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Let A1
k(R

n) be the collection of all C1 starlike and symmetric about the origin

bodies in Rn, with the property that for all k−dimensional linear subspaces P of Rn,

Vk−1(∂Kt∩P ) = Vk−1(∂Bn∩P ) where Bn is the Euclidean ball. (That is K ∈ A1
k(R

n)

is a centrally symmetric starlike about the origin body with C1 boundary and the

property that the (k − 1)-dimensional “perimeter” of K ∩ P is the same as that of

Bn ∩ P for all P , k-dimensional linear subspaces of Rn.) In the first Chapter we

show that in this class the Euclidean unit ball is isolated in the sense that all one

parameter analytic deformations of the unit ball in A
1
k(R

n) are constant. This gives

evidence to support the conjecture that if K1 and K2 are two starlike symmetric

about the origin bodies whose sections by any k-dimensional plane through the origin

have equal perimeters, then K1 = K2, a question posed by Richard Gardner in his

book Geometric Tomography in the case k = 2 and n = 3.

In Chapter 2 we generalize and instead of considering perimeters of k-dimensional

central sections, we introduce the integral invariants defined by order two O(n) invari-

ant functions on Rn, where O(n) is the orthogonal group of degree n over R. An order

two O(n) invariant function on Rn is a C1 function f : (0,∞)×Rn × sym(Rn) → R

such that f(r, gv, gAg−1) = f(r, v, A) for all g ∈ O(n). If f is an order two O(n)

invariant function on Rn, then the integral invariant defined by f is the function

If : S2(Rn) → R given by

If (K) :=

∫

Sn−1

f(ρK(u),∇ρK(u),∇2ρK(u)) du

where ρK is the radial function of K and S2(Rn) is the space of all bodies in Rn that

are starlike with respect to the origin and have C2 boundaries. Let B
2
k(R

n) be the



collection of all C2 starlike and symmetric about the origin bodies in Rn, with the

property that for all k-dimensional linear subspaces P of Rn, If(K∩P ) = If(B
n∩P )

where If is the integral invariant defined by f (an order two O(n) invariant function

on Rn) and d
dt

If (tB
n)|t=1 6= 0. We show that in this class the Euclidean unit ball is

isolated in the sense that all one parameter analytic deformations of the unit ball in

B2
k(R

n) are constant. We also prove a Corollary of this result in which we replace

the requirement d
dt

If(tB
n)|t=1 6= 0 with If being positively homogeneous of nonzero

degree.
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Let A1
k(R

n) be the collection of all C1 starlike and symmetric about the origin

bodies in Rn, with the property that for all k−dimensional linear subspaces P of Rn,

Vk−1(∂Kt∩P ) = Vk−1(∂Bn∩P ) where Bn is the Euclidean ball. (That is K ∈ A1
k(R

n)

is a centrally symmetric starlike about the origin body with C1 boundary and the

property that the (k − 1)-dimensional “perimeter” of K ∩ P is the same as that of

Bn ∩ P for all P , k-dimensional linear subspaces of Rn.) In the first Chapter we

show that in this class the Euclidean unit ball is isolated in the sense that all one

parameter analytic deformations of the unit ball in A1
k(R

n) are constant. This gives

evidence to support the conjecture that if K1 and K2 are two starlike symmetric

about the origin bodies whose sections by any k-dimensional plane through the origin

have equal perimeters, then K1 = K2, a question posed by Richard Gardner in his

book Geometric Tomography in the case k = 2 and n = 3.

In Chapter 2 we generalize and instead of considering perimeters of k-dimensional

central sections, we introduce the integral invariants defined by order two O(n) invari-

ant functions on Rn, where O(n) is the orthogonal group of degree n over R. An order

two O(n) invariant function on Rn is a C1 function f : (0,∞)×Rn × sym(Rn) → R

such that f(r, gv, gAg−1) = f(r, v, A) for all g ∈ O(n). If f is an order two O(n)

invariant function on Rn, then the integral invariant defined by f is the function

If : S2(Rn) → R given by
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f(ρK(u),∇ρK(u),∇2ρK(u)) du
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where ρK is the radial function of K and S2(Rn) is the space of all bodies in Rn that

are starlike with respect to the origin and have C2 boundaries. Let B
2
k(R

n) be the

collection of all C2 starlike and symmetric about the origin bodies in Rn, with the

property that for all k-dimensional linear subspaces P of Rn, If(K∩P ) = If(B
n∩P )

where If is the integral invariant defined by f (an order two O(n) invariant function

on Rn) and d
dt

If (tB
n)|t=1 6= 0. We show that in this class the Euclidean unit ball is

isolated in the sense that all one parameter analytic deformations of the unit ball in

B2
k(R

n) are constant. We also prove a Corollary of this result in which we replace

the requirement d
dt

If(tB
n)|t=1 6= 0 with If being positively homogeneous of nonzero

degree.
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Introduction and statement of results

This thesis is motivated by the following open problem from Richard Gardner’s

book Geometric Tomography : “Let K1 and K2 be centered convex bodies in R3 whose

sections by any plane through the origin have equal perimeters. Is K1 = K2? If the

answer is positive, is the natural generalization to starlike bodies in Rn true?”. This is

not even known when one of the bodies is the Euclidean ball. While we can not solve

this problem in full generality, we are able to show that it is true in an infinitesimal

sense at the unit ball.

Definition 1. A set C in Rn is called convex if it contains the closed line

segment joining any two of its points, or, equivalently, if (1 − t)x + ty ∈ C whenever

x, y ∈ C and 0 6 t 6 1.

A convex body is a compact convex set whose interior is nonempty. Let Cn be the

class of convex bodies in the Euclidean space Rn that are symmetric about the origin.

For 1 6 k 6 n − 1, we denote the Grassmann of all k-dimensional linear subspaces

of Rn by Grk(R
n). To put Gardner’s question in a larger context we mention that

there are several basic results in geometric tomography to the effect that members

K of Cn are determined by measurements of either sections K ∩ P or projections

K|P (the usual orthogonal projections on a line or plane) for all P ∈ Grk(R
n).

In geometric tomography there is a remarkable correspondence between projections

and central sections. We denote the origin, unit sphere, and closed unit ball in n-

dimensional Euclidean space Rn by O, Sn−1, and Bn, respectively. If u ∈ Sn−1, we

denote by u⊥ the (n − 1)-dimensional subspace orthogonal to u. We write Volk for
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k−dimensional Lebesque measure in Rn, where k ∈ {0, . . . , n}, and where we identify

Volk with k-dimensional Hausdorff measure (Vol0 is the counting measure). When no

misunderstanding can arise (for example, when working with compact convex sets)

we call the Volk-measure of a k- dimensional body in Rn its volume. The notation dz

will always mean d Volk(z) for the appropriate k with k ∈ {0, . . . , n}. In particular,

du signifies integration on Sn−1 with respect to Voln−1, that in Sn−1 is identified

with spherical Lebesque measure. The notation dP will denote integration on the

Grassmann Grk(R
n) with respect to the canonical invariant probability measure,

usually referred to as Haar measure in Grk(R
n).

Definition 2. The k-th dimensional intrinsic volume of a compact convex

body K in Rn is

(0.0.1) Vk(K) = cn,k

∫

Grk(Rn)

Volk(K|P ) dP

where the constants cn,k depend only on n and k.

Theorem 3 (Gardner and Volčič). If K1, K2 ∈ Cn and Vk(K1 ∩P ) = Vk(K2 ∩P )

for some k ∈ {1, . . . , n − 1} and all P ∈ Grk(R
n), then K1 = K2.

Informally: convex, symmetric about the origin bodies are determined by areas of

their central sections. This is a special case of a much more general theorem of

Gardner and Volčič [3] (which can also be found in Gardner’s book [1, Thm 7.2.3,

p. 278]). The special case of k = n−1 was proven earlier by Larman and Tamvakis [6].

See [1, Note 7.4, p. 290] for more of the history. Dual to this there is:

Theorem 4 (Alexandrov). If K1, K2 ∈ Cn and for some i, k with 1 ≤ i ≤ k ≤

n − 1 and all P ∈ Grk(R
n) there holds Vi(K1|P ) = Vi(K2|P ), then K1 = K2.

This is the well known Alexandrov projection theorem (cf. [1, Thm 3.3.6, p. 115]).

Dualizing Alexandrov’s projection theorem we have the following:
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Conjecture 1. Let K1, K2 ∈ Cn and 1 ≤ i ≤ k − 1 ≤ n − 2 and assume

Vi(K1 ∩ P ) = Vi(K2 ∩ P ) for all P ∈ Grk(R
n). Then K1 = K2.

The case of n = 3, k = 2 and i = 1 is the Gardner’s perimeter problem that motivates

this dissertation [1, Prob. 7.6, p. 289].

The most interesting special case of Conjecture 1 is when one of the bodies is the

Euclidean ball Bn and i = k−1. For P ∈ Grk(R
n) the intrinsic volume Vk−1(K ∩P )

is a constant multiple of the surface area of the boundary ∂(K ∩ P ).

Conjecture 2. Let K ∈ Cn be so that Vk−1(K ∩ P ) = Vk−1(B
n ∩ P ) for all

P ∈ Grk(R
n) where 2 ≤ k ≤ n − 1. Then K = Bn.

Unfortunately we have not been able to even settle this weaker conjecture in full

generality. Our main result in Chapter 1 is that it holds in an infinitesimal sense near

th Euclidean ball. To make this precise a few definitions are needed.

Definition 5. A set K ⊂ Rn is starlike with respect to the origin O if the

origin is an interior point of K and every line through O meets K in a line segment.

Definition 6. If K ⊂ Rn is a convex body, or more general a body that is starlike

with respect to the origin then its radial function is defined by ρK : Sn−1 → (0,∞)

ρK(u) := sup{r : ru ∈ K}, where Sn−1 is the unit sphere in Rn.

We assume that the radial function is continuous and u 7→ ρK(u)u parametrizes

the boundary ∂K, of K. Clearly a body K starlike about the origin is uniquely

defined by its radial function and K is symmetric about the origin if and only if ρ is

even (that is ρK(−u) = ρK(u)). Let S(Rn) be the space of all bodies in Rn that are

starlike with respect to the origin and S∞ the elements of S(Rn) that have smooth

radial functions. Let Ssym(Rn) (respectively S2
sym(Rn)) be the elements of S(Rn)

(respectively S2(Rn)) that are symmetric about the origin.
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Figure 1. The radial function.

Let Ck(Sn−1) be the Banach space of all Ck functions f : Sn−1 → R with the

norm

‖f‖Ck := sup
u∈Sn−1

k
∑

i=0

|∇if(u)|

where ∇0f(u) = f(u), . . . ,∇kf(u) = ∇(∇k−1f(u)). We will consider a one parameter

family of functions t 7→ ρt in Ck(Sn−1) that depends real analytically on t and with

ρ0 = 1 (the constant function 1). This means that for some δ > 0 that there are

ρm ∈ Ck(Sn−1) such that there is a series expansion

(0.0.2) ρt(u) = 1 +
∞

∑

m=1

ρm(u)tm

which converges absolutely in Ck(Sn−1) for |t| < δ. (By absolute convergence in

Ck(Sn−1) we mean that
∑∞

m=1 ‖ρm‖Ck |t|m converges.)

Considering a particular case when series (0.0.2) converges absolutely in C1(Sn−1)

we can now state our main result from Chapter 1.

Theorem 7. Let Kt be a one parameter family of bodies starlike about the origin

of Rn whose radial functions are given by the series (0.0.2), which is assumed to
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converge absolutely in C1(Sn−1) for |t| < δ. Assume that each Kt is symmetric about

the origin and that for each P ∈ Grk(R
n)

Vk−1(∂Kt ∩ P ) = Vk−1(∂Bn ∩ P ).

Then ρt(u) = 1 for all t and u and thus each Kt is the Euclidean ball Bn.

Informally:“the unit ball of Rn is rigid in the class of C1 bodies through ana-

lytic deformations preserving central symmetry and the perimeters of k-dimensional

cantral sections”. Of course this is far short of settling Conjecture 2, let alone Con-

jecture 1, but does give supporting evidence for them. It would be interesting to find

other C1 centrally symmetric convex bodies that are rigid in the class of C1 bodies

through analytic deformations preserving central symmetry and the perimeters of

k-dimensional central sections. However our proof seems only to work for Bn.

While central symmetry is vital in our proof, it is not clear if it necessary for the

perimeters to have the same measure. The simplest open case is:

Problem 8. Other than the ball B3, does there exist a convex body, K, in R3

such that

Length(P ∩ ∂K) = 2π

for every plane P ∈ Gr2(R
3)?

Another interpretation of our results is in terms of a nonlinear version of the Radon

transform. Let Grk(R
n) be the Grassmann of all k-dimensional linear subspaces of

Rn. The Radon transform is the linear map Rn,k : C(Sn−1) → C(Grk(R
n)) given

by

Rn,kρ(P ) :=

∫

Sn−1∩P

ρ(u) dVk−1(u).

We are also going to use the following result of Helgason [4, Thm. 19, p. 289] (cf. [5,

Thm. 4.7, p. 161]):
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Theorem 9. If ρ : Sn−1 → R is an even continuous function, and Rn,kρ = 0,

then ρ = 0.

Informally:“the Radon transforms determine even continuous functions on the

sphere”. Minkowski proved the particular case n = 3 of Theorem 9.

In Chapter 2 instead of considering perimeters of k-dimensional central sections,

we generalize and introduce the integral invariants defined by order two O(n) invariant

functions on Rn, where O(n) is the orthogonal group of degree n over R. An order

two O(n) invariant function on Rn is a C1 function f : (0,∞)×Rn×sym(Rn) →

R such that f(r, gv, gAg−1) = f(r, v, A) for all g ∈ O(n). If f is an order two O(n)

invariant function on Rn, then the integral invariant defined by f is the function

If : S2(Rn) → R given by

If (K) :=

∫

Sn−1

f(ρK(u),∇ρK(u),∇2ρK(u)) du

where ρK is the radial function of K. We are interested in If transforms when f

has some natural invariance properties and determine even positive C2 functions on

the sphere. The main result in Chapter 2 is the following theorem that generalizes

Theorem 7.

Theorem 10. Let Kt be a one parameter family of C2 boundaries starlike bodies in

S2
sym(Rn) whose radial functions are given by the series 0.0.2 that converges absolutely

in C2(Sn−1). Assume that for all P ∈ Grl(R
n)

If (Kt ∩ P ) = If(B
n ∩ P )

where If is the integral invariant defined by f (an order two O(n) invariant function

on Rn) and d
dt

If(tB
n)|t=1 6= 0. Then each Kt is the Euclidean unit ball of Rn.

In other words the unit ball of Rn is rigid in the class of C2 starlike bodies

through analytic deformations preserving central symmetry and integral invariants of

k-dimensional central sections. We also prove a Corollary of Theorem 10 in which
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we replace the requirement d
dt

If (tB
n)|t=1 6= 0 with If being positively homogeneous

of nonzero degree. So our results need invariance and homogeneity but are only

perturbation results that still do not prove Conjecture 2.
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Chapter 1

Determining starlike bodies by the perimeters

of their sections with linear subspaces of Rn

1.1. Preliminaries

If f : Rn → R, then the Euclidean gradient of f is the vector function ∂f defined

by ∂f(x1, x2, . . . , xn) = 〈 ∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

〉 and the Euclidean Hessian of f is the

square matrix of the second-order partial derivatives of f

∂2f(x1, x2, . . . , xn) =



















∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n



















.

We also want the gradient and Hessian for functions defined on Sn−1. Let X and

Y be vector fields on Sn−1. Then denote by ∂XY the directional derivative of Y in

the direction X. Explicitly, to compute ∂XY at the point p ∈ Sn−1, choose a smooth

curve c : (−ε, ε) → Sn−1 with c(0) = p and c′(0) = X(p). Then

∂XY
∣

∣

p
=

d

dt
Y (c(t))

∣

∣

∣

∣

t=0

.

In this formula it is not required that Y be tangent to Sn−1. A case of interest is the

position vector u on Sn−1, which is also the inclusion map of Sn−1 into Rn. Therefore

∂Xu =
d

dt
u(c(t))

∣

∣

∣

∣

t=0

=
d

dt
c(t)

∣

∣

∣

∣

t=0

= c′(0) = X.
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It is elementary that for smooth vector fields X, Y, Z on Sn−1 that the product

rule

∂X〈Y, Z〉 = 〈∂XY, Z〉 + 〈Y, ∂XZ〉

holds. The covariant derivative, ∇XY , of Y by X is the orthogonal projection of

∂XY onto the tangent space of Sn−1. That is for u ∈ Sn−1

∇XY (u) = ∂XY − 〈∂XY, u〉u,

which, by the product rule, that 〈Y, u〉 = 0 and ∂Xu = X implies

∂XY −∇XY = 〈∂XY, u〉u

=
(

∂X〈Y, u〉 − 〈Y, ∂Xu〉
)

u

= −〈X, Y 〉u.

If h : Sn−1 → R is a C1 function, then ∇h is the vector field tangent to Sn−1 such

that for all vector X tangent to Sn−1

dh(X) = 〈∇h, X〉.

This is the spherical gradient of h, which we will just refer to as the gradient.

Another method to define ∇h is to extend it to Rn
r{0} to be homogeneous of degree

nonzero, that is as

h̃(x) = h(‖x‖−1x)

then if ∂h̃ is the usual Euclidean gradient its restriction to Sn−1 agrees with ∇h. The

spherical Hessian, or just Hessian, of a C2 function h : Sn−1 → R is the field of

linear maps on tangent spaces to Sn−1 given by

∇2h(u)X := ∇X∇h.

This is self-adjoint in the sense that

〈∇2hX, Y 〉 = 〈X,∇2hY 〉.

9



It can also be given a definition in terms of the Euclidean Hessian of the extended

function h̃ defined above. If ∂2h̃ is the Euclidean Hessian on Rn
r {0}, which is a

symmetric matrix and thus also be viewed as a self-adjoint linear map on Rn. For

u ∈ Sn−1, ∂2h̃(u)u = 0 and as ∂2h̃(u) is self-adjoint and u is an eigvenvector of

∂2h̃(u), the orthogonal compliment u⊥ = TuS
n−1 is also invariant under ∂2h̃(u). The

restriction of ∂2h̃(u) to TuS
n−1 agrees with ∇2h. The Laplacian of h is

∆h := tr(∇2h).

The following is a standard corollary of the divergence theorem on compact oriented

manifolds.

Proposition 11. Let h : Sn−1 → R be a C2 function. Then

∫

Sn−1

tr(∇2h) du =

∫

Sn−1

∆h du = 0

where du is the volume measure on Sn−1. �

Let O(n) be the orthogonal group of degree n over R.

Proposition 12. Let h : Sn−1 → R, h ∈ C2(Sn−1), g ∈ O(n), and h̃ = h ◦ g.

Then

∇h̃(u) = g∇h(g−1u)

and

∇2h̃(u) = g∇2h(g−1u)g−1

Proof. Let X be a vector field on Sn−1. Choose a smooth curve c : (−ε, ε) →

Sn−1 with c(0) = p and c′(0) = X(p). Then

〈∇h̃(u), X〉 =
d

dt
h̃(c(t))|t=0

=
d

dt
(h ◦ g)(c(t))|t=0

=
d

dt
h(g−1c(t))|t=0

10



= 〈∇h(g−1u), g−1X〉

= 〈g∇h(g−1u), X〉

Therefore, the gradient is invariant under orthogonal transformations

∇h̃(u) = g∇h(g−1u).

Also

∇2h̃(u) = ∇(∇h̃(u))

= ∇(g∇h(g−1u)) =

= g∇2h(g−1u)∇(g−1u)

= g∇2h(g−1u)g−1.

�

Proposition 13. Let h : Sn−1 → R be a C1(Sn−1) function and u ∈ Sn−1. If

f : Sn−1 → Rn is given by f(u) := h(u)u, then the Jacobian of f is

J(f)(u) = hn−2
√

h2 + |∇h|2.

Proof. We first compute the derivative of f . Let e1, . . . , en−1 be an orthonormal

basis of the tangent space TuS
n−1 (or, what is the same thing, e1, . . . , en−1 is an

orthonormal basis of P ∩ u⊥). On this set of basis vectors the derivative is given by

f ′(u)ej = hej + dh(ej)u.

Using that u ∧ u = 0,

f ′(u)e1 ∧ · · · ∧ f ′(u)en−1 = (he1 + dh(e1)u) ∧ · · · ∧ (hen−1 + dh(en−1)u)

= hn−1e1 ∧ e2 ∧ · · · ∧ en−1

+ hn−2
n−1
∑

i=1

dh(ei)e1 ∧ . . . ∧ ei−1 ∧ u ∧ ei+1 ∧ · · · ∧ en−1.
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As {u, e1, e2, . . . , en−1} is an orthonormal set in Rn, the set

{e1 ∧ · · · ∧ en−1, u ∧ e2 ∧ · · · ∧ en−1, e1 ∧ u ∧ e3 ∧ · · · ∧ en−1, . . . , e1 ∧ e2 ∧ . . . en−2 ∧ u}

is orthonormal in
∧n−1

Rn. Whence the Jacobian is

J(f)(u) = |f ′(u)e1 ∧ f ′(u)e2 ∧ · · · ∧ f ′(u)en−1|

=

√

√

√

√

(

hn−1
)2

+

n−1
∑

i=1

(

hn−2dh(ei)
)2

= hn−2

√

√

√

√h2 +

n−1
∑

i=1

dh(ei)2

= hn−2
√

h2 + |∇h|2.

�

Definition 14. Let f : Sn−1 → R be a C∞ function and x0 be any point in Sn−1.

The series

(1.1.1)
∑

(α1,...,αn)

Dα1

1 Dα2

2 . . .Dαn
n f(x0)

α1!α2! . . . αn!
(x1 − x0

1)
α1(x2 − x0

2)
α2 . . . (xn − x0

n)αn

is called the Taylor series of f about x0. In (1.1.1), Dj = ∂
∂xj

, and αj is a non-

negative integer, j = 1, . . . , n. Thus

Dα1

1 Dα2

2 . . .Dαn

n f =
∂α1+α2+...+αnf

∂xα1

1 ∂xα2

2 . . . ∂xαn
n

.

The summation in (1.1.1) is taken over all n-tuples of integers greater or equal to 0,

(α1, . . . , αn). The series (1.1.1) can be written in a shorter form if we introduce the

notation

α = (α1, α2, . . . , αn)

xα = xα1

1 xα2

2 . . . xαn

n

Dα = Dα1

1 Dα2

2 . . .Dαn

n

12



α! = α1!α2! . . . αn!

|α| = α1 + α2 + . . . + αn.

Then the Taylor series of f about x0 can be written in the form

(1.1.2)
∑

|α|>0

Dαf(x0)

α!
(x − x0)α.

We will also need the following result:

Lemma 15. Let x1, x2, . . . be a sequence of variables and assume

α =
∑

m>1

αm(x1, . . . , xm)tm, β =
∑

m>1

βm(x1, . . . , xm)tm

where αm(x1, . . . , xm) and βm(x1, . . . , xm) are polynomials in x1, . . . , xm with the prop-

erty that αm(0, . . . , 0) = βm(0, . . . , 0) = 0. Then the product is of the form

αβ =
∑

m>2

Pm(x1, . . . , xm−1)t
m

where Pm(x1, . . . , xm−1) is a polynomial in x1, . . . , xm−1 and Pm(0, . . . , 0) = 0.

The main point is that in the product the coefficient of tm depends on one fewer

of the variables xj and that it vanishes if x1, . . . , xm−1 all vanish.

Proof. The coefficient of tm in αβ is

Pm =

m−1
∑

j=1

αj(x1, . . . , xj)βm−j(x1, . . . , xm−j)

which clearly has the stated properties. �

1.2. Determining starlike bodies by the perimeters of their

central sections

Theorem 16. Let Kt be a one parameter family of bodies starlike about the origin

of Rn whose radial functions are given by the series (0.0.2), which is assumed to

13



converge absolutely in C1(Sn−1) for small t. Assume that each Kt is symmetric about

the origin and that for each P ∈ Grk(R
n)

Vk−1(∂Kt ∩ P ) = Vk−1(∂Bn ∩ P ).

Then ρt(u) = 1 for all t and u and thus each Kt is the Euclidean ball Bn.

Proof. Let Kt be a one parameter family of C1 starlike bodies in Rn symmet-

ric about the origin and with radial functions ρt given by the series (0.0.2). The

symmetry of the Kt implies that ρt is an even function on Sn−1 for all t. The se-

ries expansion (0.0.2) then implies that each coefficient ρm is an even function. Let

P ∈ Grk(R
n) and denote by Sk−1 the intersection P ∩Sn−1 and let hP

t be the restric-

tion ρt

∣

∣

P∩Sn−1
. It then follows from (0.0.2) that

hP
t = 1 +

∑

m>1

ρm

∣

∣

Sk−1
tm

= 1 +
∑

m>1

hP
mtm

where hP
m := ρm

∣

∣

Sk−1
. Now assume for some δ > 0 that h = hP

t depends on a

parameter t ∈ [−δ, δ] and has a convergent (in C1(Sk−1)) expansion

h = 1 +
∑

m>1

hmtm.

Then

∇h =
∑

m>1

∇hmtm

and this series converges uniformly.

Meanwhile, for P ∈ Grk(R
n) the quantity Vk−1(∂Kt ∩ P ) is just the (k − 1)-

dimensional “perimeter”(that is the surface area, or (k − 1)-dimensional Hausdorff

measure) of Kt ∩ P . The function f : Sk−1 → Rk given by

f(u) := h(u)u

14



parameterizes ∂Kt ∩ P . The area of ∂Kt ∩ P can be computed by the usual calculus

method of integrating the Jacobian of f over its domain. Using Proposition 13 we

have that:

Vk−1(∂Kt ∩ P ) =

∫

Sk−1

J(f)(u) du(1.2.1)

=

∫

Sk−1

hk−2
√

h2 + |∇h|2 du

where du is the surface area (i.e. (k − 1)-dimensional Hausdorff) measure on Sk−1.

We now expand the integral of (1.2.1) as a power series in t. The exact form of

the coefficients will not be needed, only certain elementary properties of them will be

required. In what follows we will use Lemma 15 and an obvious variant for series with

vector coefficients, repeatedly without quoting it explicitly. Also we use the notation

Q = Q(x1, . . . , xm−1) to indicate that Q is a polynomial in x1, . . . , xm−1 (when some

or all of the xj ’s are vectors this means that Q is a polynomial in the components of

the vectors). First

h2 =

(

1 +
∑

m>1

hmtm
)2

= 1 + 2
∑

m>1

hmtm +

(

∑

m>1

hmtm
)2

= 1 + 2
∑

m>1

hmtm +
∑

m>2

Amtm

where Am = Am(h1, . . . , hm−1) and Am(0, . . . , 0) = 0. Likewise

(1.2.2) hk−2 = 1 + (k − 2)
∑

m>1

hmtm +
∑

m>2

Bmtm

where Bm = Bm(h1, . . . , hm−1) and Bm(0, . . . , 0) = 0 (when k = 2 each Bm is the

zero polynomial). Also

|∇h|2 =

∣

∣

∣

∣

∑

m>1

∇hmtm
∣

∣

∣

∣

2

15



=
∑

m>2

Cmtm

where Cm = Cm(∇h1, . . . ,∇hm−1) and Cm(0, . . . , 0) = 0. Adding gives

h2 + |∇h|2 = 1 + 2
∑

m>1

hmtm +
∑

m>2

(Am + Cm)tm.

By the binomial theorem

√

h2 + |∇h|2 =

(

1 + 2
∑

m>1

hmtm +
∑

m>2

(Am + Cm)tm
)1/2

= 1 +
1

2

(

2
∑

m>1

hmtm +
∑

m>2

(Am + Cm)tm
)

+
∑

ℓ>2

(

1/2

ℓ

)(

2
∑

m>1

hmtm +
∑

m>2

(Am + Cm)tm
)ℓ

= 1 +
∑

m>1

hmtm +
∑

m>2

Dmtm

where Dm = Dm(h1, . . . , hm−1,∇h1, . . . ,∇hm−1) and Dm(0, . . . , 0, 0, . . . , 0) = 0. This

and (1.2.2) gives

hk−2
√

h2 + |∇h|2 =

(

1 + (k − 2)
∑

m>1

hmtm +
∑

m>2

Bmtm
)

×

(

1 +
∑

m>1

hmtm +
∑

m>2

Dmtm
)

= 1 + (k − 1)
∑

m>1

hmtm +
∑

m>2

Emtm(1.2.3)

where Em = Em(h1, . . . , hm−1,∇h1, . . . ,∇hm−1) and Em(0, . . . , 0, 0, . . . , 0) = 0.

The hypothesis of Theorem 16 is that for all P ∈ Grk(R
n), Vk−1(∂Kt ∩ P ) =

Vk−1(∂Bn ∩ P ). But Vk−1(∂Bn ∩ P ) = Vk−1(S
k−1). In light of (1.2.1) and (1.2.3)

Vk−1(∂Kt ∩ P ) = Vk−1(∂Bn ∩ P ) is the same as

Vk−1(S
k−1) =

∫

Sk−1

hk−2
√

h2 + |∇h|2 du

= Vk−1(S
k−1) + (k − 1)t

∫

Sk−1

h1(u) du(1.2.4)
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+
∑

m>2

tm
∫

Sk−1

((k − 1)hm + Em) du

Equating the coefficients of tm on the two sides of (1.2.4) for m > 1 gives

∫

Sk−1

h1 du = 0(1.2.5)

∫

Sk−1

((k − 1)hm + Em) du = 0 for m > 2(1.2.6)

for all P ∈ Grk(R
n). The first of these is equivalent to

∫

Sn−1∩P

ρ1 du = 0

for all P ∈ Grk(R
n). As ρ1 is an even function this implies ρ1 ≡ 0 by Theorem 9.

Now assume that ρj ≡ 0 for j = 1, 2, . . . , m − 1. Then for all P ∈ Grk(R
n) and

j = 1, 2, . . . , m − 1 we have hj ≡ 0 and thus also ∇hj = 0 which in turn implies

Em = Em(0, . . . , 0, 0, . . . , 0) ≡ 0. Using this in (1.2.6) yields that for all P ∈ Grk(R
n)

∫

Sn−1∩P

ρm du =

∫

Sk−1

hm du = 0.

As ρm is an even function, we again use Theorem 9 to conclude ρm ≡ 0. Inductively

ρm = 0 for all m > 1. Thus ρt(u) = 1 which completes the proof of Theorem 16. �

If we let n = 3 and k = 2 in Theorem 16 then we obtain the following Corollary:

Corollary 17. Let Kt be a one parameter family of bodies starlike about the

origin of R3 whose radial functions are given by the series (0.0.2). Assume that each

Kt is symmetric about the origin and that for each plane P ∈ Gr2(R
3)

perimeter(Kt ∩ P ) = 2π.

Then ρt(u) = 1 for all t and u and thus each Kt is just the Euclidean unit ball of R3.

17



Chapter 2

Determining starlike bodies by their curvature

integrals

2.1. Invariantaly defined second order integral invariants.

We wish to define integral invariants of bodies starlike about the origin that are

invariant under orthogonal maps. We restrict our selves to bodies that have C2

boundaries and integrands that only depend on the first two derivatives of the radial

function of the body. If V is a finite dimensional real inner product space on let

sym(V ) be the space of all selfadjoint linear maps on V .

Definition 18. An order two O(n) invariant function on Rn is a C1 function

f : (0,∞) × Rn × sym(Rn) → R such that

f(r, gv, gAg−1) = f(r, v, A)

for all g ∈ O(n). We denote the space of all order two O(n) invariant functions on

Rn by F2(R
n). �

Remark 19. Here “order two” refers to second derivatives. In our applications

we will be evaluating f at (ρ,∇ρ,∇2ρ) where ρ is the radial function of a starlike

body. �

Remark 20. If V is any n-dimensional real vector space and f ∈ F2(R
n), and

(r, v, A) ∈ (0,∞)×V ×sym(V ) is well defined. To see this let e′1, . . . , e
′
n and e′′1, . . . , e

′′
n

be two orthonormal basis of V . Then v and A have coordinate vector and matrix
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representations representations v′, v′′, A′ and A′′ with respect to these basis. Let

g ∈ O(n) be the change of basis matrix between e′1, . . . , e
′
n and e′′1, . . . , e

′′
n. Then

v′′ = gv′ and A′′ = gA′g−1. Therefore

f(r, v′′, A′′) = f(r, gv′, gA′g−1)

= f(r, v′, A′).

Thus f(r, v, A) can be defined as f(r, v′, A′) with respect to any orthonormal basis

e′1, . . . , e
′
n of V . �

Definition 21. Let f ∈ F2(R
n). Then the integral invariant defined by f

is the function If : S2(Rn) → R given by

If (K) :=

∫

Sn−1

f(ρK(u),∇ρK(u),∇2ρK(u)) du

where ρK is the radial function of K. (This is well defined by Remark 20) �

All the usual types of curvature (Gauss-Kronecker curvature, mean curvature etc.)

are covered by this definition. See Section 2.2.

Proposition 22. If f ∈ F2(R
n), K ∈ S2(Rn) then If(K) is invariant under

O(n) in the sense that

If(gK) = If(K)

for all g ∈ O(n).

Proof. Let f ∈ F2(R
n), K ∈ S2(Rn) and g ∈ O(n). Using Definition 6 we have

ρgK(u) = sup{r : ru ∈ gK}

= sup{r : rg−1u ∈ K}

= ρK(g−1u)
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Using Definition 21 and Proposition 12 we have

If (gK) :=

∫

Sn−1

f(ρgK(u),∇ρgK(u),∇2ρgK(u)) du

=

∫

Sn−1

f(ρK(g−1u), g∇ρK(g−1u), g∇2ρK(g−1u)g−1) du

We make the change of variable g−1u = v. Then u = gv and thus du = dv since

g is an orthogonal transformation. Using Definition 18 and continuing the above

calculations we have

If(gK) =

∫

Sn−1

f(ρK(v), g∇(ρK)(v), g∇2(ρK)(v)g−1) dv

=

∫

Sn−1

f(ρK(v),∇ρK(v),∇2ρK(v)) dv

= If(K)

�

Let f ∈ F2(R
n). Then f has a formal first order Taylor series expansion about

(1, 0, 0) ∈ R × Rn × sym(Rn) of the form

f(r, v, A) =f(1, 0, 0) + f1,0,0(r − 1) + f0,1,0v + f0,0,1A(2.1.1)

+ C(r − 1, v, A)
√

(r − 1)2 + ‖v‖2 + ‖A‖2

where

f1,0,0(r, 0, 0) =
d

dt
f(1 + tr, 0, 0)|t=0,

f0,1,0(1, v, 0) =
d

dt
f(1, tv, 0)|t=0,

f0,0,1(1, 0, A) =
d

dt
f(1, 0, tA)|t=0 and

lim
(r,v,A)→(1,0,0)

C(r − 1, v, A) = 0

as C(r − 1, v, A) is the remainder of the Taylor series.
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Proposition 23. Let f ∈ F2(R
n), If the integral invariant defined by f , and Bn

the Euclidean ball in Rn. Then f1,0,0(1, 0, 0) 6= 0 is equivalent to d
dt

If(tB
n)|t=1 6= 0.

Proof. Let f ∈ F2(R
n). Then f : (0,∞) × Rn × sym(Rn) → R and according

to Definition 21 the integral invariant defined by f for tBn is

If : S2(Rn) → R

and

If (tB
n) :=

∫

Sn−1

f(ρtBn(u),∇ρtBn(u),∇2ρtBn(u)) du

=

∫

Sn−1

f(t, 0, 0) du

since ρtBn : Sn−1 → (0,∞) ρtBn(u) := sup{r : ru ∈ tBn} = t. Consider:

d

dt
If (tB

n)|t=1 =
d

dt

∫

Sn−1

f(t, 0, 0) du|t=1

=

∫

Sn−1

d

dt
f(t, 0, 0)|t=1 du

=

∫

Sn−1

d

dt
f(1 + rt, 0, 0)|t=0 du

=

∫

Sn−1

f1,0,0(1, 0, 0) du

and the result is now clear. �

Corollary 24. Let f ∈ F2(R
n), If the integral invariant defined by f , and Bn

the Euclidean ball in Rn. If If is positively homogeneous of degree a 6= 0 (that is

If(λK) = λaIf(K) for λ > 0) and If(B
n) 6= 0 then f1,0,0(1, 0, 0) 6= 0.

Proof. Let f ∈ F2(R
n) and If the integral invariant defined by f for tBn. Since

If is homogeneous of degree a 6= 0 we have:

If (tB
n) = taIf(B

n)
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for t > 0. Then

d

dt
If(tB

n)|t=1 =
d

dt
(taIf (B

n))|t=1

= ata−1If(B
n)|t=1

= aIf(B
n)

6= 0

since a 6= 0 and If (B
n) 6= 0 by hypothesis. Applying Proposition 23 we obtain

f1,0,0(1, 0, 0) 6= 0

�

Proposition 25. Let L : Rn → R linear functional invariant under O(n) in the

sense that L(gv) = L(v) for all g ∈ O(n) . Then

L(v) = 0

.

Proof. Let L : Rn → R linear functional. Since L is invariant under O(n) we

have L(gv) = L(v) for all g ∈ O(n). Let g = −I. Then L(−v) = L(v). Using that L

is linear we have −L(v) = L(v). Thus L(v) = 0. �

Proposition 26. Let L : sym(Rn) → R linear functional invariant under O(n)

in the sense that L(gAg−1) = L(A) for all g ∈ O(n) . Then

L(A) = λ tr(A)

for some λ ∈ R.

Proof. Let L : sym(Rn) → R linear functional and g ∈ O(n). By hypothesis

we have L(gAg−1) = L(A). Using that L is linear we can write

L(gAg−1 − A) = 0.
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This means (gAg−1 − A) ∈ Ker(L). Then

Ker(L) ⊇ Span{gAg−1 − A|A ∈ sym(Rn), g ∈ O(n)}

Using the fact that the trace is invariant under similarity transformation,

tr(gAg−1 − A) = 0.

We have:

Span{gAg−1 − A|A ∈ sym(Rn), g ∈ O(n)}

⊇ Span{Eij |i, j = 1, . . . , n, i 6= j, 1 on (i, j)th position, 0 in rest}

∪ Span{Ei|i = 2, . . . , n, (−1) on (1, 1) position, 1 on (i, i)th position, 0 in rest}

= Span{A| tr(A) = 0}

= Ker(tr)

Since Ker(tr) ⊆ Ker(L) then L(A) = λ tr(A) for some λ ∈ R and all A ∈ sym(Rn).

�

2.2. The Weingarten map of starlike body in terms of the

radial function.

Let K be a body in Rn that is starlike about the origin. Then the radial function

of K is the function ρ : Sn−1 → (0,∞) such that ϕ : Sn−1 → Rn given by

ϕ(u) = ρ(u)u

parametrizes ∂K. We assume that ρ is C2. The of ϕ derivative is

ϕ′(u)Y = 〈∇ρ, Y 〉u + ρY

and the second derivative is

ϕ′′(u)XY : = ∂X(ϕ′(u)Y ) − ϕ′(u)∇XY
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= ∂X(〈∇ρ, Y 〉u + ρY ) − (〈∇ρ,∇XY 〉u + ρ∇XY )

= 〈∇2X, Y 〉u + 〈∇ρ,∇XY 〉u + 〈∇ρ, Y 〉X + 〈∇ρ, X〉Y + ρ∂XY

− (〈∇ρ,∇XY 〉u + ρ∇XY )

= 〈∇2ρX, Y 〉u + 〈∇ρ, Y 〉X + 〈∇ρ, X〉Y + ρ (∂XY −∇XY )

= 〈∇2ρX, Y 〉u + 〈∇ρ, Y 〉X + 〈∇ρ, X〉Y − ρ〈X, Y 〉u

For X ∈ TuS
n−1 the derivative of ϕ in the direction X is

ϕ′(u)X = 〈∇ρ(u), X〉u + ρ(u)X.

Choose an orthonormal basis e1, . . . , en−2 of ∇ρ(u)⊥ in TuS
n−1. Then

e1, . . . , en−2, en−1 := ‖∇ρ‖−1∇ρ(u)

is an orthonormal basis of TuS
n−1,

ϕ′(u)ej = ρ(u)ej for 1 ≤ j ≤ n − 2

and

ϕ′(u)en−1 = ϕ′(u)‖∇ρ‖−1∇ρ(u)

= ‖∇ρ(u)‖u + ρ(u)‖∇ρ‖−1∇ρ(u)

= ‖∇ρ‖u + ρen−1.

Therefore with respect to basis e1, . . . , en−1 the first fundamental form of ϕ is given

by the diagonal matrix with entries gij = 〈ϕ′(u)ei, ϕ
′(u)ej〉

[gi j] =

























ρ2 0 · · · 0 0

0 ρ2 · · · 0 0

...
...

. . .
...

...

0 0 · · · ρ2 0

0 0 · · · 0 ρ2 + ‖∇ρ‖2

























.
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Whence the volume element is

d Voln−1 =
√

det[gi j ] du = ρn−2
√

ρ2 + ‖∇ρ‖2 du.

The vectors E1, . . . , En−1 given by

E1 :=
1

ρ
e1, . . . , En−2 :=

1

ρ
en−2, En−1 :=

1

ρ2 + ‖∇ρ‖2
(‖∇ρ‖u + ρen−1)

are an orthonormal basis of Tϕ(u)∂K. The vector field

ρ(u)u −∇ρ(u)

is easily checked to be orthogonal to all of ϕ′(u)ej for 1 ≤ j ≤ n − 1. Therefore

ν(u) =
1

√

ρ2 + ‖∇ρ‖2
(ρ(u)u −∇ρ(u))

is the unit normal field along ϕ. The components of the second fundamental form

are, by definition,

Li j := 〈ϕ′′(u)eiej, ν〉.

For 1 ≤ i, j ≤ n − 2

Li j =
〈

〈∇2ρei, ej〉u − ρδi ju, ν
〉

=
(

〈∇2ρei, ej〉 − ρδi j

)

〈u, ν〉,

for 1 ≤ i ≤ n − 2

Li n−1 = Ln−1 i =
〈

〈∇2ρei, en−1〉u + ‖∇ρ‖ei, ν
〉

= 〈∇2ρei, en−1〉〈u, ν〉,

and

Ln−1 n−1 =
〈

〈∇2ρen−1, en−1〉u + 2〈∇ρ, en−1〉en−1 − ρu, ν
〉

=
(

〈∇2ρ, en−1, en−1〉 − ρ
)

〈u, ν〉 + 2‖∇ρ‖〈en−1, ν〉

The components of the Weingarten map are (see [8, vol.4, pp. 50–51])

Lj
i =

∑

k

gi kLk j
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where [gi j] is the matrix inverse to [gi j ]. This is

[gi j] =





























1

ρ2
0 · · · 0 0

0
1

ρ2
· · · 0 0

...
...

. . .
...

...

0 0 · · ·
1

ρ2
0

0 0 · · · 0
1

ρ2 + ‖∇ρ‖2





























.

And so

Lj
i =

Li j

ρ2 + δi n−1‖∇ρ‖2

A chase through the definitions shows that the matrix L = [Lj
i ] is positively homoge-

neous of degree −1 in ρ. That is if λ > 0 is constant and ρ is replaced by λρ, then L

is replaced by λ−1L. Let σk(L) be the k-th elementary function of the eigenvalues of

L. These can be defined by

det(I + tL) = 1 + σ1(L)t + σ2(L)t2 + · · · + σn−2(L)tn−2 + σn−1(L)tn−1.

Then σk(L) is positively homogeneous of degree −k. Recall that the intrinsic volumes

Vk of a convex body with C2 boundary can be computed in terms of the Weingarten

map of the boundary ∂K:

Proposition 27. If K is a convex body with C2 boundary, then the intrinsic

volumes Vk(K) are given in terms of the Weingarten map by

Vk(K) = cn,k

∫

∂K

σn−k−1(L) dx

where the constant cn,k only depends on n and k and dx is (n−1)-dimensional volume

measure on ∂K.

To put this in our frame of work let Qk(ρ,∇ρ,∇2ρ) be the function

Qk(ρ,∇ρ,∇2ρ) := σn−k−1(L)ρn−2
√

ρ2 + ‖∇ρ‖2.
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Using the formula for the volume element given above we have

Proposition 28. The function Qk is a second order invariant that is homoge-

neous of degree k. There are constants cn,k such that the intrinsic volumes are given

by

Vk(K) = cn,k

∫

Sn−1

Qk(ρ,∇ρ,∇2ρ) du = IQk
(K).

where ρ is the radial function of K, starlike body about the origin in Rn.

2.3. Main result

Theorem 29. Let Kt be a one parameter family of C2 boundaries starlike bodies in

S2
sym(Rn) whose radial functions are given by the series 0.0.2 that converges absolutely

in C2(Sn−1). Assume that for all P ∈ Grl(R
n)

(2.3.1) If (Kt ∩ P ) = If(B
n ∩ P )

where If is the integral invariant defined by f ∈ F2(R
l) and f1,0,0(1, 0, 0) 6= 0. Then

each Kt is the Euclidean unit ball of Rn.

Remark 30. The requirement f1,0,0(1, 0, 0) 6= 0 is very important to avoid the

trivial case when If(Kt ∩ P ) is constant. Consider Kt ∈ S2
sym(Rn) with the corre-

sponding radial functions ρt, P ∈ Grl(R
n) and f(ρt∇ρt,∇

2ρt) = tr(∇2ρt). Notice

that f ∈ F2(R
l). Then

If (Kt ∩ P ) =

∫

Sn−1∩P

f(ρt,∇ρt,∇
2ρt) du

=

∫

Sn−1∩P

tr(∇2ρt) du

=

∫

Sn−1∩P

△ρt du = 0

by Proposition 11 and thus the Euclidean ball is not isolated in the class of S2
sym(Rn)

bodies.
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Proof. Let Kt ∈ S2
sym(Rn). Note that ρt(−u) = ρt(u) for all t as each Kt is

centrally symmetric. Thus ρm(−u) = ρm(u) for all m > 1 and therefore each ρm is

an even function on Sn−1. Let P ∈ Grl(R
n). Then Sn−1 ∩ P = Sl−1. If we denote

hP
t := ρt

∣

∣

Sn−1∩P
then hP

t is the radial function of Kt ∩ P and it follows from (0.0.2)

that

hP
t = 1 +

∑

m>1

ρm

∣

∣

Sn−1∩P
tm

= 1 +
∑

m>1

hP
mtm,

where hP
m := ρm

∣

∣

Sn−1∩P
. Now assume for some δ > 0 that h = hP

t depends on a

parameter t ∈ [−δ, δ] and has a convergent (in C2(Sl−1)) expansion

h = 1 +
∑

m>1

hmtm.

Then

∇h =
∑

m>1

∇hmtm

and

∇2h =
∑

m>1

∇2hmtm

and these series converge uniformly. Define

h[k] = 1 +
∑

m>k

hmtm

= 1 + hkt
k + tk+1R[k](t)

where

R[k](t) =
∑

m>k+1

hmtm−k−1.

Then

∇h[k] =
∑

m>k

∇hmtm

= ∇hkt
k + tk+1∇R[k](t)
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where

∇R[k](t) =
∑

m>k+1

∇hmtm−k−1,

and

∇2h[k] =
∑

m>k

∇2hmtm

= ∇2hkt
k + tk+1∇2R[k](t).

where

∇2R[k](t) =
∑

m>k+1

∇2hmtm−k−1.

Writing h[k] = h[k](u), ∇h[k] = ∇h[k](u), ∇2h[k] = ∇2h[k](u), and using the Taylor

expansion (2.1.1) for f we have:

f
(

h[k],∇h[k],∇2h[k]
)

= f
(

1 + hkt
k + tk+1R[k](t),∇hkt

k + tk+1∇R[k](t),

∇2hkt
k + tk+1∇2R[k](t)

)

= f(1, 0, 0) + f1,0,0(hkt
k + tk+1R[k](t))

+ f0,1,0(∇hkt
k + tk+1∇R[k](t)) + f0,0,1(∇

2hkt
k + tk+1∇2R[k](t))

+ C(hkt
k + tk+1R[k](t),∇hkt

k + tk+1∇R[k](t),∇2hkt
k + tk+1∇2R[k](t))

√

(hktk + tk+1R[k](t))2 + ‖∇hktk + tk+1∇R[k](t)‖2 + ‖∇2hktk + tk+1∇2R[k](t)‖2

= f(1, 0, 0) + tk
(

f1,0,0hk + f0,1,0∇hk + f0,0,1∇
2hk

)

+ tk
(

f1,0,0tR
[k]

+ f0,1,0t∇R[k] + f0,0,1t∇
2R[k] + C(hk + tR[k](t),∇hk + t∇R[k](t),∇2hk + t∇2R[k](t))

√

(hktk + tk+1R[k](t))2 + ‖∇hktk + tk+1∇R[k](t)‖2 + ‖∇2hktk + tk+1∇2R[k](t)‖2

)

= f(1, 0, 0) + tk(f1,0,0hk + f0,1,0∇hk + f0,0,1∇
2hk) + o(tk).

The integral invariant defined by f is

If(Kt ∩ P ) :=

∫

Sl−1

f(h[k],∇h[k],∇2h[k]) du

=

∫

Sl−1

(

f(1, 0, 0) + tk(f1,0,0hk + f0,1,0∇hk + f0,0,1∇
2hk) + o(tk)

)

du.
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Note that

If (B
n ∩ P ) =

∫

Sl−1

f(ρ(u),∇ρ(u),∇2ρ(u)) du,

where ρ(u) is the radial function of Bn ∩ P = Bl. Since ρ(u) = 1 for Bl the above

integral is
∫

Sl−1 f(1, 0, 0) du. Using condition (2.3.1) of the hypothesis we have

∫

Sl−1

f(1, 0, 0) du + tk
∫

Sl−1

(

f1,0,0hk + f0,1,0∇hk + f0,0,1∇
2hk

)

du

+

∫

Sl−1

o(tk) du =

∫

Sl−1

f(1, 0, 0) du.

Subtracting
∫

Sl−1 f(1, 0, 0) du on both sides of the equation and dividing by tk we

obtain

∫

Sl−1

(

f1,0,0hk + f0,1,0∇hk + f0,0,1∇
2hk

)

du +
1

tk

∫

Sl−1

o(tk) du = 0.

Let t → 0. Then

(2.3.2)

∫

Sl−1

(

f1,0,0hk + f0,1,0∇hk + f0,0,1∇
2hk

)

du = 0.

Using Proposition 25 for L = f0,1,0 we have that f0,1,0 = 0 at (1, 0, 0). Applying

Proposition 26 for L = f0,0,1 we have that for some c ∈ R

f0,0,1(1, 0, 0, )∇
2hk = c tr(∇2hk) = c△hk,

where △ is the Laplace-Beltrami operator. Then by Proposition 11

∫

Sl−1

f0,0,1∇
2hk du = c

∫

Sl−1

△hk du = 0.

Equation (2.3.2) is thus equivalent to

∫

Sl−1

f1,0,0hk du = 0.

As hk = ρk|Sn−1∩P we have

∫

Sn−1∩P

f1,0,0ρk du =

∫

Sl−1

f1,0,0hk du = 0

for all P ∈ Grl(R
n). As f1,0,0 6= 0 by hypothesis, ρk is an even function that has all

its integrals over great Sl−1’s equal to zero. We can use theorem 9 to conclude that
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ρk = 0 . Then hk = 0. Since hk = 0 we have h[k] = h[k+1] for k > 1. For k = 1

we have h1 = 0 and then h = h[1] = h[2]. Inductively h = h[k] for all k > 1. Thus

h = 1. Then the radial function of each Kt is ρ(u) = 1 meaning that every Kt is the

Euclidean unit ball of Rn. �

Corollary 31. Let Kt be a one parameter family of C2 boundaries starlike bod-

ies in S2
sym(Rn) whose radial functions are given by the series 0.0.2 that converges

absolutely in C2(Sn−1). Assume that for all P ∈ Grl(R
n)

If (Kt ∩ P ) = If(B
n ∩ P )

where If is positively homogeneous of nonzero degree integral invariant defined by

f ∈ F2(R
l). Then each Kt is the Euclidean unit ball of Rn.

Proof. Since If is homogeneous of degree nonzero by hypothesis, according to

Corollary 24 f1,0,0 6= 0 so we can apply now Theorem 29. �

Remark 32. Corollary 31 applies to intrinsic volumes Vk, since according to

Proposition 28, they are homogeneous of degree k integral invariants.

When we let k = 2 and f , the order two O(l) invariant function on Rl, to be a

power of the curvature of the body’s central section in Theorem 29 then we obtain

the Corollary:

Corollary 33. Let Kt be a one parameter family of C2 bodies starlike about the

origin of Rn, O ∈ int(Kt), whose radial functions are given by the series 0.0.2 that

converges absolutely in C2(Sn−1). Assume that each Kt is symmetric about the origin

and for all P ∈ Gr2(R
n)

(2.3.3) Iα(Kt ∩ P ) =

∫

∂Kt∩P

κα ds = 2π

where κ is the curvature of ∂Kt ∩ P , α 6= 1, and s is the arclength of ∂Kt ∩ P . Then

ρt(u) = 1 for all t and u and thus each Kt is the Euclidean unit ball of Rn.
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Remark 34. If K is any starlike body in R3 and P ∈ Gr2(R
3) then ∂K ∩P is a

closed curve. For α = 1 we have I1(K ∩ P ) =
∫

∂K∩P
κ ds. Using the definition of the

curvature

κ =
dτ

ds

where τ is the angle of the oriented tangent to ∂K ∩ P with the x-axis. So

I1(K ∩ P ) =

∫

∂K∩P

dτ

= 2π

since I1(K∩P ) gives the total variation of τ when the tangent describes ∂K∩P that is

a closed curve. So clearly the Euclidean unit ball is not determined by I1(K∩u⊥) = 2π

for all u ∈ S2.
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