SMOOTH CONVEX BODIES WITH PROPORTIONAL PROJECTION
FUNCTIONS

RALPH HOWARD AND DANIEL HUG

ABSTRACT. Foraconvex body C R™ andi € {1,...,n — 1}, the function assigning
to anyi-dimensional subspade of R", thei-dimensional volume of the orthogonal pro-
jection of K to L, is called the-th projection function of<. Let K, Ko C R™ be smooth
convex bodies of claﬁ?,r, and letK be centrally symmetric. Excluding two exceptional
cases, we prove thd and K are homothetic if they have two proportional projection
functions. The special case whéfy is a Euclidean ball provides an extension of Naka-
jima’s classical three-dimensional characterization of spheres to higher dimensions.

1. INTRODUCTION AND MAIN RESULTS

A convex bodyin R™ is a compact convex set with nonempty interior.Alfis a con-
vex body andL a linear subspace @™, thenK|L is the orthogonal projection ak to
L. LetG(n, i) be the Grassmannian of aldimensional linear subspaces®f. A cen-
tral question in the geometric tomography of convex sets is to understand to what extent
information about the projectiorfs| L with L € G(n,¢) determines a convex body. Possi-
bly the most natural, but rather weak, information abBUL is its i-dimensional volume
Vi(K|L). The functionL — V;(K|L) onG(n,1) is thei-th projection function (or the
i-th brightness function) of K. Wheni = 1 this is thewidth functionand when = n—1
thebrightness function If this function is constant, then the convex bddyis said to have
constanti-brightness Forn > 2and anyi € {1,...,n—1}, by classical results about the
existence of sets with constant width and results of Blaschke [1, pp. 151-154] and Firey [6]
there are nonspherical convex bodies of constdmmightness (cf. [7, Thm 3.3.14, p. 111;
Rmk 3.3.16, p. 114]). Corresponding examples of smooth convex bodies with everywhere
positive Gauss-Kronecker curvature can be obtained by known approximation arguments
(see [21,53.3] and [12]). Thus it is not possible to determine if a convex body is a ball
from just one projection function. For other results about determining convex bodies from
a single projection function see Chapter 3 of Gardner’s book [7] and the survey paper [10]
of Goodey, Schneider, and Weil.

Therefore, as pointed out by Goodey, Schneider, and Weil in [10] and [11], it is natural
to ask whether a convex body with two constant projection functions must be a ball. This
question leads to the more general investigation of pairs of convex bodies, one of which
is centrally symmetric, that have two of their projection functions proportional. Examples
in the smooth and the polytopal setting, due to Campi [3], Gardner ar@it\f8], and to
Goodey, Schneider, and Weil [11], show that the assumption of central symmetry on one
of the bodies cannot be dropped. A convex body is said to be of €fassits boundary,
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0K, is of classC? and has everywhere positive Gauss-Kronecker curvature. It is well
known that a convex body of clag®} has aC? support function, but the converse need
not be true. A classical result [20] of S. Nakajima (= A. Matsumura) from 1926 states that
athree-dimensionatonvex body of clasé‘i with constant width and constant brightness

is a Euclidean ball. This answers the previous question for smooth convex bodfés in
Our main result generalizes Nakajima'’s theorem to the case of pairs of convex bodies with
proportional projection functions, slightly relaxes the smoothness assumption, and, more
importantly, provides an extension to higher dimensions.

1.1 Theorem. Let K, Ky, C R™ be convex bodies withk, of cIassCi and centrally
symmetric and withk” havingC? support function. Let < i < j < n — 1 be integers
such that ¢ {1,n — 2} if j = n — 1. Assume there are real positive constan{s > 0
such that

Vi(K|L) = aVi(KolL) and V;(K|U) = BV;(Ko|U),
forall L € G(n,i) andU € G(n, j). ThenK and K, are homothetic.

Other than Nakajima’s result the only previously known cage=sl and; = 2 proven
by Chakerian [4] in 1967. Lettind{, be a Euclidean ball in the theorem, we get the
following important special case.

1.2 Corollary. Let K C R” be a convex body with? support function. Assume that
K has constani-brightness and constantbrightness, wheré < i < j < n — 1 and
i ¢ {1,n—2}if j =n—1. ThenK is a Euclidean ball.

If 0K is of classC? and K has constant width, then the Gauss-Kronecker curvature of
K is everywhere positive. Thus we can conclude tifais of classC?, which yields the
following corollary.

1.3 Corollary. Let K c R" be a convex body of clags? with constant width and con-
stantk-brightness for somé € {2,...,n — 2}. Then K is a Euclidean ball.

Corollary 1.3 does not cover the case thahas constant width and brightness, which
we consider the most interesting open problem related to the subject of this paper. Under
the strong additional assumption thidtand K, are smooth convex bodies of revolution
with a common axis, we can also settle the two cases not covered by Theorem 1.1.

1.4 Proposition. Let K, Ky C R™ be convex bodies that have a common axis of revolution
such thatK has C? support function andk, is centrally symmetric and of claﬁi.
Assume that and K, have proportional brightness and proportionath brightness
function for ani € {1,n — 2}. ThenK is homothetic taK,. In particular, if Ky is a
Euclidean ball, theri also is a Euclidean ball.

From the point of view of convexity theory the restriction to convex bodies of €lgss
or with C? support functions is not natural and it would be of great interest to extend The-
orem 1.1 and Corollaries 1.2 and 1.3 to general convex bodies. In the case of Corollary 1.3
whenn > 3,7 = 1 andj = 2 this was done in [15]. However, from the point of view
of differential geometry, the class? is quite natural and the convex bodies of constant
i-brightness irCi have some interesting differential geometric propertie®.Hfis a C?
hypersurface, then (as usual¥E 0K is called arumbilic point of K if all of the principal
curvatures ob K atz are equal. In th€? case, this is equivalent to the condition that all
of the principal radii of curvature oK at the outer unit normal vector éf atx are equal.
The following is a special case of Proposition 5.2 below.
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1.5. Proposition. Let K be a convex body of clags? in R™ withn > 5, and let2 <
k < n — 3. Assume thaf{ has constank-brightness. ThewK has a pair of umbilic
pointsx; andzs such that the tangent planes @K at x; and x5 are parallel and all of
the principal curvatures oK at z; andz- are equal.

This is surprising as when > 4 the set of convex bodies of claé¥ with no umbilic
points is a dense open setdf with the C? topology.

Finally, we comment on the relation of our results to those in the paper [14] of Haab. All
our main results are stated by Haab, but his proofs are either incomplete or have errors (see
the review in Zentralblatt). In particular, the proof of his main result, stating that a convex
body of classC? with constant width and constaft — 1)-brightness is a ball, is wrong
(the proof is based on [14, Lemma 5.3] which is false even in the case-ofl) and this
case is still open. We have included remarks at the appropriate places relating our results
and proofs to those in [14]. Despite the errors in [14], the paper still has some important
insights. In particular, while Haab’s proof of his Theorem 4.1 (our Proposition 3.5) is
incomplete, see Remark 3.2 below, the statement is correct and is the basis for the proofs
of most of our results. Also it was Haab who realized that having constant brightness
implies the existence of umbilic points. While his proof is incomplete and the details of
the proof here differ a good deal from those of his proposed argument, the global structure
of the proof here is still indebted to his paper.

2. PRELIMINARIES

We will work in Euclidean spacR™ with the usual inner product, -) and the induced
norm| - |. The support function of a convex body in R™ is the functionhx : R” — R
given byhk (z) = max{(z,y) : y € K}. The functionhy is homogeneous of degree
one. A convex body is uniquely determined by its support function. Subsequently, we
summarize some facts from [21] which are needed. An important fact for us, first noted by
Wintner [22, Appendix], is that ifS is of classC?, then its support functioh is of class
C? onR"™ . {0} and the principal radii of curvature (see below for a definitionjoére
everywhere positive (cf. [21, p. 106]). Conversely, if the support functioR @ of class
C? onR" \ {0} and the principal radii of curvature df are everywhere positive, then
K is of classC? (cf. [21, p. 111]). In this paper, we say that a support function is of class
C? ifitis of classC? onR™ . {0}. Let L be a linear subspace &". Then the support
function of the projectionk’|L is the restrictiom |, = hK]L. In particular, ifhx is of
classC?, thenh g is of classC? in L. As an easy consequence we obtain tha i of
classC?, thenK|L is of classC? in L.

Al of our proofs work for convex bodieE C R™ that have a2 support function. That
this leads to a genuine extension of t# setting can be seen from the following example.
Let K be of cIassC?r and letry be the minimum of all of the principal radii of curvature
of K. Then by Blaschke’s rolling theorem (cf. [21, Thm 3.2.9, p. 149]) there is a convex
setK; and a ballB,, of radiusr, such thatX is the Minkowski sumk = K; + B,,
and no ball of radius greater thap is a Minkowski summand of{. Thus no ball is a
summand of, for if K1 = Ko + B,,r > 0, thenK = Ky + B, = Kz + Byirs
contradicting the maximality of,. As every convex body witld? boundary has a ball as
a summand, it follows thak’; does not have & boundary. But the support function of
Kiishg, = hx — 9| - | and thereforéi ., is C2. WhenK; has nonempty interior, for
example wher is an ellipsoid with all axes of different lengths, th&h is an example
of a convex set withC? support function, but witl® K; not of classC?.
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If the support functiom. = hyx of a convex bodyK C R” is of classC?, then let
grad h be the usual gradient dfx. This is aC' vector field onR™ ~ {0} (which is
homogeneous of degree zero). &t ! be the unit sphere iR™. Then foru € S*~! the
unique point ord K with outward unit normak is grad h i (u) (cf. [21, (2.5.8), p. 107]). In
the case wher& is of classC?, the magS" ! — 0K, u — grad hi (u), is the inverse of
thespherical image magGauss map) of. For this reason, this map is called tlewerse
spherical image magcf. [21, p. 107]) of K wheneverhy is of classC?. Let d2hx be
the usual Hessian dfx viewed as a field of selfadjoint linear maps&h ~ {0}. That s,
foru € R™ \ {0} andz € R", d?hk (u)x is the directional derivative gfrad hy atw in
the directionz. As hx is homogeneous of degree one, for ang S™! it follows that
d*hx (u)u = 0. Sinced?h i (u) is selfadjoint, this implies that the orthogonal complement
ut of u is invariant unded?hx (u). Asut = T,S"~! we can then define a field of
selfadjoint linear map& (hx ) on the tangent spaces$6— by

L(hg)(u) = d*hg ()], ue S

Clearly, L(hx)(u) can (and occasionally will) be identified with a symmetric bilinear form
onut, via the scalar product induced art from R™. For givenu € S, L(hx)(u)

is called thereverse Weingarten mapf K atu. The eigenvalues of (hk)(u) are the
principal radii of curvature of K at « (cf. [21, p. 108]). Due to the convexity of the
support function, these are nonnegative real numbers (the corresponding bilinear form is
positive semidefinite). Recall thatif is of classC?, the derivative of the Gauss map of

K atx € 0K is theWeingarten mapof K atx. This is a selfadjoint linear map of the
tangent space @fK atx whose eigenvalues are thencipal curvaturesof K atx. In the

C? case L(hk)(u) is the inverse of the Weingarten mapidfatz = grad hx (u), for any

u € S*~1, and both maps are positive definite.

In the following, the notion of the (surface) area measure of a convex body will be
useful. For general convex bodies the definition is a bit involved, see [21, pp. 200-203] or
[7, pp- 351-353], but we will only need the case of convex bodies with support functions
of classC? where an easier definition is possible. LEtC R"™ be a convex body with
support function of clas§’. Then the (top ordegurface area measuré,,_;(K,-) of K
is defined on Borel subsetsof S*~! by

2.1) S 1 (K, w) = / det(L(h ) () du,

wheredu denotes integration with respect to spherical Lebesgue measure. (See, for in-
stance, [21, (4.2.20), p. 206; Chap. 5] or [7, (A.7), p. 353].)

We need also a generalization of the operdi@tx ). Let Ky C R™ be a convex body
of cIassC?r, and leth be the support function aky. As K| is of classcﬁ, the linear
mapL(ho)(u) is positive definite for all, € S* 1. ThereforeL (h)(u) will have a unique
positive definite square root which we denotelliyi)'/?(u). Then for any convex body
K c R™ with support functiorh x of classC?, we define

(2.2) Lp, (hK)(u) = L(ho)—1/2(u)L(hK)(u)L(hO)—l/Q(u)

whereL(ho)~'/?(u) is the inverse of(hy)'/?(u). Itis easily checked that K is of class
C?, thenLy, (hx)(u) is positive definite for alk. Furthermore, we always have

det(L(hk)(u))

det(Ln, (hx)(u)) = AL (ho) ()
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The linear mapL;, (hx)(u) has the interpretation as the inverse Weingarten map in the
relative geometry defined bif,. This interpretation will not be used in the present paper,
but it did motivate some of the calculations.

3. PROJECTIONS AND SUPPORT FUNCTIONS

3.1. Some multilinear algebra. The geometric condition of proportional projection func-
tions can be translated into a condition involving reverse Weingarten maps. In order to fully
exploit this information, the following lemmas will be used. In fact, these lemmas fill a
gap in [14,84]. For basic results concerning the Grassmann algebra and alternating maps,
which are used subsequently, we refer to [17], [18].

3.1 Lemma. LetG,H,L: R® — R" be positive semidefinite linear maps. Llete
{1,...,n}, and assume that

(3.1) ((A*G+ NFH) €,€) = ((AFL) €,€)
for all decomposablé /\’C R™. Then
(3.2) NG+ AFH = AFL.

Proof. It is sufficient to consider the casése {2,...,n — 1}. For¢, ¢ € /\’C R™, we
define

wi(€,0) = ((A"L) £,¢).

Then, for anyuy, ..., uxs1,01,...,v5—1 € R", the identity
k41

(3.3) Z(—l)ﬂwL(ul JARERIAN 71]' A A ug Avp A2 A kal) =0
j=1

is satisfied, wherei; means that:; is omitted. Thus, in the terminology of [164;,
satisfies the first Bianchi identity. Once (3.3) has been verified, the proof of Lemma 3.1
can be completed as follows. Defing andwy by replacingL in the definition ofw;, by

G andH, respectively. Thewg i := wg + wp also satisfies the first Bianchi identity. By
assumption,

wa,u(§,§) = wr(&,§)
for all decomposablé¢ € /\k R™. Proposition 2.1 in [16] now implies that

uJG,H(&? C) = WL (67 C)

for all decomposablg, ¢ € /\k R™, which yields the assertion of the lemma.
For the proof of (3.3) we proceed as follows. Sirdces positive semidefinite, there is a
positive semidefinite linear map: R™ — R™ such that, = ¢ o ¢. Hence

wr(ur A Aug;vr A Avg) = (pur A A pug, v A A pug)

forall uy,...,vp € R™. Foray,...,axs1,b1,...,b5_1 € R™ we define
(I)(al,...,ak+1;b1,...,bk_1)
k+1

=Y (=17 {ar Ao Aaj A Aaggriag Abr A Abgy).
j=1

We will show that® = 0. Then, substituting; = ¢(u;) andb; = ¢(v,), we obtain the
required assertion (3.3).
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For the proof of® = 0, it is sufficient to show tha vanishes on the vectors of an

orthonormal basis, ..., e, of R", since® is a multilinear map. So let;,...,ax+1 €
{e1,...,en}, wheread,, ..., by_; are arbitrary.
If a1, ..., arq1 are mutually different, then all summandsd#anish, sincéa;,a;) =

0 for ¢ # 5. Here we use that
(ug A= Aug,vg A Avg)y = det ((ui,vj>ﬁj:1)

foruq,...,up,v1,...,v, € R™.
Otherwise,a; = a; for somes # j. In this case, we argue as follows. Assume that
i < j (say). Then, repeatedly using that= a;, we get

®(ar, .. apy1301,. ., bk—1)

:(—1)Z<a1/\---/\EL,-/\--~/\aj/\---Aak+1;ai/\blA--~/\bk_1>

+ (=)@ Ao Nag Ao Najg A Aaggr;a; Abp A Abg_y)
= (D=1 Yay Ao ANaj A ANaj A Nagrryai Aby A Abg_q)
+ (=17 (@ Ao Nag Ao Najg A Aaggr;a; Abp A Abg_y)
=0,
which completes the proof. d

3.2 Remark.In the proof of Theorem 4.1 in [14], Haab uses a special case of Lemma 3.1,
but his proof is incomplete. To describe the situation more carefully]’ Iet/\’C R™ —

/\k R™ denote a symmetric linear map satisfyi(ig¢, £) = 1 for all decomposable unit
vectors¢ € /\k R™. From this hypothesis Haab apparently concludesZhatthe identity
map (cf. [14, p. 126, I. 15-20]). While Lemma 3.1 implies that a corresponding fact is
indeed true for map§’ of a special form, a counterexample for the general assertion is
provided in [18, p. 124-5]. For a different counterexampleklee even and lef) be the
symmetric bilinear form defined of\* (R2*) by Q(w, w) = w A w. This is a symmetric
bilinear form ask is even andw A w € /\2’“ R2* s0 that/\% R?* is one dimensional
and thus can be identified with the real numbers. In this exaniplg, &) = 0 for all
decomposablé-vectorse, but@ is not the zero bilinear form.

3.3 Remark.Haab states a (simpler) version of the next lemma, [14, Cor 4.2, p. 126],
without proof.

3.4 Lemma. LetG, H: R™ — R"” be selfadjoint linear maps and assume that
NG+ N H = g AFid

for some constant € R with 3 # 0 and somek € {1,...n — 1}. ThenG and H
have a common orthonormal basis of eigenvectors: ¥ 2, then eitherG or H is an
isomorphism.

Proof. If £ = 1, this is elementary so we assume that k£ < n — 1. We first show
that at least one aff or H is nonsingular. Assume that this is not the case. Then both the
kernelsker G andker H have positive dimension. Choosdinearly independent vectors
v1,. .., v as follows: Ifker GNker H # {0}, then letd # v; € ker GNker H and choose
any vectors, ..., v SO thatvy, v, . .., v, are linearly independent. Her G Nker H =

{0}, then there are nonzerg € ker G andwvy € ker H. ThenkerG Nker H = {0}
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implies thatv; andwv, are linearly independent. So in this case chagse. ., v, so that

v, ..., v are linearly independent. In either case

(A*G + A" H)vy Avg A~ Avg = Guy AGug A -+ AGug + Huy A Huog A - A Huy,
=0

which contradicts that*G + A*H = 3 A¥ id and3 # 0.

Without loss of generality we assume tltais nonsingular. Sinc€& is selfadjoint, there
exists an orthonormal basis, . . . , e,, Of eigenvectors of7 with corresponding eigenvalues
ai,...,a, € R. For adecomposable vecthe= vy A -+ Ay, € /\k R™ ~ {0}, we define

[€] :=span{v e R" : v A { = 0}
=span{vi,...,vx} € G(n, k).
Then, foranyl <i; < --- < i < n, we get
H(span{e;,,...,e;, }) =span{H(e;,),..., H(e;,)}

= [H(ell) ARRRNA H(elk)]
= [(A*H)es, A--- Ney,]
=[(BA*id—AFG) ey Ao N,
=[(B— s oy e Ao Neg]
= span{e;,,...,€; },

where we used thdll is an isomorphism to obtain the second and the last equality. Since

k <n — 1, we can conclude that

k41
H(span{e1}) = H ﬂ span{ei, ..., €, ..., exp1}
j=2
k41
= ﬂ H (spanfer, ..., €j,... ext1})
j=2
k+1
= m span{er,..., €5, ..., €pq1}
j=2
= span{e; }.

By symmetry, we obtain that; is an eigenvector off fori =1,...,n. O

3.2. One proportional projection function. Subsequently, i, K, C R™ are convex
bodies with support functions of claé&, we puth := hx andhg := hg, to simplify our
notation. The following proposition is basic for the proofs of our main results.

3.5. Proposition. Let K, K, C R™ be convex bodies having support functions of ctaés

let Ky be centrally symmetric, and léte {1,...,n—1}. Assume thaf > 0 is a positive
constant such that
(3.4) Vi(K|U) = BVi.(Ko|U)

forall U € G(n, k). Then, for allu € S"1,
(3.5) AFL(h)(u) + A*L(h)(—u) = 28 A* L(ho)(u).
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Proof. Let u € S*~! and a decomposable unit vectore A" 7,S"~! be fixed. Then
there exist orthonormal vectoes, ..., e, € ut suchthatt = e; A--- Aey. PUtE :=

span{ey,...,ex,u} € G(n,k + 1) andEy := span{ey,...,ex} € G(n, k). For any
ve EBENStL

Vi (K|B)|(vt N E)) = aVi (Kol B)|(v* N E))
and therefore a special case of Theorem 2.1 in [9] (see also Theorem 3.3.2 in [7]) yields
that

Sic (K|E, ) + 8¢ (K|E)*, ) = 288¢ (Ko| E, ),

where S (M, -) denotes the (top order) surface area measure of a convexModyFE,
and(K|E)* is the reflection of'| E through the origin. Sincék|r = hK|E is of class
C? in E, Equation (2.1) applied ix implies that
(3.6) det (d2hK|E(u)|EO) + det (thK‘E(—u)’EU) — 925 det (d2hKU|E(u)|EO) :

Sinceey, ..., e, u is an orthonormal basis @, we further deduce that
det (d2hK|E(u)|Eo) = det (dth (U) (67;, ej)ﬁjzl)
= det ((L(h) (w)es, e5)% ;)
= (A"L(h)(w)&, &),

and similarly for the other determinants. Substituting these expressions into (3.6) yields
that

((A"L(h)(u) + A°L(h)(~u)) €,€) = (28 A" L(ho)(w)é, £)

for all decomposable (unit) vectofse /\’“ R™, Hence the required assertion follows from
Lemma 3.1. 0

Itis useful to rewrite Proposition 3.5 in the notation of (2.2). The following corollary is
implied by Proposition 3.5 and Lemma 3.4.

3.6. Corollary. LetK, Ky C R™ be convex bodies withy being centrally symmetric and
of classC? and K having C? support function. Let € {1,...,n — 1}. Assume that
8 > 0is a positive constant such that

Vi(K|U) = BVi(Ko|U)
forall U € G(n, k). Then, for allu € S"1,
(3.7) AP L () (w) + AF Ly (h) (—u) = 28 A" idg, gn-1 .
Moreover, fork € {1,...,n — 2} the linear mapsl;, (h)(u) and Ly, (h)(—u) have a
common orthonormal basis of eigenvectors.
4. THECASESI <i<j<n—2

4.1. Polynomial relations. In the sequel, it will be convenient to use the following nota-

tion. If 24, ..., z, are nonnegative real numbers ahd {1, ...,n}, then we put
Ty = HJ?L.
el

If I = @, the empty product is interpreted ag := 1. The cardinality of the sef is
denoted byI]|.
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4.1 Lemma. Leta,b > 0and2 < k < m < n — 1 witha™ # b*. Letxy,...,z, and
Y1, - - -, Yn DE positive real numbers such that

xr+yr=2a and z;+y;=2b

wheneveld,J C {1,...,n}, |I| = k and|J| = m. Then there is a constaat> 0 such
thatz,/y, =cforv.=1,...,n.

Proof. It is easy to see that this can be reduced to the case wheten — 1. Thus we
assume that, = n — 1. By assumption,

r2r +yyr =2a and z.xp +yyr = 2a

whenever € {1,...,n}, I,I' C {1,...,n} ~ {¢}, |I| = |I'| = k — 1. Subtracting these
two equations, we get

(4.1) x(xr —xr) = y(yr —yr)-

By symmetry, it is sufficient to prove thaf /y; = x2/y.. We distinguish several cases.
Case 1.There existl,I’ C {3,...,n}, |I| = |I'| = k — 1 with z; # x.. Then (4.1)
implies that
T Yr —Yr T2
Y Ty —xp Y2
Case 2.ForallI,I’ C {3,...,n}with |I| = |I'| =k — 1, we haver; = zp.
Sincel <k —1<n - 3,weobtainr := 23 = --- = x,,. From (4.1) we get that also
yr=yp foral I,I' c {3,...,n}with |I| = |I'| =k — 1. Hencey :=y3 = - - - = yj.
Case 2.1x; = z5. Since

1

212" gy =20, a4 gyt

= 2a

andxz; = zo, it follows thaty; = y». In particular, we have; /y; = x2/ys.
Case 2.2x1 # xo.
Case 2.2.1z1, xo, x3 are mutually distinct. Choose

I:={2}U{5,6,....k+2}, I':={4}U{5,6,....k+2}.

Here note thak + 2 < n and{5,6, ...,k + 2} is the empty set fok = 2. Thenz; # =/
aszs # r4 = x3. Hence (4.1) yields that

(4.2) 1 _yr—yr _ 3

Y1 Ty —xp Y3

Next choose
I:={1}uU{5,6,....,k+2}, I':={4}U{5,6,...,k+2}.
Thenz; # x; aszy # x4 = x3, and hence (4.1) yields that

Y2 Ty —xr B 93.
From (4.2) and (4.3), we get /y; = x2/ys.
Case 2.2.2x1 # x9 = x3 Or 1 = x3 # x2. By symmetry, it is sufficient to consider
the first case. Sinck — 1 < n — 3 and using

k—1

Tzt 4oyt =20 and a3t + ysyt ! = 2q,
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we gety, = y3. By the assumption of the proposition, the equations

(4.4) x’j + ylg = 2a,
(4.5) xlxlg_l + ylyg_l = 2a,
(4.6) oy s = 2b,
4.7) 21wy~ 4 yiys 2 = 20.
are satisfied. From (4.4) and (4.5), we get

k—1

(x2 —21) + 95 (y2 — 1) = 0.
Moreover, (4.6) and (4.7) imply that

Ty

n—2

ah *(x2 — 1) + Yo 2 (y2 — 1) = 0.
Sincex; # x4, we thus obtain

k—1 n—2
Y1 —Y2 Ty Ty
= k-1 _n-2
T2 — a1 yh Yo

and thereforgy, /z, = 1. But now (4.4), (4.6) and, = y, give 25 = a andzy ! = b,
hences™ ! = b*, a contradiction. Thus Case 2.2.2 cannot occur. O

4.2 Lemma. Leta,b > 0andl < k < m < n — 1 with a™ # b¥. Then there exists
a finite setF = F, 1 x.m, only depending on, b, k, m, such that the following is true: if
x1,...,IT, are nonnegative ang, . .., y, are positive real numbers such that

rr+yr=2a and xz;+y;=2>
wheneved, J C {1,...,n}, |I| = k and|J| = m, theny,, ... ,y, € F.

4.3 Remark.The conditiona™ # b* is necessary in this lemma. For exampley i b =
l,letxy =290 = =2, 1=y1=Y2=...Yp_1 = 1, 2, = tandy, = 1 —t, where
€ (0,1). Thenz; + y; = 2 for any nonemepty subsétof {1,..., n}.

Proof. It is easy to see that it is sufficient to consider the case n — 1.
First, we consider the cage= 1. Moreover, we assume that, ..., z, are positive.
Then by assumption

(4.8) .4y =20 and z;+y;=2b

foro =1,...,nandJ C {1,...,n}, |J| = n— 1. We putX := z(y__, andY :=
Y{1,...,.n}- Then (4.8) implies

Usingy, = 2a — xy, this results in
2022 + (=X +Y — 4ab)zy + 2aX = 0.
The quadratic equation
202% + (=X +Y —4ab)z + 2aX =0

has at most two real solutions, 25, hencex;, ..., x, € {21, 22}.
Caselx; =---=x, =:z. Thenby (4.8) alsg, = --- = y,, =: y. It follows that

(4.9) 2"+ (20 —2)" —2b=0.
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The coefficient of highest degree of this polynomial equatianifis: is odd, andn —1)2a
if nis even. Hence (4.9) is not the zero polynomial. This shows that (4.9) has only finitely
many solutions, which depend anb, m only.

Case 2.If not all of the numbers, ..., z, are equal, and heneg # 25, we put

lLi={ee{l,...,n}: 2, =2z}
Thenl <i<n—-1landn—1=|{t€{l,...,n}:z, = z2}|. Then (4.8) yields that

(4.10) 271207 4 (2a — 7)1 (2a — 20)" ! = 20,
(4.11) 2207 4 (20 — 20) (20 — 2z9)" L = 20
If I =1, then (4.10) gives

(4.12) 287N+ (20 — z)" 7 = 20.

Since this is not the zero polynomial, there exist only finitely many possible solutjons
Furthermore, (4.11) gives

21 (2577 — (20 — 22)" %] = 2b — 2a(2a — 25)" 2.
If 25 # a, thenz; is determined by this equation. The cagse= a cannot occur, since
(4.12) withz, = a implies thata™~! = b, which is excluded by assumption.
If | =n — 1, we can argue similarly.

Solet2 <1 < n — 2. Note thatd < 21,29 < 2a sincex,,y, > 0 andz, + y, = 2a.
Equating (4.10) and (4.11), we obtain

2 — » -1 P n—Ii—1
(4.13) ( 1) - ( 2 ) .
21 2a — 2o

The positive points on the cur\@i‘1 = Z;‘l‘l, whereZy, Z, > 0, are parameterized
by Z, = t"~'=tandZ, = t'~1, t > 0. Therefore setting

gn=l-1 _ 20 — 2 fJ-1_ _*2
z1 ’ 2a — V) ’
that is
2a 2ati 1
4149 AT i 2T g

we obtain a parameterization of the solutiensz, of (4.13). Now we substitute (4.14) in
(4.10) and thus get
t(l—l)(n—l) t(l—l)(n—l—l)

2a)" ! = 2b.
(1 _|_tn7l71)l71(1 +tl71)n7l +( a) (1 _|_tn7l71)l71(1 _|_tl71)n7l
Multiplication by (1 4 t*~!=1)I=1(1 4 ¢/=1)»~! yields a polynomial equation where the
monomial of largest degree is

9pt ("= D=1 (=1 (1)

(2(1)"_1

and therefore the equation is of degfée- 1)(2(n — ) — 1). This equation will have at
most(l —1)(2(n — 1) — 1) positive solutions. Plugging these valueg fto (4.14) gives a
finite set of possible solutions of (4.10) and (4.11), depending onby, bnmn. This clearly

results in a finite set of solutions of (4.8).

We turn to the case < k£ < n — 2. We still assume that, ..., z, are positive. By
assumption and using Lemma 4.1, we get

(1+c)yr=2a and (14 V)y; =20
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forI,J c {1,...,n},|I| =k, |J| =n—1,wherec > 0is aconstant such that/y, = ¢
for. =1,...,n. We conclude that

b 1+ ck
| +cn1
wheneverl C {1,...,n}, |I[| =n—1—k. Sincel <n—1—k < n — 2, we obtain
y1 = -+ =y, = y. Butthenalsas; = --- = z,, =: x. Thus we arrive at
(4.15) " +yF =2¢ and z" !4+ y" 7 =20

The set of positive real numbersy satisfying (4.15) is finite. In fact, (4.15) implies that
(2a _ mk)nfl _ yk(nfl) _ (2b _ l,nfl)k’
and thus

n—1
4.16) 3 (”: 1) (2a)! (1)~ ghn 10
=0

e
o z (g) (2b)€(71)kféx(n71)(k7€) =0.
£=0

The coefficient of the monomial of highest degreg-id )" ~* + (—1)¥~1, if this number is
nonzero, and otherwise it is equal(to—1)(2a)(—1)"~2, sincek(n—2) > (n—1)(k—1).

In any case, the left side of (4.16) is not the zero polynomial, and therefore (4.16) has only
a finite number of solutions, which merely dependuwob, k&, m.

Finally, we turn to the case where some of the numbers. ., z, are zero. For in-

stance, letr; = 0. Then we obtain that
y1yr = 2a, y1yy = 2b

wheneverl’, J" C {2,....n}, [I'| = k—1and|J'| = n — 2, and thusy, /y;r = b/a.
Thereforey; = b/aforall I C {2,...,n} with |I| = n—1—Fk. Using thatt > 1, we find
thaty :==yo = ... =y, = (b/a) = Sincey,y*~! = 2a, we again get thaji, ..., y,
can assume only finitely many values, depending only,@nk, m = n — 1. O
4.2. Proof of Theorem 1.1 forl < i < j < n—2. An application of Corollary 3.6 shows
that, foru € S*~1,

(4.17) ALy (h)(w) + A'Lp, (h)(—u) = 2 A¥id,, 1,

(4.18) AN Ly (h)(u) + N Ly, (R)(—u) = 28 A id,, 1,

Sincei < j < n — 2, Corollary 3.6 also implies that, for any fixede S"~1, L, (h)(u)
andL;, (h)(—u) have a common orthonormal basis of eigenvectors.

Case 1.a7 # (3. We will show that there is a finite sef;; ; , ;, independent of;,
such that
(4.19) det (Lp, (h)(u)) = det Lh)(u) e Fa forallu € S*~1.

"~ det L(ho)(u) P57

Assume this is the case. Then, sifgé, are of clas€'?, the function on the left-hand side

of (4.19) is continuous on the connected $S&t' and hence must be equal to a constant
A > 0. If A\ =0, thendet L(h) = 0 and, asdet L(h) is the density of the surface
area measur§,,_1 (K, -) with respect to spherical Lebesgue measure, this implies that the
surface area measufs, 1 (K, -) = 0. But this cannot be true, sind€ is a convex body
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(with nonempty interior). Thereford > 0. Again using thatlet L(%)(u) is the density
of the surface measurg;, _; (K, -), and similarly forhg and K, we obtainS,,_ (K, ) =

S 1 (AN (=D, -). But then Minkowski’s inequality and its equality condition imply
that K and K, are homothetic (see [21, Thm 7.2.1]).

To construct the sek;; 5 ; ., we first put0 in the set. Then we only have to consider the
pointsu € S"~! wheredet Ly, (h)(u) # 0. At these points (4.17) and (4.18) show that
the assumptions of Lemma 4.2 are satisfied (witleplaced by — 1). Hence there is a
finite set%, 5. j, such that for any, € S*~! with det Ly, (h)(u) # 0, if z1,...,x,_; are
the eigenvalues ok, (h)(—u) andys, . ..,y,—1 are the eigenvalues df,, (h)(u), then
Yl Yn—1 € Fapij. LetF] 5, be the union of 0} with the set of all products of
n — 1 numbers each from the s&t, 3 ; ;.

Case 2.If o/ = 37, then the assumptions can be rewritten in the form

(4.20) <%> _ (“//((KTO”LL))>

forall U € G(n,j) and allL € G(n,i). LetU € G(n,j) be fixed. By homogeneity
we can replacd(, by K, on both sides of (4.20), wherge > 0 is chosen such that
Vi (nKo|U) = V;(K|U). We putMy := pKo|U andM := K|U. Then, for anyL €
G(n,1) with L C U, we have

Vi(M) = V;(Mo) and V;(M|L) = Vi(Mo|L).

By the theorem stated in the introduction of [5] (in [£04] the authors review the results
of [5] and give a somewhat shorter proof) this impligsis a translate o/, and therefore
K|U and K, |U are homothetic. Sincg > 2, Theorem 3.1.3 in [7] shows tha&f and K
are homothetic. O

5 THECASES2<i<j<n—1WITHi#n—2

5.1. Existence of relative umbilics. We need another lemma concerning polynomial re-
lations.

5.1 Lemma. Letn > 5, k € {2,...,n — 3}, v > 0, and let positive real numbers
0<zy <zp <--- <z, be given. Assume that

(5.1) T+ xe =27y
forall I c {1,...,n—1},|I| = k,wherel[*:={n —i:i€I}. Thenz; = - = x,_1.
Proof. Choosingl = {1,2,...,k}in (5.1), we get
(5.2) LT X + Ty Tpoly_1 = 2.
Choosingl = {1,n — k,...,n — 2} in (5.1), we obtain
(5.3) T1Tp—f " Tp_o + Lo Tply_1 = 2.
Subtracting (5.3) from (5.2), we arrive at
(5.4) Tk Tp—o(Tp_1 — 1) + 2+ (T — Tp_1) = 0.
Assume that; # x,—1. Then (5.4) implies that

(55) Lo T = Tp—k " Tpn-2.
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We assert that, = xz,,_». To verify this, we first observe th& < k¥ < n — 3 and
xo < --- < x,_o. After cancellation of factors with the same index on both sides of (5.5),
we have

(5.6) T T = Tp—i " Tn—2,

where2 <[ < n — [ (here we us& < n — 3). Since

Ty < Tp—1, Ti-1 < Tp—i41, .. T2 < Tpoo,

equation (5.6) yields thaty; = - - - = x,, _».

Now (5.2) turns into
(5.7) xlx’;*l + wgflxn,l = 27.
From (5.1) with] = {2, ...,k + 1} and using thak < n — 3, we obtain
(5.8) k2 =2y
Hence (5.7) and (5.8) show that
(5.9) T1 + Tpo1 = 279.

Applying (5.1) with] = {1,...,k — 1,n — 1} and using (5.8), we get

21‘11']2672%”,1 =2y = 2:1:’5,

hence
(5.10) T1Tp_ = T3
But (5.9) and (5.10) give; = x,,_1, a contradiction.
This shows that, = x,_1, which implies the assertion of the lemma. O

5.2 Proposition. Let K, Ky C R™ be convex bodies withy centrally symmetric and of
classC? and K having aC? support function. Let > 5 andk € {2,...,n—3}. Assume
that there is a constant > 0 such that

Vi(K|U) = BVi.(Ko|U)
forall U € G(n, k). Then there exist, € S*~! andry > 0 such that
Lho (h)(uo) = Lho (h)(—uo) =17y idTuOSn—l .

Proof. Foru € S*71, letry(u),...,m,_1(u) denote the eigenvalues of the selfadjoint
linear mapLy, (h)(u): T,S** — T,S"~1, which are ordered such that

ri(u) <0 <oy (u).
Then we define a continuous m&p S*~! — R™~! by
R(u) = (ri(u), ..., rp—1(w)).
By the Borsuk-Ulam theorem (cf. [13, p. 93] or [19]), there is same= S"~! such that

Corollary 3.6 shows thak,,, (h)(ug) and Ly, (h)(—uo) have a common orthonormal ba-
sisey,...,e,—1 € ug Of eigenvectors and by Lemma 3.4 at least one gf(h)(uo)

or Ly, (h)(—up) is nonsingular. ButR(ug) = R(—uo) implies thatLy,(h)(uo) and
Ly, (h)(—ug) have the same eigenvalues and thus they are both nonsingular. Therefore
the eigenvalues of bothy,, (h)(ug) and Ly, (h)(—ug) are positive.

We can assume that, fer= 1,...,n — 1, ¢, is an eigenvector oL, (h)(ug) cor-
responding to the eigenvalue := r,(ug). Next we show that, is an eigenvector of
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Ly, (h)(—up) corresponding to the eigenvalug_,(—uy). Let7, denote the eigenvalue of
Ly, (h)(—up) corresponding to the eigenvectgr. = 1,...,n — 1. Sincefy, ..., 7,1 IS

a permutation ofy (—uo), . . ., 7n—1(—uo), it is sufficient to show that; > --- > 7,_1.
By Corollary 3.6, foranyi <i; < --- < i, <n —1we have

(/\kLhO (h)(UQ) + /\kLh0 (h)(—uo)) e, N+ Neg, = Zﬂeil N Neg,,
and therefore
(512) Tiy Ty +7:i1 77“C :25

For. € {1,...,n — 2}, we can choose a subset {1,...,n— 1} with |I| =k —1and
t,e+1¢1I,sincek+ 1 <n—1.Then (5.12) yields

TIT, +TIT, =TT 1+ T[Tl 2 Ti7 + 71741,

which implies that’, > 7, 1.

Letl < i3 < - < i <n-—1landl := {i1,...,ix}. Applying the linear map
A*¥ Lo (h)(wo) + AFLp, (R)(—ug) toe;, A--- Ae;,, We get
(5.13) [17(uo) + ][ rn-i(—uo) = 28.

el el

From (5.11) and (5.13) we conclude that the sequénee 1 (ug) < -+ < r,—1(uo)
satisfies the hypothesis of Lemma 5.1. Hengéuo) = --- = r,—1(ug) =: ro. But
R(—ug) = R(up) implies that also; (—ug) = - -+ = rp—1(—up) = 19, Which yields the
assertion of the proposition. O

5.2. Proof of Theorem 1.1: remaining caseslt remains to consider the cases where
j =n—1. Hence, we haveé < i < n — 3. Proposition 5.2 implies that there is some
up € S"~! such that the eigenvalues &f,,(h)(ug) and Ly, (h)(—uo) are all equal to
ro > 0. But then Corollary 3.6 shows that
i Vi(K|L)
ro+ 1y =2a=2 ,
o Vi(Ko|L)
forall L € G(n,i), and
T‘7+T“7:2ﬁ:2 J ,
o0 Vi (Ko|U)
forallU € G(n,j). Hence, we get

(M):(w>

Vi(K|U) Vi(K|L)
forallU € G(n,j) and allL € G(n,i). Thus again Equation (4.20) is available and the
proof can be completed as before. O

5.3. Proof of Corollary 1.3. Let K have constant widtlv. Then, [2,§64], the diameter
of K is alsow and any point: € 0K is the endpoint of a diameter &f. That is there is
y € OK such thatx — y| = w. ThenK is contained in the closed baH(y, w) of radiusw
centered ay andz € 9B(y, w) N K. Thus ifOK is C?, thendK is internally tangent to
the spheréB(y, w) atx. Therefore all the principle curvatures @f atx are greater or
equal than the principle curvatures@B(y, w) atx, and thus all the principle curvatures
of 0K atx are at least /w. Whence the Gauss-Kronecker curvatur@ff at« is at least
1/w™~1. Asz was an arbitrary point 0¥ K this shows that iDK is aC? submanifold of
R™ andK has constant width, thed is of classC?. Corollary 1.3 now follows directly
from Corollary 1.2. O
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6. BODIES OF REVOLUTION

We now give a proof of Proposition 1.4. By assumption, there are congtafits- 0
such that

Vi(K|L) = aVi(Ko|L) and V,1(K|U) = Vn1(Ko|U),

forall L € G(n,¢) andU € G(n,n — 1), wherei € {1,n — 2}. We can assume that the
axis of revolution contains the origin and has direction S" 1. Letu € S"~! \ {%e}.
Then there are € (-7, %) andvy € S™~! Nut such thatu = cos g vy + singe. For
the sake of completeness we include a proof of the following lemma.

6.1 Lemma. The mapL(hg)(u) is a multiple of the identity map on" N vy and has
— sin ¢ vy + cos p e as an eigenvector.

Proof. By rotational invariance, there is somgp) > 0 such that
(6.1) hic(cos v +sin g [vle) = ()],

for all v € e*. Differentiating (6.1) twice with respect to € e yields that, for any
Vv, W € et N Uj‘,

cos? @ d*hc (cos p vy + singe) (v, w) = r(p) (v, w).
Moreover, differentiating (6.1) with respecttowe obtain, for any € et Ny,
(6.2) dhg(cospvg +sinpe)(v) = 0.
Differentiating (6.2) with respect t@, we obtain
d*h (cos g vg + sinpe) (v, —singwy + cospe) = 0.

Thus, ifvy, . .., v, is an orthonormal basis ef- Nvg-, then—sin g vy +cospe, vy, . ..,
vn—2 IS an orthonormal basis of eigenvectorddh ) (u) with corresponding eigenvalues
ziandxy = = 2,1 =: T. O

Proof of Proposition 1.4.Let K and K, be as in Proposition 1.4 and lebe a unit vector
in the direction of the common axis of rotation&fand K. Let i be the support function
of K andh, the support function of(y. Letu € S~ N et be a point in the equator of
S»—! defined bye. As e is orthogonal tou, the vectore is in the tangent space 8!
atu. Letey,...,e, 1 be an orthonormal basis fdu,e}*. Thene, e, ..., e, 1 is an
orthonormal basis for bot#,S*~! andT_,S"~!'. By Lemma 6.1 there are eigenvalues
x1, andzy = z3 = -+ = x,—1 =: x such thatL(h)(u)e = z1e andL(h)(u)e; = ze;
for j = 2,...,n — 1. By rotational symmetry we also havg(h)(—u)e = zie and
L(h)(—u)e; = xejforj=2,...,n—1. Likewise ify;, andy; = ys = --- = yp—1 =1 y
are the eigenvalues df(ho)(u), then they are also the eigenvaluesigf)(—u) and
L(ho)(+u)e = y1e andL(ho)(+u)e; = ye, for j = 2,...,n — 1. By Proposition 3.5 the
polynomial relations
ze' ™ o' = 2amy"
'+ 2t = 209,
w1 4 ma" T = 20y

hold. The first two of these yields thafy = x; /y; and therefore

i(n—1)
an—l — (E) — ﬁz.
Y
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As in the proof of Case 2 of the proof of Theorem 1.1 this gives that Equation (4.20) holds
which in turn implies tha#s” and K, are homothetic. O
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