each
shift which appears in each G j has the form m(k,re1,re2,re3,re4) where the parity of ∑ei is equal to the parity of
j. �

The notation m(k,ρ) is described in 3.4 and the notation involving (e1,e2,e3,e4) is described in 6.1.

Corollary 7.2. Let k be a field of characteristic zero, n, d, and r be positive integers, with r < n, N be the
integer N = dn+ r, P be polynomial ring P = k[x,y,z,w], and A be the almost complete intersection ring

P
(xN ,yN ,zN ,wN ,xn + yn + zn +wn)

.

Give P and A the multi-grading of Definition 2.2. Then the minimal multi-homogeneous resolution of A by free
P-modules has the form

0→ L4→ L3→ L2→ L1→ L0,

where L0 = P,

L1 =

{
P(−m(1,0,0,0,0))

⊕
⊕

∑ei=1 P(−m(d,re1,re2,re3,re4)),
L2 =


⊕

∑ei=1 P(−m(d+1,re1,re2,re3,re4))

⊕
⊕

∑ei=4 P(−m(2d−1,re1,re2,re3,re4))
d

⊕
⊕

∑ei=2 P(−m(2d,re1,re2,re3,re4))
d+1

⊕
⊕

∑ei=0 P(−m(2d+1,re1,re2,re3,re4))
d+1,

L3 =

{ ⊕
∑ei=1 P(−m(2d+1,re1,re2,re3,re4))

2d+1

⊕
⊕

∑ei=3 P(−m(2d,re1,re2,re3,re4))
2d+1,

L4 =


⊕

∑ei=0 P(−m(2d+2,re1,re2,re3,re4))
d

⊕
⊕

∑ei=2 P(−m(2d+1,re1,re2,re3,re4))
d

⊕
⊕

∑ei=4 P(−m(2d,re1,re2,re3,re4))
d+1,

and the socle of A is isomorphic as a multi-graded P-module to

k(−m(2d−2,n−1,n−1,n−1,n−1))
d

⊕k(−m(2d−1,n−1,n−1,r−1,r−1))
d⊕k(−m(2d−1,n−1,r−1,n−1,r−1))

d⊕k(−m(2d−1,n−1,r−1,r−1,n−1))
d

⊕k(−m(2d−1,r−1,n−1,n−1,r−1))
d⊕k(−m(2d−1,r−1,n−1,r−1,n−1))

d⊕k(−m(2d−1,r−1,r−1,n−1,n−1))
d

⊕k(−m(2d,r−1,r−1,r−1,r−1))
d+1.

Remark. If one ignores the M-grading on P and merely views P as a standard graded polynomial ring, then
the minimal homogeneous resolution L of Corollary 7.2 is L0 = P,

L1 = P(−n)⊕P(−(nd + r))4,

L2 = P(−(nd +n+ r))4⊕P(−(2nd−n+4r))d⊕P(−(2nd +2r))6d+6⊕P(−(2nd +n))d+1,

L3 = P(−(2nd +n+ r))8d+4⊕P(−(2nd +3r))8d+4,

L4 = P(−(2nd +2n))d⊕P(−(2nd +n+2r))6d⊕P(−(2nd +4r))d+1,

and the socle of A is isomorphic to

k(−(2dn+2n−4))d⊕k(−(2dn+n+2r−4))6d⊕k(−(2dn+4r−4))d+1.
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Proof. The ideals (xN ,yN ,zN ,wN ,xn + yn + zn +wn) and (xN ,yN ,zN ,wN) : (xn + yn + zn +wn) of P are linked
by the complete intersection (xN ,yN ,zN ,wN). Use the resolution of Theorem 6.2 and the technique of linkage
(see 3.14) to resolve A and use 3.9.(e) to read the socle degrees of A from the resolution of A. �

We offer two examples of Corollaries 7.1 and 7.2.

Example 7.3. Let k be a field of characteristic zero and d and r be positive integers. Let n = 2r, N be the
integer N = dn+ r, P be polynomial ring P = k[x,y,z,w], and A be the almost complete intersection ring

P
(xN ,yN ,zN ,wN ,xn + yn + zn +wn)

.

Then A is a level algebra with socle isomorphic to

k(−(4rd +4r−4))8d+1

and the minimal homogeneous resolution of A by free P-modules is pure and has the form

G : · · · → G4→ G3→ G2→ G1→ G0,

with

G0 = P, G1 = P(−(2rd + r))4, G2 = P(−(4rd +2r))8d+7, and Gi = P(−(4rd + ir))16d+8,

for 3 ≤ i. The matrix factorization of xn + yn + zn +wn which comprises the infinite tail of G consists of two
matrices of homogeneous forms of degree r.

Example 7.4. Let k be a field of characteristic zero and n, d, r, and c be positive integers, with r < n. Let

N = dn+ r, n′ = cn, r′ = cr, and N′ = cN.

Let P be the standard graded polynomial ring P = k[x,y,z,w], P and P′ be the hypersurface rings

P = P/(xn + yn + zn +wn) and P′ = P/(xn′ + yn′ + zn′ +wn′),

and A and A′ be the almost complete intersection rings

A =
P

(xN ,yN ,zN ,wN)P
and A′ =

P′

(xN′ ,yN′ ,zN′ ,wN′)P
.

The ring homomorphism P→ P, which sends g to g[c], is a flat homomorphism which induces a flat ring
homomorphism P→ P′. Indeed, P is a free module over the subring k[xc,yc,zc,wc] and P′ is a free module
over the subring

k[xc,yc,zc,wc]

(xn′ + yn′ + zn′ +wn′)
.

Furthermore, A⊗P P′ ∼= A′. It follows that if the socle of A is isomorphic to
⊕

i k(−σi), then the socle of A′ is
isomorphic to

(54)
⊕

i

k(−(cσi +4c−4));

and if G is the minimal homogeneous resolution of A by free P-modules, then G⊗P P′ is the minimal homoge-
neous resolution of A′ by free P′-modules. In particular, if the minimal homogeneous resolution of A by free
P-modules has the form

· · · →
⊕

j

P(−βi j)→ . . . ,

then the minimal homogeneous resolution of A′ by free P′-modules has the form

(55) · · · →
⊕

j

P′(−cβi j)→ . . . .

It is easy to see that the formulas of Corollaries 7.1 and 7.2 satisfy (54) and (55). The phenomenon of this
example is illustrated in Example 7.3; it also appears in Section 8.
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8. THE CASE WHEN N IS A MULTIPLE OF n.

In this section we study the ideal (xN ,yN ,zN ,wN) in the standard graded polynomial ring k[x,y,z,w] when
N = dn for some integer d with 2 ≤ d. This situation is fundamentally different than the situation of Sections
6 and 7 where N is not a multiple of n. In the present situation, the ideal (xN ,yN ,zN ,wN) : (xn + yn + zn +wn)
has d + 4 generators rather than the 8d + 5 generators of Theorem 6.2, for d = bN

n c; the socle dimension of
P/(xN ,yN ,zN ,wN)P is d in the present section, but 8d+1 in Corollary 7.2; and the projective dimension of the
P-module P/(xN ,yN ,zN ,wN)P is finite in the present section, but infinite in Corollary 7.1.

Proposition 8.1. Let k be a field of characteristic zero, n and d be integers, with 1≤ n and 2≤ d, N = dn, P
be the standard graded polynomial ring P = k[x,y,z,w], R, A, and P be the quotient rings:

R = P/(xN ,yN ,zN ,wN) : (xn + yn + zn +wn),

A = P/(xN ,yN ,zN ,wN ,xn + yn + zn +wn),and

P = P/(xn + yn + zn +wn).

Then the following statements hold.
(a) The minimal homogeneous resolution of R by free P-modules has the form

0→ P(−(4dn−n))→
P(−(3dn−n))4

⊕
P(−(2dn+n))d

→
P(−(2dn−n))d+3

⊕
P(−(2dn))d+3

→
P(−dn)4

⊕
P(−(2dn−2n))d

→ P.

(b) The minimal homogeneous resolution of A by free P-modules has the form

0→ P(−(2dn+2n))d →
P(−(2dn+n))d+3

⊕
P(−(2dn))d

→

P(−2dn)3

⊕
P(−(dn+n))4

⊕
P(−(2dn−n))d

→
P(−dn)4

⊕
P(−n)

→ P.

(c) The socle of A is isomorphic to k(−(2dn+2n−4))d .
(d) The P-module A has finite projective dimension and the minimal homogeneous resolution of A by free

P-modules has the form

0→ P(−(2dn+n))d →
P(−2dn)3

⊕
P(−(2dn−n))d

→ P(−dn)4→ P.

Proof. The ring homomorphism P→ P, which sends each element g of P to g[n], is flat. Indeed, P is a free
k[xn,yn,zn,wn]-module. In a similar manner, the ring homomorphism

P/(x+ y+ z+w)→ P,

which sends the class of g in P/(x+ y+ z+w) to the class of g[n] in P, is a flat homomorphism. Indeed, P is a
free k[xn,yn,zn,wn]/(xn + yn + zn +wn)-module. Furthermore, the ideals

(xN ,yN ,zN ,wN) and (xN ,yN ,wN ,zN) : (xn + yn + zn +wn) in P,

are the images of

(xd ,yd ,zd ,wd) and (xd ,yd ,wd ,zd) : (xd + yd + zd +wd) in
P

(x+ y+ z+w)
,

under the homomorphism (−)[n] : P/(x+ y+ z+w)→ P. Consequently, in order to prove (a), (b), and (d), as
stated, it suffices to prove the corresponding assertions when n= 1. Of course, (c) is an immediate consequence
of (b) and 3.9.(e).

Through out the rest of the proof n = 1.
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(a) Take n = 1 and let
F : 0→ F4→ F3→ F2→ F1→ P

be the minimal homogeneous resolution of R by free P-modules. According to Corollary 5.8, the ideal

(xd ,yd ,zd ,wd) : (x+ y+ z+w),

is minimally generated by xd , yd , zd , wd , together with d additional generators of degree 2d−2. It follows that

F1 = P(−d)4⊕P(−(2d−2))d .

The socle of R has degree 4(d− 1)− 1; hence, F4 = P(−(4d− 1)) by 3.9.(e). Use the self-duality of F ; see
(40); to compute

F3 = P(−(3d−1))4⊕P(−(2d +1))d .

Rank is additive on exact sequences and the rank of R as a P-module is zero. It follows that F2 has rank
2d + 6 as a P-module. Use Hilbert functions to determine the degrees of the generators of F2. It is shown in
Proposition 4.2 that

HR(k) =

{
HP(k+ ε)−4HP(k+ ε−d)+6HP(k+ ε−2d)
−4HP(k+ ε−3d)+HP(k+ ε−4d),

where

ε =

{
0, if k < 2d−2, and
1, if 2d−2≤ k.

Hilbert functions are additive on exact sequences; hence

HF2(k) = HR(k)−HP(k)+HF1(k)+HF3(k)−HF4(k) =

{
0, if k ≤ 2d−2, and
d +3, if k = 2d−1.

Thus, P(−(2d−1))d+3 is a summand of F2. The resolution F is self-dual; hence P(−2d)d+3 is also a summand
of F2. The rank of F2 is 2d+6. We conclude that F2 = P(−(2d−1))d+3⊕P(−2d)d+3. Assertion (a) has been
established.

One can easily produce a resolution of A by free P-modules using linkage (see 3.14); however some care
has to be taken in order to convert this resolution into a minimal resolution. We prefer to first resolve A by free
P modules and then lift the resolution by free P modules to a resolution by free P-modules. That is, we first
prove (d) and then we deduce (b).

(d) Consider the k[x,y,z]-algebra isomorphism

P =
k[x,y,z,w]

(x+ y+ z+w)
→ Q = k[x,y,z]

which sends

(56) the class of w to −(x+ y+ z).

Observe that the map (56) sends A isomorphically onto A′ = Q/(xd ,yd ,zd ,(x+y+ z)d). We know from Propo-
sition 5.7 and the Buchsbaum-Eisenbud Theorem (see for example, Lemma 5.4) that the minimal homogeneous
resolution of

Q
(xd ,yd ,zd) : (x+ y+ z)d ,

by free Q-modules, has the form of the bottom complex of

(57) 0 // Q(−3d) //

��

Q(−2d)3 //

��

Q(−d)3 //

α1
��

Q

=

��
0 // Q(−2d) // Q(−(d +1))d⊕Q(−d)χ // Q(−(d−1))d⊕Q(−d)χ // Q,
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where

χ =

{
1, if d is even, and
0, if d is odd.

It follows from the theory of linkage (see 3.14) that a resolution of

Q
(xd ,yd ,zd ,(x+ y+ z)d)

= A′,

by free Q-modules, is obtained by taking the mapping cone of the dual of (57). It is important to recall from
Proposition 5.7 that if χ is positive, then zd is a minimal generator of

(xd ,yd ,zd) : (x+ y+ z)d ;

and therefore, one copy of Q(−d) =−→Q(−d) is a direct summand of α1 in (57); and the corresponding summand
Q(−2d)χ → Q(−2d)χ splits from the shifted mapping cone of the dual of (57). At any rate, one obtains a
homogeneous resolution of A′ by free Q-modules of the form

0→ Q(−(2d +1))d →
Q(−2d)3

⊕
Q(−(2d−1))d

→ Q(−d)4→ Q.

A quick look at the twists in the resolution guarantees that the resolution is minimal. This completes the proof
of (d).

(b) One may interpret (d) to say that k[x,y,z,w]
(xd ,yd ,zd ,(x+y+z)d)

has a minimal homogeneous resolution, by free P-
modules, of the form

L : 0 // P(−(2d +1))d // P(−2d)3⊕P(−(2d−1))d // P(−d)4 // P .

Observe that

0→ k[x,y,z,w]
(xd ,yd ,zd ,(x+ y+ z)d)

x+y+z+w−−−−−→ k[x,y,z,w]
(xd ,yd ,zd ,(x+ y+ z)d)

→ A→ 0

is an exact sequence of P-modules; and therefore, the mapping cone of L[−1]
x+y+z+w−−−−−→ L is minimal homoge-

neous resolution of A. �

9. THE GENERATORS OF (xd ,yd ,zd) : (x+ y+ z)d AND (xd ,yd+1,zd) : (x+ y+ z)d+1 .

We exhibit explicit elements in the ideals

(xd ,yd ,zd) : (x+ y+ z)d and (xd ,yd+1,zd) : (x+ y+ z)d+1.

We used these explicit elements in Proposition 5.7 to determine the graded Betti numbers of these ideals
when the field has characteristic zero. (Indeed, in Proposition 5.7 we record a minimal generating set for
these ideals.) These ideals define compressed codimension three Gorenstein quotient rings with odd socle
degree. Compressed codimension three Gorenstein quotient rings with even socle degree are well-understood,
see Lemma 5.4 or [6], in particular, they have linear resolutions. However, no theory provides the graded
Betti numbers of compressed codimension three Gorenstein quotient rings with odd socle degree. In order to
produce the graded Betti numbers, we were forced to produce a minimal generating set.

Proposition 9.1. Let R be the ring Z[x,y,z]. Let j, d, ε, and σ be integers with

1≤ j ≤ d, 0≤ ε≤ 1, and j−1≤ σ≤ d−1.

Let

(58) Fσ, j,ε =
j−1

∑
k=0

(−1)σ+k
(

d−1− k
d− j

)(
d−1−σ+ k

k

)(
σ+ ε

j−1+ ε

)
xkzσ−k



32 A. R. KUSTIN, R. R.G., AND A. VRACIU

and

(59) f j,ε =
d−1

∑
s= j−1

Fs, j,εyd−1−s.

Then f j,ε ∈ (xd ,yd+ε,zd) : (x+ y+ z)d+ε.

The proof of Proposition 9.1 uses the following identity twice.

Lemma 9.2. [9, Lemma 2.24] Let a, z, p, w, and c be integers with 0≤ a. Then

∑
m∈Z

(−1)m
(

a
m

)(
m+ z

p

)(
m+w

c

)
= (−1)a

∑
`∈Z

(
z

p− `

)(
a
`

)(
w+ `

c−a+ `

)
.

In Lemma 9.2 the binomial coefficient
(a

b

)
makes sense for all pairs of integers (a,b), with

(
a
b

)
=


a(a−1) · · ·(a−b+1)

b!
, if 0 < b,

1, if 0 = b, and

0, if b < 0.

In particular,

(60)
(a

b

)
= (−1)b

(b−a−1
b

)
,

holds for all integers a and b. The other fact about binomial coefficients that we use often is the familiar fact
that

(61) if 0≤ a < b, then
(

a
b

)
= 0.

The proof of Proposition 9.1. There are three steps.
Step 1. We expand the product (x+ y+ z)d+ε f j,ε into the form

(x+ y+ z)d+ε f j,ε = ∑
A+B+C=2d−1+ε

XABCxAyBzC,

where, for each 3-tuple of exponents (A,B,C), there is a finite set of ordered pairs SABC such that

XABC = ∑
(k,s)∈SABC

(−1)s+kYjdεABCsk

with

(62) YjdεABCsk =

(
d + ε

B+ s+1−d

)(
2d−B− s−1+ ε

A− k

)(
d−1− k

d− j

)(
d−1− s+ k

d−1− s

)(
s+ ε

j−1+ ε

)
.

Step 2. We prove that if A, B, and C satisfy

(63) 0≤ A,C ≤ d−1, 0≤ B≤ d−1+ ε, and A+B+C = 2d−1+ ε,

then
XABC = ∑

s∈Z
∑
k∈Z

(−1)s+kYjdεABCsk.

Step 3. For A,B,C satisfying (63), we apply Lemma 9.2 to

∑
k∈Z

(−1)k
(

2d−B− s−1
A− k

)(
d−1− k

d− j

)(
d−1− s+ k

d−1− s

)
;

then we apply Lemma 9.2 to ∑s∈Z(−1)s of the three remaining terms which involve s. We conclude XABC = 0.
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We carry out Step 1. Write

(x+ y+ z)d+ε = ∑
a+b+c=d+ε

0≤a,b,c

(
d + ε

a,b,c

)
xaybzc.

It follows that (x+ y+ z)d+ε f j,ε is equal to

∑
a+b+c=d+ε

0≤a,b,c

d−1
∑

s= j−1

j−1
∑

k=0
(−1)s+k

(d+ε

a,b,c

)(d−1−k
d− j

)(d−1−s+k
k

)( s+ε

j−1+ε

)
xk+ayd−1−s+bzs−k+c

= ∑
A+B+C=2d−1+ε

0≤A,B,C

XABCxAyBzC,

where XABC is equal to
d−1

∑
s= j−1

j−1

∑
k=0

(−1)s+k
(

d + ε

a,b,c

)(
d−1− k

d− j

)(
d−1− s+ k

k

)(
s+ ε

j−1+ ε

)
QdskabcABC,

for

QdskabcABC = χ(k+a = A)χ(d−1− s+b = B)χ(s− k+ c =C)χ(0≤ a)χ(0≤ b)χ(0≤ c)

=

{
1, if k+a = A, d−1− s+b = B, s− k+ c =C, 0≤ a, 0≤ b, and 0≤ c and
0, otherwise.

In general, we use the convention that if “S” is a statement then

χ(S) =

{
1, if S is true, and
0, if S is false.

At this point the binomial coefficients all have the form
(a

b

)
with 0≤ b≤ a; so we may write(

d + ε

a,b,c

)
=

(
d + ε

b

)(
d−b+ ε

a

)
and

(
d−1− s+ k

k

)
=

(
d−1− s+ k

d−1− s

)
,

without penalty. Replace a with A− k; b with B−d +1+ s; and c with C− s+ k. Observe that

XABC =
d−1

∑
s= j−1

j−1

∑
k=0

(−1)s+kYjdεABCskχ(0≤ A− k)χ(0≤ B+ s+1−d)χ(0≤C+ k− s).

In other words,

XABC =
min{A, j−1}

∑
k=0

min{d−1,k+C}

∑
s=max{ j−1,d−1−B}

(−1)s+kYjdεABCsk.

This completes Step 1.

We carry out Step 2. Assume (63). We prove that

XABC = ∑
s∈Z

∑
k∈Z

(−1)s+kYjdεABCsk.

It suffices to show that if YjdεABCsk 6= 0, then
(a) d−1−B≤ s
(b) j−1≤ s,
(c) s≤C+ k,
(d) s≤ d−1,
(e) k ≤ A,
(f) k ≤ j−1, and
(g) 0≤ k.
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The hypothesis that
( d+ε

B+s+1−d

)
6= 0 implies 0 ≤ B+ s+1−d; thus d−1−B ≤ s, which is (a). Add ε to both

sides of (a) and use B≤ d−1+ ε from (63) in order to see that

(64) 0≤ d−1+ ε−B≤ s+ ε.

The hypothesis that
( s+ε

j−1+ε

)
6= 0, together with (64) and (61), guarantees that

j−1+ ε≤ s+ ε;

hence, j−1≤ s, which is (b). The sum d + ε is positive; hence, the hypothesis(
d + ε

B+ s+1−d

)
6= 0,

together with (61), implies B+ s+1−d ≤ d + ε, which, in turn, implies

(65) 0≤ 2d−B− s−1+ ε.

The hypothesis
(2d−B−s−1+ε

A−k

)
6= 0, together with (65) and (61) implies

A− k ≤ 2d−B− s−1+ ε,

which implies s≤ (2d−1−A−B+ε)+k. Recall from (63) that 2d−1−A−B+ε =C. We have established
s≤C+ k, which is (c). It also follows, by way of (63), that

s− k ≤C ≤ d−1;

hence

(66) 0≤ d−1− s+ k.

The hypothesis
(d−1−s+k

d−1−s

)
6= 0 implies that 0 ≤ d − 1− s; thus s ≤ d − 1, which is (d). The hypothesis(2d−B−s−1+ε

A−k

)
6= 0 implies 0 ≤ A− k; thus k ≤ A, which is (e). Recall from (63) that A ≤ d− 1. It follows

that k ≤ d−1; hence

(67) 0≤ d−1− k.

The hypothesis
(d−1−k

d− j

)
6= 0, together with (67) and (61), ensures that d− j≤ d−1−k. It follows that k≤ j−1

and this is (f). The hypothesis
(d−1−s+k

d−1−s

)
6= 0, together with (66) and (61), implies

d−1− s≤ d−1− s+ k.

Thus, 0≤ k, and this is (g). This completes Step 2.

We carry out Step 3. The parameters satisfy

0≤ A,C ≤ d−1, 0≤ B≤ d−1+ ε, A+B+C = 2d−1+ ε, and 1≤ j ≤ d.

We prove that XABC, which is equal to

∑
s∈Z

∑
k∈Z

(−1)s+k
( d+ε

B+s+1−d

)(2d−B−s−1+ε

A−k

)(d−1−k
d− j

)(d−1−s+k
d−1−s

)( s+ε

j−1+ε

)
,

is equal to zero. Apply (60) to write(
d−1− s+ k

d−1− s

)
= (−1)d−1−s

(
−k−1

d−1− s

)
.

Let K = A− k. Observe that XABC is equal to

∑
s
(−1)A+d+1( d+ε

B+s+1−d

)[
∑
K
(−1)K(2d−B−s−1+ε

K

)(K+d−1−A
d− j

)(K−A−1
d−1−s

)]( s+ε

j−1+ε

)
.

The sum d + ε is non-negative; consequently the binomial coefficient
( d+ε

B+s+1−d

)
is zero unless

B+ s+1−d ≤ d + ε.



THE RESOLUTION OF (xN ,yN ,zN ,wN) 35

Thus, XABC is also equal to

∑
s≤2d−B−1+ε

(−1)A+d+1( d+ε

B+s+1−d

)[
∑
K
(−1)K(2d−B−s−1+ε

K

)(K+d−1−A
d− j

)(K−A−1
d−1−s

)]( s+ε

j−1+ε

)
.

Apply Lemma 9.2 with

a = 2d−B− s−1+ ε, z = d−1−A, p = d− j, w =−A−1, and c = d−1− s.

Notice that 0≤ a. Conclude that XABC is equal to

∑
s≤2d−B−1+ε

(−1)A+B+s+d+ε
( d+ε

B+s+1−d

)[
∑
`∈Z

(d−1−A
d− j−`

)(2d−B−s−1+ε

`

)( −A−1+`
−d+B+`−ε

)]( s+ε

j−1+ε

)
.

The binomial coefficient
( d+ε

B+s+1−d

)
continues to be zero unless s ≤ 2d−B− 1+ ε; thus, we may remove the

bound s≤ 2d−B−1+ε from the summation sign without changing the value of the sum. Apply (60) to write(
2d−B− s−1+ ε

`

)
= (−1)`

(
`−2d +B+ s− ε)

`

)
.

Gather the factors which involve s and observe that XABC is equal to

∑
`∈Z

(−1)A+B+d+`+ε
(d−1−A

d− j−`
)[

∑
s∈Z

(−1)s( d+ε

B+s+1−d

)(`−2d+B+s−ε

`

)( s+ε

j−1+ε

)]( −A−1+`
−d+B+`−ε

)
.

Let S = B+ s+1−d to see that XABC is equal to

∑
`∈Z

(−1)A+1+`+ε
(d−1−A

d− j−`
)[

∑
S∈Z

(−1)S(d+ε

S

)(S+`−d−1−ε

`

)(S+d−B−1+ε

j−1+ε

)]( −A−1+`
−d+B+`−ε

)
.

Use Lemma 9.2 with

a = d + ε, z = `−d−1− ε, p = `, w = d−B−1+ ε, and c = j−1+ ε

to see that XABC is equal to

∑
`∈Z

(−1)A+d+1+`
(d−1−A

d− j−`
)[

∑
L∈Z

(`−d−1−ε

`−L

)(d+ε

L

)(d−B−1+L+ε

j−1−d+L

)]( −A−1+`
−d+B+`−ε

)
.

Every non-zero term in the above sum satisfies

0≤ d− j− `, 0≤ `−L, and 0≤ j−1−d +L.

Thus, every non-zero term satisfies
d +1− j ≤ L≤ `≤ d− j.

There are no ordered pairs (`,L) which satisfy these constraints; thus, XABC = 0, and the proof is complete.
�
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