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CHAPTER 1

Introduction.

This thesis is concerned with some topics related to the mechanics of moving rigid
bodies, with the main goal being a description of the motion of a spinning top.

The motion of a rigid body in space can be described by giving two Euclidean
coordinate systems k and K, where k is a fixed coordinate system, by which we mean
that k is thought of as being “attached” to the background space. In particular, k
is an inertial coordinate system. The second coordinate system, K, is “attached” to
the rigid body and, therefore, is moving with respect to the fixed coordinate system
k. This motion will be described as a map B = Bt, so that for each time t, we have
a mapping Bt : K → k that preserves distances and orientation. Such mappings are
usually called rigid motions. For each t, the map Bt relates the coordinates in the
frame K of the moving body to the frame k of space.

In Chapter 2, formulas relating motion in the moving coordinate system K are
related to those in the fixed coordinate system. In an inertial coordinate system,
such as k, Newton’s second law relating the force f(t) on a particle q(t) of mass
m and acceleration q̈ takes its usual form f = mq̈. However, if the same particle
has its coordinates Q(t) given in the moving coordinate system K, then as K is not

inertial, Newton’s law can not be written in the straightforward manner F = mQ̈.
Thus, the main result of Chapter 2 is the corrected version of Newton’s second law
(Theorem 2.2.1) in a rotating coordinate system. The extra terms that result can be
understood by pretending that K is an inertial frame with three extra forces acting
on the particle Q. These are the inertial force of rotation , the Coriolis force, and the
centrifugal force. Further, a frame attached to the earth can be viewed as a moving
coordinate system due to the rotation of the earth. In §2.2.1 we show how the Coriolis
force affects the path of a falling stone and the motion of a long pendulum in the
latitude of Columbia, South Carolina.

In Chapter 3, we study the motion of a rigid body rotating about a stationary
point that has no external forces acting on it. Among other things this models the
motion of a body, such as an asteroid or spaceship with its engines offand sufficiently
far away from surrounding astronomical objects, moving without any forces acting
on it. This is provided we choose the coordinate system k so that the center of mass
of the object in question is at the origin of k. For objects in a gravitational field, it
models the motion of a top that has as its stationary point the center of gravity of
the top. The main result here is the beautiful theorem of Poinsot which states that
an ellipsoid (the ellipsoid of inertia) centered at the stationary point of the body can
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be attached rigidly so that the motion of this ellipsoid rolls without slipping along a
fixed plane.

Finally, Chapter 4 analyzes the equations of motion for a rotational symmetric
top (Lagrange’s top). Unlike Chapter 3, where the equations of motion were deduced
directly from Newton’s second law, in this chapter, the equations of motion are derived
from a variational principle, Hamilton’s principle, which we assume without proof.

The presentation in this thesis follows that of Arnold [1], except that we do
not use Neother’s theorem to deduce the conservation laws such as conservation of
energy and conservation of angular momentum. While Neother’s theorem does give
a unified treatment of these facts, it is non-trivial both to state and to apply. Also,
without putting it in larger context, it does not shed any light on the geometry or
the physics. Therefore, in the presentation of the conservation laws in Chapter 3, we
have followed the presentation in [4]. In Chapter 4, the conservation laws are derived
by direct calculation, which amounts to the proofs of Neother’s theorem in the cases
we need.
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CHAPTER 2

Moving Coordinates.

2.1. Coordinate Systems.

A rigid body is a body whose particles do not move relative to one another. In
order to describe the motion of a rigid body, we begin by defining the two coordinate
systems that are used to describe the motion of a rigid body. The first one will be
the usual coordinate system for space and the other will be “attached” to the rigid
body. We will call these two, three dimensional oriented Euclidean spaces k and K,
respectively. It is generally convenient to have fixed Euclidean coordinates on k and
K. Here, q will describe the Cartesian radius vector of a point relative to an inertial
coordinate system k which is the coordinate system in space. The notation Q will be
used for the Cartesian radius vector of a point relative to a moving coordinate system
K.

A motion of K relative to k is a mapping smoothly dependent on t,

Dt : K → k

which preserves the metric and orientation. Here, t is to be thought of as time. So, for
a fixed time t, the mapping Dt gives the relationship between the coordinates K on
the moving body and the coordinates k in space. In general, a map Dt that preserves
the metric and orientation is a translation Ct followed by a rotation Bt about a line.
(Figure 2.1.) Proofs of this can be found in [3] and [8].

K
Bt

Dt

Ct

Figure 2.1. The rigid motion Dt is a translation Ct followed by a rotation Bt.

The motion Bt in Figure 2.1 is called a rotation since it takes the origin of K to
the origin of k. Therefore, Bt is a linear operator. The motion Ct is a translation
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as it does not involve any rotation.

CtQ = Q + r(t)

Since q is the position of a particle relative to a fixed coordinate system, we have
that

q̇ = velocity of particle,(2.1)

q̈ = acceleration of particle.(2.2)

In what follows, we will assume that there is a point of the moving body that
stays fixed during the motion. If this point is O then it is natural to take O to be the
origin of both the fixed coordinate system k and the moving coordinate system K.
In this case the motion Dt will leave the origin fixed and thus the translational part,
Ct, will vanish. Therefore, we will be assuming that the motion of K relative to k is
a smooth map t 7→ B(t) of R into SO(3), the group of rotations about the origin O.
(Concretely, SO(3) is the group of all 3 × 3 orthogonal matrices.)

We can think of B(t) as giving a moving (rotating) coordinate system. Letting
Q be the position coordinates of the particle with respect to this moving coordinate
system allows q and Q to be related by

q = BQ = B(t)Q.(2.3)

Also, if q = q(t) and Q = Q(t) depend on time (so that they can be thought of as the
motion of a particle), then (2.3) shows that knowing q(t) and B(t) determines Q(t)
and likewise knowing Q(t) and B(t) determines q(t). Thus, we can work in whichever
coordinate system, k or K, in which it is easier to compute. Note, however, that the
first and second derivatives q̇ and q̈ represent the actual velocity and acceleration
of the particle as the coordinate system k is inertial, while the derivative Q̇ and Q̈
do not have obvious physical or geometric meaning since this coordinate system is
moving and in general also accelerating.

Our immediate goal is to relate the derivatives Q̇ and Q̈ to q̇ and q̈ and interpret
the results geometrically. We start by differentiating both sides of equation (2.3).

q̇ = ḂQ + BQ̇

= ḂB−1BQ + BQ̇

= ḂB−1q + BQ̇(2.4)

Lemma 2.1.1. The matrix ḂB−1 is skew symmetric.

Proof. Since B ∈ SO(3) (which is the group of all 3×3 orthogonal matrices), we
have that BBt = I or Bt = B−1 by definition. Differentiating both sides of BBt = I
with respect to t, we get

ḂBt + BḂt = 0

Substituting Bt = B−1, we get

ḂB−1 + (ḂB−1)t = 0.
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So
ḂB−1 = −(ḂB−1)t.

Therefore, ḂB−1 is skew symmetric.

Theorem 2.1.2. Let q = BQ as above. Then there is a map t 7→ ω(t) ∈ R3 so
that

q̇ = ω(t) × q + BQ̇.

(Here × is the usual vector cross product from vector analysis.) The vector ω(t) is
the instantaneous angular velocity , which for brevity sake will be referred to as
the angular velocity in the sequel. It is an eigenvector of ḂB−1 with eigenvalue 0.

Proof. By equation (2.4), we know,

q̇ = ḂB−1q + BQ̇.

So we must show ḂB−1q = ω(t) × q for some ω(t). Since S = ḂB−1 is skew
symmetric by the previous lemma, it is of the form

S =


 0 −w3 w2

w3 0 −w1

−w2 w1 0




for some w1, w2, w3. Letting e1, e2, e3 be the standard basis of R3 and setting

ω = w1e1 + w2e2 + w3e3,

q = q1e1 + q2e2 + q3e3,

then

ω × q = (w2q3 − w3q2)e1 − (w1q3 − w3q1)e2 + (w1q2 − w2q1)e3 = Sq.

as required. Direct calculation shows Sω = 0 so that ω is an eigenvector of S with
eigenvalue 0.

The following notation will be used in the description of the motion:

v = q̇ ∈ k = absolute velocity,

v′ = BQ̇ ∈ k = relative velocity,

vn = ḂQ = ω × q ∈ k = transferred velocity of rotation.

Then, the previous theorem showed

v = v′ + vn.

So, v is the velocity of a particle of the rigid body in a stationary coordinate
system, k. The vector v′ is the velocity of the particle in the stationary plane relative
to the moving coordinate system, K. The vector vn, the transferred velocity, is the
velocity of the particle when the particle is at rest with respect to the moving coordi-
nate system K, while K is only rotating (i.e., no translation takes place). Therefore,
the absolute velocity of the particle is the sum of the particle’s relative velocity and
its transferred velocity of rotation.
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Now, consider again our basic relation, q = BQ, which relates coordinates in the
fixed and moving coordinate systems. We let

ω = BΩ,(2.5)

where Ω is angular velocity in the moving coordinate system, K, and ω
is angular velocity in the fixed frame, k. We also assume that q moves by
Newton’s Second Law:

mq̈ = f(q, q̇)

where f(q, q̇) is the force acting on the particle q and m is the mass. Then there is
enough information to find the acceleration of a particle relative to K.

Proposition 2.1.3. The acceleration of a particle relative to a moving frame can
be found by the following equation.

q̈ = B(Q̈ + 2(Ω × Q̇) + (Ω × (Ω × Q)) + (Ω̇ × Q))

Proof. Differentiating q = BQ, we get

q̇ = ḂQ + BQ̇.

From the proof of the previous theorem, we know ḂQ = ω × q. Thus,

ḂQ = ω × q = BΩ × BQ = B(Ω × Q)

So

q̇ = B(Ω × Q + Q̇).

Differentiating q̇ gives the following:

q̈ = Ḃ(Ω × Q + Q̇) + B[(Ω × Q̇) + (Ω̇ × Q) + Q̈]

= B[(Ω × ((Ω × Q) + Q̇) + (Ω × Q̇) + (Ω̇ × Q) + Q̈]

= B[Ω × (Ω × Q) + 2(Ω × Q̇) + (Ω̇ × Q) + Q̈].

In this calculation, at the second equality, we have used that for any vector u,
ḂB−1u = ω × u. This implies that for any v, we have Ḃv = ḂB−1Bv = ω × Bv =
B(B−1ω × v) = B(Ω × v). We also used v = (Ω × Q + Q̇).

2.2. Acting Forces.

The next result shows that in a moving coordinate system Newton’s second law
looks as if there are three extra forces acting on a particle. These forces will be called
the acting forces.

Theorem 2.2.1. Motion in a rotating coordinate system takes place as if three
inertial forces act on each point Q of mass m.

1. The inertial force of rotation:

mΩ̇ × Q.
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2. The Coriolis force:
2m(Ω × Q̇).

3. The centrifugal force:

m(Ω × (Ω × Q)).

Thus,

mQ̈ = F − (mΩ̇ × Q) − (2mΩ × Q̇) − [mΩ × (Ω × Q)](2.6)

where F is defined by

BF(Q, Q̇) = f(BQ, BQ̇).

Proof. From the previous proposition, we have

q̈ = BQ̈ + 2B(Ω × Q̇) + B(Ω × (Ω × Q)) + B(Ω̇ × Q)

q̈ − 2B(Ω × Q̇) − B(Ω × (Ω × Q)) − B(Ω̇ × Q) = BQ̈.

Multiplying thru by the mass m, we get

mq̈ − 2Bm(Ω × Q̇) − Bm(Ω × (Ω × Q)) − Bm(Ω̇ × Q) = BmQ̈.

Now, realizing that

mq̈ = f(q, q̇) = f(BQ, BQ̇) = BF(Q, Q̇),

we find

BF(Q, Q̇) − 2Bm(Ω × Q̇) − Bm(Ω × (Ω × Q)) − Bm(Ω̇ × Q) = BmQ̈.

Since B is an orthogonal matrix, it is nonsingular. Therefore, it can be canceled off
of both sides of this equation, leaving the desired equality:

F(Q, Q̇) − 2m(Ω × Q̇) − m(Ω × (Ω × Q)) − m(Ω̇ × Q) = mQ̈.

2.2.1. Examples. The frame of the earth is not an inertial frame due to the
rotation of the earth about its axis and its orbiting the sun. We now give a couple
of examples showing how the acting forces of Theorem 2.2.1 affect objects near the
earth’s surface. When studying effects of relatively short duration, say only lasting a
few days at most, the main contribution of the motion of the earth is its rotation about
its axis. Thus, for such events we can assume that the motion is uniform rotation
about the axis that runs through the North and South poles. Then, the angular
velocity vector is constant and of the form ω = |ω|e, where e is the unit vector
parallel to the axis of the earth. The rate of rotation is 2π radians every 24 hours
( 86,400 seconds). Therefore, |ω| = 2π/(86400) ≈ .00007272 radians/second. ω
and Ω are related by Ω = B−1ω. As B is the rotation about e, it follows that
Be = B−1e = e and, therefore,

Ω = B|ω|e = |ω|e ≈ .00007272e.

This implies that
|Ω| ≈ .00007272,
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an approximation that will be used in our examples. Also, as e is a constant vector,
we have Ω̇ = 0. Therefore, in Theorem 2.2.1 the inertial force of rotation vanishes
and the equation for mΩ̈ in the theorem simplifies to

mQ̈ = F − 2m(Ω × Q̇) − [mΩ × (Ω × Q)](2.7)

2.2.1.1. The Coriolis force and horizontal displacement of a falling body. We can
denote mQ̈ as Feff, or the effective force. When the particle is stationary in the
moving coordinate system, the centrifugal force, m(Ω× (Ω×Q)), is the only added

term in the effective force. This is due to the fact that Ω̇ = 0 and Q̇ = 0 in this case.
However, if the particle is moving relative to the moving coordinate system, K,

the Coriolis force, 2m(Ω × Q̇), is also added. In effect, the Coriolis force is just an
apparent force visible only due to the movement of a chosen frame. Therefore, if any
object is dropped onto the earth, it will deviate from the vertical of a chosen fixed
coordinate system due to the Coriolis force.

For example, consider a stone of mass m that is dropped with zero initial velocity,
and falls a vertical distance of h meters. Then choose a frame ex, ey, ez attached to
the earth at the initial point of the stone so that ez points upward and ex and ey

are parallel to the earth’s surface. As the acceleration due to gravity at the earth’s
surface is g = 9.8m/sec2, the force of gravity on the stone is mg where

F = mg = −gmez = −9.8mez.

Substituting this into equation (2.7)and dividing by m gives

Q̈ = g − 2(Ω × Q̇) − (Ω × (Ω × Q)).

But as the size of Ω is small, the quadratic term, (Ω × (Ω × Q)), will be very small

in relation to the term (Ω × Q̇). So, we further simplify by dropping the quadratic
term. Then the equation for the falling stone reduces to

Q̈ = g + 2(Q̇ × Ω)(2.8)

We then split Q as

Q = Q1 + Q2(2.9)

where, as in Figure 2.2, Q1 is the vertical displacement and Q2 is the horizontal
displacement.

Then
Q1 = Q1(0) + gt2/2

where gt2/2 is the distance traveled after time t. Differentiating Q1 twice with respect
to t, we get

Q̈1 = g.

From equation (2.9),

Q2 = Q − Q1

Q̈2 = Q̈ − Q̈1 = g + 2(Q̇ × Ω) − g

Q̈2 = 2(Q̇ × Ω).(2.10)

8



Integrating equation (2.8), we get

Q̇ = 2(Q × Ω) + gt.

Then substituting this into equation (2.10), we get

Q̈2 = 2((gt + 2(Q × Ω)) × Ω)

= 2(gt × Ω) + O(Ω2).

Integrating Q̈2 twice, we find

Q2 ≈ t3

3
(g × Ω) ≈ 2t

3
(h × Ω),

where h = h(t) = gt2/2 is the vertical displacement after t seconds. The magnitude
of this is

|Q2(t)| ≈ 2t

3
|h × Ω| =

2t

3
|h||Ω| cos λ,(2.11)

where λ is the latitude of the stone. It takes the stone a time of th =
√

(2h)/g to fall
h meters. Using this in (2.11), we find that the horizontal displacement in falling h
meters is about

|Q2(th)| ≈ (2h)3/2

3
√

g
|Ω| cos λ ≈ .00002190(h)3/2 cos λ.

Given that the latitude of Columbia is λ = 34◦, we can generate the following table
giving the horizontal displacements for some different heights (all distance are in
meters).

Vertical drop 100 250 500 1000 5000 10000
Horizontal displacement .018 .071 .202 .574 6.419 18.156

Q1(0)

Q1(t)

Figure 2.2. The Coriolis force causes a falling object to deviate from the verti-
cal. In the latitude of Columbia and considering a drop of 250 meters, the horizontal
displacement is a little over 7cm.
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2.2.1.2. Foucault’s Pendulum. Another example of the Coriolis force is when one
considers the small oscillations of a pendulum. We will consider a long pendulum
undergoing small oscillations. Then, if ex, ey, and ez constitute a frame as in the last
example, and if we ignore the Coriolis force, we can make the usual approximations
to get the equations of motion. (This involves sin θ ≈ θ which is very good for small
θ. For example, see [7, pp. 216–217].) Then

ẍ = −ω2x,

ÿ = −ω2y,

z̈ = 0,

where ω is a constant depending on the length of the pendulum. (We use the tra-
ditional notation of ω for this constant and remark that it should not be confused
with the angular velocity ω.) The solutions to these equations give simple harmonic
motion in the x-y plane. We now consider what happens when the Coriolis force
is also taken into account. The horizontal component of the Coriolis force is easily
computed to be

2mẏΩzex − 2mẋΩzey.

The equations of motion for the pendulum with the Coriolis force added in are

ẍ = −ω2x + 2ẏΩz(2.12)

ÿ = −ω2y − 2ẋΩz,(2.13)

where Ωz = |Ω| sin λ and λ is the latitude. Set u = x + iy, where, as usual, i =
√−1.

Then

u̇ = ẋ + iẏ

ü = ẍ + iÿ.

By substituting these into the equations of motion, we get

ü = −ω2x + 2ẏΩz + i(−ω2y − 2ẋΩz)

ü − iÿ = −ω2x + 2ẏΩz.

Substituting (2.13) for ÿ, we find

ü − i(−ω2y − 2ẋΩz) = −ω2x + 2ẏΩz

ü − i(−ω2y − 2(u̇ − iẏ)Ωz) = −ω2x + 2ẏΩz

ü + ω2yi + 2(u̇ − iẏ)Ωzi = −ω2x + 2ẏΩz

ü + ω2yi + 2u̇Ωzi + 2ẏΩz = −ω2x + 2ẏΩz

ü + ω2yi + 2u̇Ωzi + ω2x = 0

ü + 2u̇Ωzi + ω2(x + yi) = 0.
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Substituting the relationship u = x + iy, equations (2.12) and (2.13) become the
following single complex equation:

ü + 2Ωzu̇i + ω2u = 0(2.14)

We begin to solve this complex equation in the following manner: Let

u = eλt(2.15)

Substituting this into (2.14) implies λ satisfies

λ2 + 2iΩzλ + ω2 = 0.

Therefore,

λ = −iΩz ± i
√

Ω2
z + ω2.

Since Ωz is relative to the earth and ω is relative to space, Ω2
z ¿ ω2. Thus,√

Ω2
z + ω2 = ω + O(Ω2

z),

from which we can conclude
λ ≈ −iΩz ± iω.

By substituting this into (2.15), we find that

u = e(−iΩz±iω)t

= e−iΩzt±iωt

= e−iΩzteiωt, e−iΩzte−iωt.(2.16)

So, the general solution to (2.14) is

Figure 2.3. A pendulum rotates about its axis with angular velocity −Ωz. In
the latitude of Columbia, one revolution about the central axis takes a little less
than 1 day and 19 hours.

u = e−iΩzt(c1e
iωt + c2e

−iωt)

= (cos(−Ωzt) + i sin(−Ωzt))(c1 cos(ωt) + c2 sin(ωt)).
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Since u = x(t) + iy(t),

x(t) = cos(−Ωzt)(c1 cos(ωt) + c2 sin(ωt))(2.17)

y(t) = sin(−Ωzt)(c1 cos(ωt) + c2 sin(ωt).(2.18)

Then for Ωz = 0, equations (2.17) and (2.18) reduce to usual equations for the
the harmonic oscillations of a spherical pendulum where ω is the angular frequency.
Therefore, in a moving frame where Ωz 6= 0, the effect of the Coriolis force is that,
when viewed from above, the pendulum will rotate with an angular velocity of −Ωz.
Recalling that Ωz = |Ω| sin λ and that |Ω| corresponds to one rotation per day,
it follows that the plane of the pendulum will make one complete revolution each
1/ sin λ = csc λ days. This shows latitude can be determined by the observation of a
pendulum as Ωz determines the latitude. This is the principal behind Foucault’s Pen-
dulum. In the latitude of Columbia SC, the period of the rotation about the vertical
axis is 1/ sin(34◦) ≈ 1.788 days (1 day 18 hours and 55 minutes). See Figure 2.3.
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CHAPTER 3

Motion of a Rigid Body with no External Forces.

In this chapter we give a detailed description of the motion of a rigid body around
a stationary point O with no outside forces acting on it. This can be thought of as
a spinning top without any external forces acting on it. This is achieved by showing
that the motion of the body is the same as the motion of an ellipsoid (the ellipsoid of
inertia) centered at O and defined in terms of the moments of inertia of the body. It
is then shown by Poinsot’s Theorem that this ellipsoid moves so that it rolls without
slipping on a plane perpendicular to the angular momentum m. The description
of the ellipsoid of inertia and the kinetic energy is in terms of a symmetric linear
operator A, the inertia operator, which is also introduced and studied.

We recall some notation. We have a fixed inertial coordinate system k centered
at the fixed point O of the body. The coordinates in k are thought of as giving the
position in space. In this coordinate system we have the quantities

q = the radius vector of a point in space,

v = q̇ is the velocity vector of a point in space,

ω = the angular velocity vector of a point in space and

m = the angular momentum vector of a point in space.

To be more specific, as the body has the point O fixed, the motion is rotational.
Therefore, the only contribution to the velocity is the angular velocity. Also, by
Theorem 2.1.2 and using that Q̇ = 0 for a point at rest with respect to the moving
frame K, the velocity vector v of a point can be computed directly from the angular
velocity ω and the position q by

v = ω × q.(3.1)

By definition, the angular momentum m of a point with mass m is the cross product
of the position and the momentum mv. That is,

m = q × mv = q × m(ω × q).(3.2)

Attached to the body there is a moving coordinate system K, also centered at O,
that gives the position in the frame of the body. Therefore, a particle with constant
coordinates in K is at rest with respect to the body. We will say that such a particle
or point is attached to the body. In the coordinate system K, we have defined the
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quantities

Q = the radius vector of the body,

V = the velocity vector in the body,

Ω = the angular velocity in the body and

M = the angular momentum in the body.

The coordinates k and K are related by a time dependent map B = Bt : K → k
which, for all t, is an element of the group SO(3). Therefore, each Bt preserves the
inner products and vector cross products on k and K. The various quantities defined
in these coordinate systems are related by having a vector in K carried over to k by
B:

q = BQ,

v = BV,

ω = BΩ and

m = BM.

After the last chapter, it might seem natural to use the equations of motion in
the frame of the body as given in Theorem 2.2.1 to try to get information about the
motion of the body. However, this does not lead to much useful information. The
difference is that here we are looking for Bt as a function of t which is basically the
same as looking for q(t) = BtQ as Q is constant, while in the last chapter the motion
Bt was known by looking for Q(t) as a function of t.

3.1. The Inertia Operator.

Using formula (3.2) for the angular momentum m and the relationship between
m and the angular momentum M in the body given by the rotational operator B,
we have for a point of mass m attached to the body,

M = B−1m = mB−1(q× (ω×q)) = m(B−1q× (B−1ω×B−1q)) = m(Q× (Ω×Q)).

Therefore, if we introduce a linear operator A : K → K by

AX = mQ × (X × Q),(3.3)

then Ω and M are related by

AΩ = M.(3.4)

(Note that A = AQ depends on Q.) It is important to realize that as Q̇ = 0, that

Ȧ = 0. Therefore, A is constant with respect to time. The linear operator A is the
inertia operator of the point Q.

Lemma 3.1.1. The inertia operator satisfies the identities

AX · Y = m(X × Q) · (Y × Q),

AX · X = m(X × Q)2.
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In particular, A is symmetric (that is, AX · Y = X · AY) and positive semidefinite
(that is, AX · X ≥ 0 for all X).

Proof. Consider any X and Y in K. Because of equation (3.3),

AX · Y = m[(Q × (X × Q)) · Y].

Since for any vectors a, b, and c, the identity

(a × b) · c = (c × a) · b
holds, we get

AX · Y = m[Q × (X × Q) · Y]

= m[(Y × Q) · (X × Q)]

= m(X × Q) · (Y × Q).

(The symmetry of the inner product was used at the last step.) This proves the first
of the required identities. The second follows by setting Y = X. The symmetry of
A follows as m(X × Q) · (Y × Q) is symmetric with respect to X and Y. That A is
positive semi-definite follows from the identity for AX · X.

3.2. The Kinetic Energy, T , and its Conservation.

Recall that the kinetic energy of a point of mass m moving with velocity v is
T = 1

2
mv2. Using that B is an orthogonal linear map, so that it preserves inner

products, we have that v2 = (BV)2 = V2. Therefore, in the coordinates of the body,
the kinetic energy of a point with mass m is

T =
1

2
mV2.

Proposition 3.2.1. The kinetic energy of a point of mass m on the body is a
quadratic form with respect to the vector of angular velocity Ω, namely

T =
1

2
(AΩ · Ω)

=
1

2
(M · Ω).

Proof. From equation (3.1), and using v = BV, we have V = B−1(ω × q) =
Ω × Q. Therefore, using one of the identities of the previous lemma

T =
1

2
mV2

=
1

2
m(Ω × Q)2

=
1

2
AΩ · Ω

=
1

2
M · Ω,

where, at the last step, we have used that AΩ = M.
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The derivative of kinetic energy is interpreted as the rate of change of work done
in moving the particle. This is important as it leads to the conservation of kinetic
energy for a body with no outside forces acting on it. Letting f be the total force
acting on q, the kinetic energy of the point is T = 1

2
mv2 = 1

2
mq̇2. Its derivative is

dT

dt
= mq̇ · q̈ = q̇ · f ,

where we have used Newton’s second law mq̈ = f . Therefore, if dt is a small change
in time, the corresponding change in kinetic energy between times t and t + dt is

dT =
dT

dt
dt = q̇dt · f = dq · f ,

where dq = q̇dt is the displacement (change in position) between times t and t + dt.
However, the dot product of the force and displacement is the work done in doing
the displacement. This is the definition of work. So, dT is the work done in a time
interval of length dt and then, dT

dt
is the rate of change of work. Therefore, we have

shown

Proposition 3.2.2. If W = W (t) is the work done be a force f acting on particle
q = q(t) between the time t and time t = 0, then W is the derivative of the kinetic
energy T = T (t). That is

Ṫ = W.

So far we have only considered the equations resulting from the motion of one
point on the body. We now wish to consider the motion of the entire body. We will
simply assume that the body is made up of a finite set of points Q1, . . . ,QN . So, to
model a physical body, we can take the points Qi to be the molecules of the body and
thus get a very accurate description of the body. Fortunately, as we will see shortly,
the formulas describing the motion are not any more complicated for a large number
of points N than for a small number. So, choosing one point per molecule, or even
one point per atom, is reasonable and does not make calculation a problem.

Letting mi be the mass of the point Qi, and qi = BQi, then each point has its
own velocity, vi = q̇i, and so on for all the quantities we have defined so far. In
particular, each point Qi will have its angular momentum Mi in the body and its
own inertia operator Ai. Then the angular momentum of the entire body is defined
as the sum

M =
∑

i

Mi.

To avoid the trivial case, we make the assumption that there is not a line through O
that contains all the points Qi.

Theorem 3.2.3. The angular momentum M of a rigid body with respect to a
stationary point O depends linearly on the angular velocity Ω. That is, there exists a
linear operator A : K 7→ K (the inertia operator of the body) such that AΩ = M.
The operator A is symmetric and positive definite (that is, AX ·X > 0 for all X 6= 0).
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Also, the kinetic energy of a body is a quadratic form with respect to the angular
velocity Ω:

T =
1

2
AΩ · Ω =

1

2
M · Ω.

Proof. Because of (3.4) we have AiΩ = Mi. (Note that Ω is defined in terms of
B and, thus, is independent of any particular point of the body we are at. So, Ω is
independent of i.) Thus

M =
∑

i

Mi =
∑

i

AiΩ = AΩ,

where A =
∑

i Ai. Then, by Lemma 3.1.1, each Ai is symmetric, and so the operator
A is symmetric. Again using Lemma 3.1.1

AX · X =
∑

i

AiX · X =
∑

i

mi(X × Qi)
2 ≥ 0.

If there is an X 6= 0 with AX ·X = 0, then, as each of the terms in the sum for AX ·X
is nonnegative, we have (X×Qi)

2 = 0 for all i. Thus X×Qi = 0 for all i. However,
X × Qi = 0 implies that Qi = λiX for some scalar λi. So this implies that all of the
points Qi lie on the line through O and X, contrary to one of our assumptions. Thus,
X 6= 0 implies AX · X > 0 and A is positive definite as claimed.

The kinetic energy of Qi is Ti = 1
2
AiΩ · Ω = 1

2
Mi · Ω. Therefore, using that A is

the sum of the Ai, the total kinetic energy is

T =
∑

i

Ti =
1

2

∑
i

AiΩ · Ω =
1

2
AΩ · Ω =

1

2
M · Ω,(3.5)

where we have also used AΩ = M.

Finally, we give what may be the most important property of kinetic energy, which
is that it is preserved under the motion of a rigid body. To do this we need to make
a hypothesis concerning what forces are acting on the particles of a rigid body. Let
fi be the sum of all the forces acting on the i-th particle qi of our body. Then kinetic
energy of this particle is Ti, and by Proposition 3.2.2 the rate of change of Ti is

Ṫi = Wi,

where Wi is the work done by the force fi between the times 0 and t. But if the body
is rigid and there are no outside forces acting on it, then no work is being done. Thus,
for a rigid body we make the following assumption:

Assumption 3.2.4. If q1, . . . ,qN are the particles of a rigid body moving without
any external forces on it, then the total work W =

∑
i Wi done by the forces fi acting

on these particle vanishes. That is,

W =
∑

i

Wi = 0.(3.6)

This is sometimed referred to as D’Alembert’s principle [5, p. 18] and leads to
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Theorem 3.2.5 (Conservation of Kinetic Energy). If q1, . . . ,qN are the particles
of a rigid body moving without any external forces acting on it, then the total kinetic
energy T =

∑
i Ti is constant. That is,

Ṫ = 0.

Proof. We have from Proposition 3.2.2 that Ṫi = Wi. Therefore, using equa-
tion (3.6) we have

Ṫ =
∑

i

Ṫi =
∑

i

Wi = 0,

which completes the proof.

3.3. Principal Axes.

Since A is a symmetric linear map, by the principle axis theorem for selfadjoint
linear maps (often also called the spectral), the space K has an oriented orthonormal
basis e1, e2, e3 of eigenvectors of A. (This is in most linear algebra texts, for exam-
ple [6, thm. 5 p. 193].) As A is positive definite, the eigenvalues of A are all positive.
If we call the eigenvalues I1, I2, I3, then

Aei = Iiei

for i = 1, 2, 3. Writing Ω and M in this basis, we have for scalars Ωi and Mi that

Ω = Ω1e1 + Ω2e2 + Ω3e3,

M = M1e1 + M2e2 + M3e3.

Then the relation M = AΩ implies

A(Ω1e1 + Ω2e2 + Ω3e3) = M1e1 + M2e2 + M3e3

= I1Ω1e1 + I2Ω2e2 + I3Ω3e3,

which in turn implies

Mi = IiΩi(3.7)

for i = 1, 2, 3. As the kinetic energy given by Theorem 3.2.3 is T = 1
2
M ·Ω, we have

T =
1

2
(I1Ω

2
1 + I2Ω

2
2 + I3Ω

2
3).

Definition 3.3.1. The principal axes of the body at point O are these axes
e1, e2, e3.

We give another interpretation of the kinetic energy by writing the vector Ω as

Ω = |Ω|e
where e is a unit vector. The line through O in the direction of e is the axis of
rotation . (Note that Ω = Ω(t) is time dependent so the axis of rotation changes
with respect to time.)

The instantaneous motion of the body is a rotation with angular velocity |Ω|
around the axis e. If ri is the distance of the point Qi from the axis of e (which is
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ri mi

O

Ω = Ωe

Figure 3.1. If the i-th point of the rigid body has distance ri from the axis of
rotation, then its speed is vi = |Ω|ri, where Ω = |Ω|e is the angular velocity. Thus,
if the mass of the point is mi, then its kinetic energy is Ti = 1

2miv
2
i = Ω2 1

2mir
2
i .

the axis that is a line through the fixed point O and in the direction Ω), then the
speed (i.e., length of the velocity vector) of Qi is vi = |Ω|ri. Therefore, the kinetic
energy of Qi is

Ti =
1

2
miv

2
i = Ω2 1

2
mir

2
i .(3.8)

See Figure 3.1.

Theorem 3.3.2. For a rotation of a rigid body fixed at a point O with angular
velocity

Ω = Ωe, (Ω = |Ω|)
around the e axis, the kinetic energy is equal to

T =
1

2
IeΩ

2,

where

Ie =
∑

i

mir
2
i

and Ωi is the distance of the i-th point to the e axis (Figure 3.1).

Proof. Summing the formula(3.8) over i, we get the desired result:

T =
∑

i

Ti =
∑

i

Ω2 1

2
mir

2
i =

1

2
IeΩ

2.

Definition 3.3.3. Ie is called the moment of inertia of the body with respect
to the e axis.
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Comparing our formulas for the kinetic energy we have

T =
1

2
AΩ · Ω =

1

2
IeΩ

2.

If we choose Ω = e1, then e = e1 and Ω2 = 1. Using this in the formula for T gives

1

2
I1 =

1

2
Ae1 · e1 =

1

2
Ie1 ,

so that the moment of inertia about e1 is I1. Doing similar calculations for Ω = e2

and Ω = e3 leads to

Corollary 3.3.4. The eigenvalues I1, I2, I3 of the inertia operator A are the
moments of inertia of the body with respect to the principal axes e1, e2, e3.

3.4. Torque, Conservation of Angular Momentum, and Euler’s Equations.

So far we have not given a precise definition of what it means for a rigid body with
a fixed point to move without external forces acting on it. In the inertial coordinate
system, if qi is the position vector of the i-th point of the system, then let fi be the
force on qi. Then by Newton’s second law

miq̈i = fi.(3.9)

Consider the vector

τ i = qi × fi

which is defined to be the torque of the point qi about O. The units on τ i are
displacement (qi is a vector) times force. So, τ i has the units of work. If the force fi is
parallel to qi (that is, fi = λqi for some scalar λ), then τ i = qi× fi = 0 as qi×qi = 0.
Thus, for a force that is radial with respect to O, the contribution to the torque is
zero. However, if the force fi is orthogonal to qi, then |τ i| = |qi × fi| = |qi||fi|. More
generally, if fi is decomposed as

fi = f⊥i + f>i

where f⊥i is orthogonal to qi and f>i is parallel to qi, then

τ i = qi × (f⊥i + f>i ) = qi × f⊥i .

Therefore, only the part of the force perpendicular to the line through O and the point
qi contributes to the torque about the point O. Thus, the torque can be thought of as
the work done by the force fi in rotating the point qi about the point O. The following
proposition gives an important relationship between the angular momentum mi of qi

and its torque.

Proposition 3.4.1. The angular momentum mi and the torque τ i about the fixed
point O of the body are related by

ṁi = τ i.

That is, the torque is the rate of change of angular momentum.
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Proof. The definition of the angular momentum is mi = miqi × q̇i. Therefore,
by the product rule and Newton’s second law miq̈i = fi, we have

ṁi = miq̇i × q̇i + miqi × q̈i = 0 + qi × fi = τ i

as required.

If a body has no external forces acting on it, then no work is done (as work is
displacement times force). This motivates the following assumption:

Assumption 3.4.2. If the rigid body composed of points q1, . . . ,qN moves about
the point O without external forces, then the total torque vanishes. That is

τ =
∑

i

τ i = 0.

Remark 3.4.3. If Fij is the force that the particle qi exerts on the particle qj,
then Assumption 3.4.2 can be shown to hold if Fij = −Fji (which is Newton’s third
law) and Fij is parallel to the vector qi − gj. However Assumption 3.4.2 holds under
more general conditions.

The following is basic to the study of rotational motion.

Theorem 3.4.4 (Conservation of Angular Momentum). If the rigid body moves
about the point O without external forces, then the total angular momentum

m =
∑

i

mi

is constant.

Proof. From the last proposition, we have that ṁi = τ i. Therefore,

ṁ =
∑

i

ṁi =
∑

i

τ i = τ = 0

as τ = 0. By assumption, if the body moves without external forces about O, the
total torque vanishes. However, ṁ = 0 implies m is constant.

We now rewrite the equation ṁ = 0 in the moving coordinate system. Recall that
the angular momentum M in the body is related to the usual angular momentum by
m = BM.

Theorem 3.4.5. If a rigid body moves without any external forces, then the an-
gular momentum M in the body satisfies the first order differential equation

dM

dt
= M × Ω.(3.10)

This is known as the Euler equation .
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Proof. Differentiating the equation m = BM and using ṁ=0, we find

0 = ṁ

= BṀ + ḂM

= BṀ + ḂB−1m.

From the proof of Theorem 2.1.2, we know that for any vector v, ḂB−1v = ω × v,
and so ḂB−1m = ω×m. Substituting this information into our equation for 0 = ṁ,
we find

0 = BṀ + (ω × m)

= BṀ + (BΩ × BM)

= BṀ + B(Ω × M)

= B(Ṁ + (Ω × M)).

Cancelling B out of this equation gives Ṁ = M × Ω as required.

3.5. Quadratic First Integrals of Euler’s Equations.

Consider again the relation M = AΩ. Remember in the notation of Section 3.3

Ω = Ω1e1 + Ω2e2 + Ω3e3

M = M1e1 + M2e2 + M3e3.

Then,

Ṁ = AΩ̇

= Ω̇1Ae1 + Ω̇2Ae2 + Ω̇3Ae3

= Ω̇1I1e1 + Ω̇2I2e2 + Ω̇3I3e3.

Recall that A is constant or Ȧ = 0, so we know the eigenvalues Ii of A are also
constant. By Euler’s Equation (3.10)

Ṁ = M × Ω

= (M2Ω3 − M3Ω2)e1 − (M1Ω3 − M3Ω1)e2 + (M1Ω2 − M2Ω1)e3.

Comparing like components, we have

I1Ω̇1 = M2Ω3 − M3Ω2(3.11)

I2Ω̇2 = M3Ω1 − M1Ω3(3.12)

I3Ω̇3 = M1Ω2 − M2Ω1.(3.13)
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Since Mi = IiΩi (from equation (3.7)),

I1Ω̇1 = I2Ω2Ω3 − I3Ω3Ω2

= (I2 − I3)Ω2Ω3

I2Ω̇2 = I3Ω3Ω1 − I1Ω1Ω3

= (I3 − I1)Ω1Ω3

I3Ω̇3 = I1Ω1Ω2 − I2Ω2Ω1

= (I1 − I2)Ω1Ω2.

Substituting the following information, Mi = IiΩi, Ṁi = IiΩ̇i and Ṁi/Ii = Ω̇i into
equations (3.11), (3.12), and (3.13), we find

I1
Ṁ1

I1

=
M2M3

I3

− M3M2

I2

I2
Ṁ2

I2

=
M1M3

I1

− M3M1

I3

I3
Ṁ3

I3

=
M2M1

I2

− M2M1

I1

.

Using this, Euler’s equation becomes a system of differential equations:

dM1

dt
= a1M2M3(3.14)

dM2

dt
= a2M1M3(3.15)

dM3

dt
= a3M1M2(3.16)

where a1, a2 and a3 are the constants given by

a1 =
I2 − I3

I2I3

a2 =
I3 − I1

I3I1

a3 =
I1 − I2

I1I2

.

Proposition 3.5.1. The Euler Equations (3.14), (3.15), and (3.16) have two
quadratic first integrals:

2E =
M2

1

I1

+
M2

2

I2

+
M2

3

I3

,(3.17)

M2 = M2
1 + M2

2 + M2
3 .(3.18)

(By first integral we mean that these equations are constant along solution curves to
the Euler equation.)
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Proof. For this to be true, we must show that the first derivatives Ė and Ṁ are
zero. For equation (3.17),

Ė =
M1Ṁ1

I1

+
M2Ṁ2

I2

+
M3Ṁ3

I3

.

Substituting Euler’s equations (equations (3.14), (3.15), and (3.16)), we find

Ė =
M1

I1

(a1M2M3) +
M2

I2

(a2M3M1) +
M3

I3

(a3M1M2)

= M1M2M3

(a1

I1

+
a2

I2

+
a3

I3

)
.

Substituting for a1, a2, and a3, we find that

Ė = M1M2M3

(I2 − I3

I1I2I3

+
I3 − I1

I1I2I3

+
I1 − I2

I1I2I3

)
= 0.

For equation (3.18), we find the derivative to be

M · Ṁ = M1Ṁ1 + M2Ṁ2 + M3Ṁ3

= M1(a1M2M3) + M2(a2M3M1) + M3(a3M1M2)

= M1M2M3(a1 + a2 + a3)

= M1M2M3

(I2 − I3

I2I3

+
I3 − I1

I1I3

+
I1 − I2

I1I2

)
= M1M2M3

(I1I2 − I1I3 + I2I3 − I2I1 + I3I1 − I2I3

I1I2I3

)
= 0.

Geometrically this implies that in the space with coordinates M1, M2, and M3,
the vector M moves so that it lies on the intersection of a sphere of radius |M| and
an Ellipsoid with axis of length

√
2EI1,

√
2EI2, and

√
2EI3. (Equation (3.17) is an

ellipsoid as I1, I2 and I3 are positive.)
Therefore, M lies in the intersection of an ellipsoid and a sphere in a three dimen-

sional space with coordinates M1,M2,M3. To get a feel for the geometry, we assume
that I1 > I2 > I3. Also, we hold the energy fixed and vary the magnitude |M| of the
angular momentum. This keeps the ellipsoid defined by (3.17) fixed and varies the
sphere defined by (3.18) . Since

M2
1

2EI1

+
M2

2

2EI2

+
M2

3

2EI3

= 1,

the semi-axes of the ellipsoid will be
√

2EI1 >
√

2EI2 >
√

2EI3. Therefore (see
Figure 3.2), we can make the following observations:

1. If the radius of the sphere |M| <
√

2EI3 or |M| >
√

2EI1, then there is no
intersection and thus no corresponding motion.
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2. If |M| =
√

2EI3 or |M| =
√

2EI1, then the intersection is two points.
3. If

√
2EI3 < |M| <

√
2EI2, there will be two closed curves around the ends of

the smallest semi-axis.
4. If

√
2EI2 < |M| <

√
2EI1, then we get two closed curves close to the ends of

the largest semi-axis.
5. If |M| =

√
2EI2, then the intersection consists of two circles that intersect at

the ends of the middle semi-axis.

3.6. Poinsot’s Description of the Motion.

Definition 3.6.1. The ellipsoid

E = {X : AX · X = 1} ⊂ K

is called the inertia ellipsoid of the body at the point O, where A is the inertia
operator and K is the moving frame of the body.

As E is defined in K, it will be moving in the inertial frame k. We will give a
description of how E moves in k. Also, as it is attached to the body this gives a
description of how the body moves. Using the result T = 1

2
(AΩ,Ω) of Theorem 3.2.3

and the definition of the inertia ellipsoid of a body, the equation of the inertia ellipsoid
in terms of the principal axes ei has the form

I1X
2
1 + I2X

2
2 + I3X

2
3 = 1,

where X = X1e1+X2e2+X3e3. This implies that the semi-axes of the inertia ellipsoid
are directed along the principal axes e1, e2, e3 of the moments of inertia of the body.

Poinsot describes the motion of this inertia ellipsoid in order to describe the
motion of the body. The following theorem is Poinsot’s description of the motion of
this body.

Theorem 3.6.2. The inertia ellipsoid rolls without slipping along a stationary
plane perpendicular to the angular momentum vector m. (Recall that the angular
momentum is constant.)

Figure 3.2. The curves on the ellipsoid defined by (3.17) are the intersections
with the spheres defined by (3.18).
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P = {x ∈ k : x · m =
√

2T}
m

Figure 3.3. The ellipsoid of inertia rolls without slipping on the plane P =
{x ∈ k : x · m =

√
2T} orthogonal to the angular momentum m.

Proof. We first find the normal vector to E at the point X ∈ E. As E is a level
set of the function X 7→ AX ·X, the gradient to this function will be a normal. This
gradient is

∇AX · X = 2AX.

Letting c > 0 be the scalar so that cΩ ∈ E and using Proposition 3.2.1, we see

c = 1/
√

2T

where T is the kinetic energy. We also know by Theorem 3.2.5 that the kinetic energy
T , and thus, c is constant also. So, we have (using that AΩ = M and the form of the
gradient)

M = AΩ is a normal to E at cΩ.

In the inertial coordinate system k, this normal corresponds to the vector m = BM
and therefore, in this frame, the point in E with a vector in the direction of m is
the point corresponding to cΩ, which is the point cω. Therefore, E is tangent to the
plane

P = {x ∈ k : x · m = cω · m}
at the point cm. We now need to show that cω · m is constant so that this plane
does not vary with respect to time t. From Proposition 3.2.1, we have Ω · M = 2T .
Using that B is orthogonal and thus preserving inner products, we have

cω · m = cB−1ω · B−1m = cΩ · M = c2T =
2T√
2T

=
√

2T .

As the kinetic energy is constant, this show that if β = cω · m =
√

2T , then E is
tangent to P = {x ∈ k : x · m = β} at the point cω.

Let γ(t) be the point of contact between E and P at time t so that t 7→ γ(t) is a
curve in P . Then γ(t) is the intersection of P with the instantaneous axis of rotation.
As points on the instantaneous axis of rotation have no instantaneous rotational
velocity viewed from either the body or from P , the movement is due to the motion
of the instantaneous axis of rotation and not due to the rotation of E. So, the only
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motion of γ(t) with respect to the ellipsoid E is the motion of the instantaneous axis
of rotation. Therefore, the velocity vector of γ(t) looks the same from either E or the
place P . Thus, E rolls without slipping.

Corollary 3.6.3. Under initial conditions close to a stationary rotation around
the large (or small) axis of inertia, the angular velocity ω always remains close to its
initial position.

Proof. Since the inertial ellipsoid rolls without slipping around the large (or
small) axis of inertia, ω (by proof of the previous theorem) is normal to the ellipsoid
as well as collinear with the stationary angular momentum m. Therefore, ω stays
close to its initial position.

It is possible to be more precise about shape of the curve on the inertial ellipsoid

that rolls along the plane P . Letting Ω̃i = Ωi/
√

2E, where E is the energy as given
in equation (3.17), and using Mi = ΩiIi, equations (3.17) and (3.18) become

1 = I1Ω̃
2
1 + I2Ω̃

2
2 + I3Ω̃

2
3,(3.19)

M2

2E
= I2

1 Ω̃2
1 + I2

2 Ω̃2
2 + I2

3 Ω̃2
3.(3.20)

The first of these says that Ω̃ = Ω̃1e1 + Ω̃2e2 + Ω̃3e3 = Ω/
√

2E moves on the inertial
ellipsoid. So the curve of contact between the plane P and the inertial ellipsoid is the

intersection of the two quadratic surfaces defined in Ω̃1, Ω̃2, Ω̃3 space by (3.19) and
(3.20).
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CHAPTER 4

Lagrange’s Top.

Consider a rigid body fixed at a stationary point O and subject to the action of
the gravitational force mg. In this chapter we consider the special case of a symmetric
rigid body (referred to as a top here), which is a rigid body fixed at a stationary point
O whose inertia ellipsoid at O is an ellipsoid of revolution, and whose center of gravity
lies on the axis of symmetry e3. This particular rigid body, shown in the following
figure, is often called Lagrange’s Top as he was the first to give a complete analysis
of its motion. See Figure 4.1

x-axismg

z0 = l cos(θ)

z-axis

Figure 4.1. A rotational symmetric top with fixed point O at the origin. The
height z0 of the center of gravity above the point O is z0 = l cos θ, where l is the
distance between O and the center of gravity, and θ is the angle with the vertical
axis.

Unlike our treatment of the motion of a body without any external forces, where
we just used Newton’s second law directly, we will use the formalism of the calculus
of variations to treat the top under the influence of gravity. We will derive the
equations of motion by using Hamilton’s principle of least action. Recall that if U is
the potential energy and T is the kinetic energy of a conservative dynamical system,
then Hamilton’s principle says that the equations of motion are the extremals for
the variational problem with Lagrangian L = T − U . (The total energy E = T + U
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is conserved.) So our first task is to get formulas for U and T in some convenient
coordinate system.

4.1. Euler Angles.

We now introduce the Euler Angles as a method of describing the position of
the top (that is the moving coordinate system) relative to the fixed coordinate system.

The following notation will be used: ex, ey, and ez are the unit vectors of the
stationary coordinate system at the stationary point O and e1, e2, and e3 are the
unit vectors of the moving coordinate system connected to the body and directed
along the principal axes at O. Also, I1 = I2 6= I3 are the moments of inertia of the
body at O.

Figure 4.2. The geometric meaning of the Euler angles.

In order to carry the stationary frame into the moving frame, three rotations must
be performed:

1. Rotate ex and ey about ez by an angle φ. So, ez is held stationary and ex goes
to a unit vector eN which is in the direction of ez × e3.

2. Rotate ez and ey about eN an angle θ. So, ez goes to e3 and eN stays fixed.
3. Rotate eN and ey about e3 an angle ψ. So, eN goes to e1 and e3 stays fixed.

Therefore, by the three rotations, ex has gone to e1, ez to e3, and ey goes to e2 thru
the angles φ, ψ, and θ. We can state this formally as a theorem.

Theorem 4.1.1. To every triple of numbers φ, θ, and ψ, the construction above
associates a rotation of three-dimensional space, B(φ, θ, ψ) ∈ SO(3), taking the frame
(ex, ey, ez) into the frame (e1, e2, e3).

4.2. Calculation of the Lagrangian Function.

The Lagrangian function will be expressed in terms of the Euler angles and their
derivatives. We first describe the potential energy by recalling that the Euler angle
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θ is the angle between the upward vertical direction and the direction of the line
connecting the fixed point O to the center of gravity of the top. Letting l be the
distance between the center of gravity and the the fixed point O, the potential energy
U of the top is proportional to the height of the center of gravity. (Figure 4.1.)

The potential energy of Lagrange’s top is given by

U = mgz0

= mgl cos θ,

where m =
∑

i mi is the total mass of the system and g = |g| is the magnitude of
acceleration due to gravity.

The following lemma will help calculate the kinetic energy in terms of the Euler
angles.

Lemma 4.2.1. The angular velocity of a top is expressed in terms of the derivatives
of the Euler angles by the formula

ω = θ̇e1 + (φ̇ sin θ)e2 + (ψ̇ + φ̇ cos θ)e3

if φ = ψ = 0.

Proof. We will do the calculation assuming that φ = ψ = 0. The general
case can be done by a similar, but substantially messier calculation without this
assumption. However, they lead to the same conclusion and so we continue with our
assumption.

Consider the velocity of a point of the top occupying the position r at time t. At
a change in time dt,

r(t + dt) = B(φ + dφ, θ + dθ, ψ + dψ)B−1(φ, θ, ψ)r(t)

where

dφ = φ̇dt,

dθ = θ̇dt,

dψ = ψ̇dt,

r = B(φ, θ, ψ)B−1(φ, θ, ψ)r.

31



So,

r(t+dt) − r(t)

= [B(φ + dφ, θ + dθ, ψ + dψ)B−1(φ, θ, ψ) − B(φ, θ, ψ)B−1(φ, θ, ψ)]r

= [B(φ + dφ, θ + dθ, ψ + dψ) − B(φ, θ, ψ)]B−1(φ, θ, ψ)r

= [B(φ + dφ, θ, ψ) − B(φ, θ, ψ) + B(φ, θ + dθ, ψ)

− B(φ, θ, ψ) + B(φ, θ, ψ + dψ) − B(φ, θ, ψ)]B−1(φ, θ, ψ)r

= [B(φ + dφ, θ, ψ)B−1(φ, θ, ψ)r − r]

+ [B(φ, θ + dθ, ψ)B−1(φ, θ, ψ)r − r]

+ [B(φ, θ, ψ + dψ)B−1(φ, θ, ψ)r − r]

= (ωφ × rdt) + (ωθ × rdt) + (ωψ × rdt)

where
∂B

∂φ
B−1r ≡ ωφ × r

∂B

∂θ
B−1r ≡ ωθ × r

∂B

∂ψ
B−1r ≡ ωψ × r.

So,

r(t + dt) − r(t) = (ωφ + ωθ + ωψ) × r

= ω × r

where ω = ωφ + ωθ + ωψ is the angular velocity of the body.
If φ = ψ = 0, then B(φ + dφ, θ, ψ)B−1(φ, θ, ψ) is simply a rotation around the

axis ez. So,
ωφ = φ̇ez.

Since for the rotation, B(φ, θ + dθ, ψ)B−1(φ, θ, ψ), φ = 0, ex = eN , and ψ = 0, we
have ex = e1. So, eN = e1. Therefore, this rotation is simply a rotation dθ about the
e1 axis. Thus,

ωθ = φ̇e1.

The rotation B(φ, θ, ψ + dψ)B−1(φ, θ, ψ) is just the rotation dψ about the e3 axis.
So,

ωψ = ψ̇e3.

Since
ω = ωφ + ωθ + ωψ,

we have that

ω = φ̇ez + θ̇e1 + ψ̇e3.(4.1)

Also since φ = ψ = 0, we have

ez = e3 cos θ + e2 sin θ.
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Substitution into equation (4.1) gives our conclusion:

ω = φ̇(e3 cos θ + e2 sin θ) + θ̇e1 + ψ̇e3

= θ̇e1 + (φ̇ sin θ)e2 + (ψ̇ + φ̇ cos θ)e3

From this lemma, we can conclude that the components of the angular velocity
along the principal axes e1, e2, and e3 are

ω1 = θ̇

ω2 = φ̇ sin θ

ω3 = ψ̇ + φ̇ cos θ.

Since we know that the kinetic energy T is

T =
1

2
(I1ω

2
1 + I2ω

2
2 + I3ω

2
3),

for φ = ψ = 0, we can substitute for the angular velocities to get

T =
1

2
(I1θ̇

2 + I2φ̇
2 sin2 θ + I3(ψ̇ + φ̇ cos θ)2).

Since I1 = I2, we get

T =
I1

2
(θ̇2 + φ̇2 sin2 θ) +

I3

2
(ψ̇ + φ̇ cos θ)2.(4.2)

We now summarize our calculations for the potential and kinetic energy with the
following proposition:

Proposition 4.2.2. The Lagrangian, which is the difference of the kinetic and
potential energy of the top, is given by

L ≡ T − U

=
I1

2
(θ̇2 + φ̇2 sin2 θ) +

I3

2
(ψ̇ + φ̇ cos θ)2 − mgl cos θ.(4.3)

Hamilton’s Principle states that for a mechanical system described by generalized
coordinates y1, . . . , yn with Lagrangian given by

L = (t, y1, . . . , yn, ẏ1, . . . , ẏn)

≡ T − U,

the motion of the system from time t0 to t1 is such that the functional

J(y1, . . . , yn) =

∫ t1

t0

L(t, y1, . . . , yn, ẏ1, . . . , ẏn)dt(4.4)

is stationary for the functions y1(t), . . . , yn(t) which describe the actual time evolution
of the system.
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We can restate this principle in the following manner. Regard the set of coordi-
nates y1, . . . , yn as coordinates in an n dimensional space. Then the equations

yi(t) = yi(t), i = 1, . . . , n, to ≤ t ≤ t1

can be regarded as parametric equations of a curve or path C in the space that joins
two states So : (y1(t0), . . . , yn(t0)) and S1 : (y1(t1), . . . , yn(t1)). Hamilton’s principle
than states that among all paths in the space connecting the initial state S0 to the
final state S1, the actual motion will take place along the path that affords an extreme
value to integral (4.4). Also, since the motion of the system from t0 to t1 is stationary
for the functions yi = yi(t), i = 1, . . . , n, it follows from the calculus of variations ( [1,
pp. 59–60] or [2, pp. 187–188]) that yi(t) must satisfy the Euler equations

Lyi
− d

dt
Lẏi

= 0, i = 1, . . . , n.

We will just assume this result, and the reader can view it as an efficient method of
writing down Newton’s equations of motion for complicated systems.

4.3. Investigation of the Motion.

The Euler Lagrange equations for our body are

d

dt
Lφ̇ − Lφ = 0(4.5)

d

dt
Lθ̇ − Lθ = 0(4.6)

d

dt
Lψ̇ − Lψ = 0.(4.7)

Also note that Lφ = Lψ = 0. So the Euler Lagrange equations (4.5) and (4.7)
imply that Lφ̇ and Lψ̇ are constant. This gives two first integrals for the motion.

Proposition 4.3.1. There are constants Mz and M3 so that

Lφ̇ = I1φ̇ sin2 θ + I3(ψ̇ + φ̇ cos θ) cos θ

= φ̇(I1 sin2 θ + I3 cos2 θ) + ψ̇I3 cos θ

= Mz(4.8)

Lψ̇ = I3(ψ̇ + φ̇ cos θ)

= φ̇I3 cos θ + ψ̇I3

= M3.(4.9)

We now show that the total energy E is constant which gives a third first integral.

Theorem 4.3.2 (Conservation of Energy). Equations (4.5), (4.6), and (4.7) im-
ply that the total energy E = T + U is constant.
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Proof. Using the form of the Lagrangian as given by (4.3)

Lφ̇ = Tφ̇ = I1φ̇ sin2 θ + I3(ψ̇ + φ̇ cos θ) cos θ

Lθ̇ = Tθ̇ = I1θ̇

Lψ̇ = Tψ̇ = I3(ψ̇ + φ̇ cos θ),

and using the form of the kinetic energy given by (4.2)

φ̇Lφ̇ + θ̇Lθ̇ + ψ̇Lψ̇

= φ̇(I1φ̇ sin2 θ + I3(ψ̇ + φ̇ cos θ) cos θ) + θ̇(I1θ̇) + ψ̇I3(ψ̇ + φ̇ cos θ)

= I1(θ̇
2 + φ̇2 sin2 θ) + I3(ψ̇ + φ̇ cos θ)2.

= 2T,

we can rewrite the energy as

E = T + U = 2T − (T − U) = φ̇Lφ̇ + θ̇Lθ̇ + ψ̇Lψ̇ − L.

Using this formula for E, we have

dE

dt
=φ̈Lφ̇ + φ̇

d

dt
Lφ̇ + θ̈Lθ̇ + θ̇

d

dt
Lθ̇ + ψ̈Lψ̇ + ψ̇

d

dt
Lψ̇

− φ̈Lφ̇ − φ̇Lφ − θ̈Lθ̇ − θ̇Lθ − ψ̈Lψ̇ − ψ̇Lψ

=φ̇

(
d

dt
Lφ̇ − Lφ

)
+ θ̇

(
d

dt
Lθ̇ − Lθ

)
+ ψ̇

(
d

dt
Lψ̇ − Lψ

)
=0,

where at the last step we have used the Euler Lagrange equations (4.5), (4.6), and
(4.7). This completes the proof that E is constant.

Theorem 4.3.3. The inclination θ of the axis of the top to the vertical changes
with time in the same way as in the one-dimensional system with energy

Ebar =
I1

2
θ̇2 + Ueff(θ),

where the effective potential energy is given by

Ueff =
(Mz − M3 cos θ)2

2I1 sin2 θ
+ mgl cos θ.

(We will show that Ebar is constant as a function of time t. A stronger statement is
true: The extremal curves t 7→ θ(t) for this one dimensional problem are the same
curves as for the three dimensional problem. As this is not needed in what follows,
we omit the proof.)

Proof. The total energy of the system is given by

E = T + U

=
I1

2
(θ̇2 + φ̇2 sin2 θ) +

I3

2
(ψ̇ + φ̇ cos θ)2 + mgl cos θ.(4.10)
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Now we shall express φ̇ and ψ̇ in terms of M3 and Mz. Solving equation (4.9) for ψ̇
gives:

ψ̇ =
M3 − φ̇I3 cos θ

I3

(4.11)

Substituting this into equation (4.8) gives:

Mz = φ̇(I1 sin2 θ + I3 cos2 θ) + (M3 − φ̇I3 cos θ) cos θ

= φ̇(I1 sin2 θ + I3 cos2 θ − I3 cos2 θ) + M3 cos θ

Solving for φ̇ gives:

φ̇ =
Mz − M3 cos θ

I1 sin2 θ
(4.12)

To find ψ̇ in terms of Mz and M3, we substitute equation (4.12) into equation (4.11).
Then,

ψ̇ =
M3

I3

− Mz cos θ

I1 sin2 θ
+

M3

I1

cos2 θ

sin2 θ

=
M3I1 sin2 θ − MzI3 cos θ + M3I3 cos2 θ

I3I1 sin2 θ
.(4.13)

After substituting equations (4.12) and (4.13) into equation (4.10) for the kinetic
energy, we get

E =
I1

2

[
θ̇2 +

(Mz − M3 cos θ)2

I2
1 sin2 θ

]

+
I3

2

[
M3I1 sin2 θ − MzI3 cos θ + M3I3 cos2 θ

I3I1 sin2 θ
+

Mz cos θ − M3 cos2 θ

I1 sin2 θ

]2

+ mgl cos θ

=
I1

2
θ̇2 +

(Mz − M3 cos θ)2

2I1 sin2 θ

+
I3

2

[
M3I1 sin2 θ − MzI3 cos θ + M3I3 cos2 θ + MzI3 cos θ − M3I3 cos2 θ

I3I1 sin2 θ

]2

+ mgl cos θ

=
I1

2
θ̇2 +

(Mz − M3 cos θ)2

2I1 sin2 θ
+

I3

2

[
M3

I3

]2

+ mgl cos θ

=
I1

2
θ̇2 +

(Mz − M3 cos θ)2

2I1 sin2 θ
+

M2
3

2I3

+ mgl cos θ.

Therefore, if we set

Ebar =
I1

2
θ̇2 + Ueff(θ)
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where

Ueff =
(Mz − M3 cos θ)2

2I1 sin2 θ
+ mgl cos θ,

we then have that

E = Ebar +
M2

3

2I2

.

Since M2
3 /(2I2) is constant, E and Ebar differ by a constant and since E is constant

by Theorem 4.3.2, Ebar is constant.

To study this one dimensional system, it is convenient to make the substitution
cos θ = u and to write

Mz

I1

= a,

M3

I1

= b,

2Ebar

I1

= α,

2mgl

I1

= β > 0.

So,

u̇ = (− sin θ)θ̇

u̇2 = (sin2 θ)(θ̇)2

= (1 − u2)(θ̇)2.

Making these substitutions into Ebar, we get

Ebar =
I1

2

u̇2

1 − u2
+

(Mz − M3u)2

2I1(1 − u2)
+ mglu.

Since

θ̇2 =
u̇2

1 − u2
,

cos2 θ = u2 = 1 − sin2 θ,
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we can solve for u̇2 to find

u̇2 =

[
Ebar − mglu − (Mz − M3u)2

2I1(1 − u2)

]
2(1 − u2)

I1

=
2Ebar(1 − u2)

I1

− 2mglu(1 − u2)

I1

− (Mz − M3u)2

I2
1

=
2

I1

(1 − u2)(Ebar − mglu) − 1

I2
1

(Mz − M3u)2

= (1 − u2)(
2Ebar

I1

− 2mglu

I1

) − (
Mz

I1

− M3

I1

u)2

= (1 − u2)(α − βu) − (a − bu)2.

So the Law of Conservation of Energy Ebar can be rewritten as

u̇2 = f(u)(4.14)

where

f(u) = (1 − u2)(α − βu) − (a − bu)2.

Obviously, f(u) is a polynomial of degree three, f(+∞) = +∞, and f(−∞) =
−∞. Also, f(±1) = −(a∓ b)2 and since u = cos θ, we have that u falls in the interval
−1 ≤ u ≤ 1. Further, due to equation (4.14), we have f(u) ≥ 0 for some −1 ≤ u ≤ 1.
From this analysis, we can conclude that f(u) has three roots, two of which, u1 and
u2, lie in the interval −1 ≤ u ≤ 1, while one follows the inequality u > 1. The graph
in Figure 4.3 illustrates this.

u1 u2

1
u

f

Figure 4.3. The cubic polynomial equation f(u) = 0 has three real roots, one
of which is > 1. The other two are in the interval [−1, 1].

Thus, the inclination θ of the axis of the top changes periodically between two
limit values θ1 and θ2. This periodic change in the inclination θ of the axis is referred
to as nutation .

From the previous proof, we know that the law of variation of the azimuth φ is

φ̇ =
Mz − M3 cos θ

I1 sin2 θ
.
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Using the substitutions of the previous proof (Mz

I1
= a, M3

I1
= b, and cos θ = u), we

have

φ̇ =
a − bu

1 − u2

=
a − b cos θ

1 − cos2 θ

=
a − b cos θ

sin2 θ
,(4.15)

which gives the variation of the azimuth of the axis.
The azimuthal motion is called precession , which we now discuss in more detail.

Looking from above the top, the point of intersection of the axis of the top with the
unit sphere moves in a ring between two parallels θ1 and θ2 (from nutation), where
cos θ1 = u1 and cos θ2 = u2.

Figure 4.4. The three possibilities for the azimuthal motion (i.e., precession)
of the axis of the top. When θ′ > θ2, the motion is monotone. When θ1 < θ′ < θ2,
the monotonicity of the azimuthal changes each time the axis passes θ = θ′. When
θ′ = θ2, the axis of the top “bounces” off the line θ = θ′ so that it traces out a
curve with cusps.

The roots of equation (4.15) occur when a = bu (or, in terms of θ, when a =
b cos θ). Calling this root θ′, we analyze several cases (see Figure 4.4):

1. The root θ′ is not in the interval [θ1, θ2]. Then the expression (a −
b cos θ)/(sin2 θ) for φ̇ in (4.15) does not change sign and therefore φ is a
monotone function of t. So, the axis of the top moves as pictured as in (a) of
Figure 4.4.

2. The root θ′ is in the open interval (θ1, θ2). Then φ̇ changes sign each time

θ crosses the line θ = θ′. A change of sign of φ̇ corresponds to a change of
monotonicity of φ each time the axis of the top moves past θ = θ′. This is
pictured in (b) of Figure 4.4.

3. The last case is when θ′ = θ2. Then the axis of the top moves so that it has
instantaneous velocity zero each time θ hits its maximum value of θ = θ2 = θ′.
Thus, the curve traced on the unit sphere by the axis has cusps each time
θ = θ2 as in (c) of Figure 4.4

39



We have now given a detailed description of nutation (periodic motion of θ) and
the azimuthal motion or precession. As the motion of the top consist of rotation
around its own axis, nutation, and precession, this completes our analysis concerning
the motion of a top.
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