EXTREMAL APPROXIMATELY CONVEX FUNCTIONS AND THE BEST CONSTANTS IN A THEOREM OF HYERS AND ULAM

S. J. DILWORTH, RALPH HOWARD, AND JAMES W. ROBERTS

$$
\begin{aligned}
& \text { AbSTRACT. Let } n \geq 1 \text { and } B \geq 2 \text {. A real-valued function } f \text { defined on } \\
& \text { the } n \text {-simplex } \Delta_{n} \text { is approximately convex with respect to } \Delta_{B-1} \text { if } \\
& \qquad f\left(\sum_{i=1}^{B} t_{i} x_{i}\right) \leq \sum_{i=1}^{B} t_{i} f\left(x_{i}\right)+1 \\
& \text { for all } x_{1}, \ldots, x_{B} \in \Delta_{n} \text { and all }\left(t_{1}, \ldots, t_{B}\right) \in \Delta_{B-1} \text {. We determine the } \\
& \text { extremal function of this type which vanishes on the vertices of } \Delta_{n} \text {. } \\
& \text { We also prove a stability theorem of Hyers-Ulam type which yields as a } \\
& \text { special case the best constants in the Hyers-Ulam stability theorem for } \\
& \varepsilon \text {-convex functions. }
\end{aligned}
$$

1. Introduction

Let U be a convex subset of a real vector space. Then a function $f: U \rightarrow \mathbb{R}$ is ε-convex iff

$$
f((1-t) x+t y) \leq(1-t) f(x)+t f(y)+\varepsilon
$$

for all $t \in[0,1]$ and $x, y \in U$. In 1952 Hyers and Ulam [6] proved that any ε-convex function on a finite dimensional convex set can be approximated by a convex function. Since then several authors have considered the problem of improving the constants in this stability theorem. (See the book [5] for the complete history.) Here we find the best constants.

Theorem 1. Suppose that $U \subseteq \mathbb{R}^{n}$ is convex and that $f: U \rightarrow \mathbb{R}$ is ε-convex. Then there exist convex functions $g, g_{0}: U \rightarrow \mathbb{R}$ such that

$$
g(x) \leq f(x) \leq g(x)+\kappa(n) \varepsilon \quad \text { and } \quad\left|f(x)-g_{0}(x)\right| \leq \frac{\kappa(n) \varepsilon}{2}
$$

for all $x \in U$, where

$$
\kappa(n)=\left\lfloor\log _{2} n\right\rfloor+\frac{2\left(n+1-2^{\left\lfloor\log _{2} n\right\rfloor}\right)}{n+1} .
$$

Moreover, $\kappa(n)$ is the best constant in these inequalities.

[^0]The value $\kappa(2)=5 / 3$ was first obtained by Green [4]. The value $\kappa\left(2^{n}-\right.$ $1)=n$ was obtained by a different argument in [3]. Note that $\kappa(3)=2$, $\kappa(4)=12 / 5, \kappa(5)=8 / 3, \kappa(6)=20 / 7, \kappa(7)=3$, etc. These values improve the constants obtained by Cholewa [1]. The best constants corresponding to $\kappa(n)$ for approximately midpoint-convex functions were obtained in [2].

Our methods give the best constants for a more general stability theorem. To explain this we fix some notation. The standard n-simplex Δ_{n} is defined by

$$
\Delta_{n}=\left\{(x(0), \ldots, x(n)): \sum_{j=0}^{n} x(j)=1, x(j) \geq 0,0 \leq j \leq n\right\}
$$

The vertices of Δ_{n} are denoted by $e(j)(0 \leq j \leq n)$. For $x \in \Delta_{n}$, the set $\{0 \leq j \leq n: x(j) \neq 0\}$ is denoted by $\operatorname{supp} x$. Fix $B \geq 2$ and $n \geq 1$, and let U be a convex subset of \mathbb{R}^{n}. We say that a function $f: U \rightarrow \mathbb{R}$ is approximately convex with respect to Δ_{B-1} iff

$$
f\left(\sum_{i=1}^{B} t_{i} x_{i}\right) \leq \sum_{i=1}^{B} t_{i} f\left(x_{i}\right)+1
$$

for all $x_{1}, \ldots, x_{B} \in U$ and all $\left(t_{1}, \ldots, t_{B}\right) \in \Delta_{B-1}$. When $B=2$ this is just the definition of 1 -convex and by rescaling properties of ε-convex function reduce to those of 1-convex functions.

In Section 2 we consider real-valued functions with domain Δ_{n} that are approximately convex with respect to Δ_{B-1}. We show that there exists an extremal such function satisfying the following: (i) E is approximately convex with respect to Δ_{B-1}; (ii) E vanishes on the vertices of Δ_{n}; (iii) if $f: U \rightarrow \mathbb{R}$ is approximately convex with respect to Δ_{B-1} and satisfies $f(e(j)) \leq 0$ for $j=0, \ldots, n$, then $f(x) \leq E(x)$ for all $x \in \Delta_{n}$. Moreover, we obtain an explicit formula for E, and we show that E is concave and piecewise-linear on Δ_{n} and continuous on the interior of Δ_{n}. We also calculate the maximum value of E.

In Section 3 we prove a stability theorem of Hyers-Ulam type for approximately convex functions and show that the maximum value of the extremal function E gives the best constant in this theorem. The special case of $B=2$ is Theorem 1 .

More information about approximately convex functions and stability theorems can be found in the book [5]. Our earlier paper [2] gives a thorough treatment of extremal approximately midpoint-convex functions and related results.

Finally we remark on why the proofs for approximately convex functions are shorter and simpler than in the case of approximately midpoint-convex functions in [2]. An approximately convex function defined on an open set is easily seen to be locally bounded. However the existence of non-measurable solutions to the functional equation $f(x+y)=f(x)+f(y)$ shows that there are approximately midpoint-convex functions defined on all of \mathbb{R}^{n} that are unbounded, both above and below, on every non-empty open subset of \mathbb{R}^{n}.

Thus the extremal approximately midpoint-convex function on the simplex Δ_{n}, corresponding to E of Theorem 2 in the current paper, is not pointwise largest in the set of all approximately midpoint-convex functions vanishing on the vertices of Δ_{n}, but only extremal in the set of Borel measurable approximately midpoint-convex functions vanishing on the vertices of Δ_{n}. These measure theoretic considerations are a major reason for the more complicated proofs in [2].

2. Extremal Approximately Convex Functions

Define a function $E: \Delta_{n} \rightarrow \mathbb{R}$ as follows (recall that $\operatorname{sgn} 0=0$ and $\operatorname{sgn} a=$ $a /|a|$ if $a \neq 0)$:

$$
\begin{equation*}
E(x)=\min \left\{\sum_{j=0}^{n} m(j) x(j): \sum_{j=0}^{n} \frac{\operatorname{sgn} x(j)}{B^{m(j)}} \leq 1, m(j) \geq 0, m(j) \in \mathbb{N}\right\} \tag{2.1}
\end{equation*}
$$

If $x \in \Delta_{n}$ then $x(j) \geq 0$ and so $\operatorname{sgn} x(j)$ is either 0 or 1 . Note that if $A=\operatorname{supp} x$, then

$$
\begin{equation*}
E(x)=\min \left\{\sum_{j \in A} m(j) x(j): \sum_{j \in A} \frac{1}{B^{m(j)}} \leq 1, m(j) \geq 0, m(j) \in \mathbb{N}\right\} \tag{2.2}
\end{equation*}
$$

Proposition 1. $E(e(j))=0$ for all j and E is approximately convex with respect to Δ_{B-1}.

Proof. It is clear from (2.2) that $E(x) \geq 0$ for all x and that $E(e(j))=0$ for all j. Suppose that $x \in \Delta_{n}$ and that $x=\sum_{k=1}^{B} t_{k} x_{k}$ for some $x_{1}, \ldots, x_{B} \in$ Δ_{n}. Let $A=\operatorname{supp} x$ and $A_{k}=\operatorname{supp} x_{k}$, and note that $A \subseteq \bigcup_{k=1}^{B} A_{k}$. For each $1 \leq k \leq B$, we have

$$
E\left(x_{k}\right)=\sum_{j \in A_{k}} m_{k}(j) x_{k}(j)
$$

for some $\left(m_{k}(j)\right)_{j \in A_{k}}$ such that $\sum_{j \in A_{k}} 1 / B^{m_{k}(j)} \leq 1$. For $j \in A$, let $C(j)=$ $\left\{1 \leq k \leq B: j \in A_{k}\right\}$ and let

$$
M(j)=\min \left\{m_{k}(j): k \in C(j)\right\}
$$

Note that

$$
\frac{1}{B^{M(j)+1}}=\frac{1}{B} \frac{1}{B^{M(j)}} \leq \frac{1}{B} \sum_{k \in C(j)} \frac{1}{B^{m_{k}(j)}}
$$

Thus,

$$
\sum_{j \in A} \frac{1}{B^{M(j)+1}} \leq \sum_{j \in A} \frac{1}{B} \sum_{k \in C(j)} \frac{1}{B^{m_{k}(j)}} \leq \frac{1}{B} \sum_{k=1}^{B} \sum_{j \in A_{k}} \frac{1}{B^{m_{k}(j)}} \leq 1
$$

Hence

$$
\begin{aligned}
E\left(\sum_{k=1}^{B} t_{k} x_{k}\right)=E(x) & \leq \sum_{j \in A}(1+M(j)) x(j) \\
& =\sum_{j \in A}(1+M(j)) \sum_{k=1}^{B} t_{k} x_{k}(j) \\
& =1+\sum_{k=1}^{B} t_{k} \sum_{j \in A} M(j) x_{k}(j) \\
& =1+\sum_{k=1}^{B} t_{k} \sum_{j \in A_{k}} M(j) x_{k}(j)
\end{aligned}
$$

(since $A_{k} \subseteq A$ if $t_{k} \neq 0$)

$$
\begin{aligned}
& \leq 1+\sum_{k=1}^{B} t_{k} \sum_{j \in A_{k}} m_{k}(j) x_{k}(j) \\
& =1+\sum_{k=1}^{B} t_{k} E\left(x_{k}\right) .
\end{aligned}
$$

Thus, E is approximately convex with respect to Δ_{B-1}.
Lemma 1. If $m(j) \geq 1$ for each $0 \leq j \leq n$ and $\sum_{j=0}^{n} 1 / B^{m(j)} \leq 1$, then $\{0,1, \ldots, n\}$ is the disjoint union of sets P_{1}, \ldots, P_{B} such that

$$
\sum_{j \in P_{k}} \frac{1}{B^{m(j)}} \leq \frac{1}{B}
$$

for $k=1, \ldots, B$.
Proof. Without loss of generality we may assume that $1 \leq m(0) \leq m(1) \leq$ $\cdots \leq m(n)$. We shall prove that the result holds for all $n \geq 1$ by induction on $N=\sum_{j=0}^{n} m(j)$. Note that the result is vacuously true if $N=1$ and is trivial if $n \leq B$. So suppose that $N \geq 2$ and that $n>B$, so that $n-1>B-1 \geq 1$. By inductive hypothesis, $\{0,1, \ldots, n-1\}$ is the disjoint union of sets F_{1}, \ldots, F_{B} such that

$$
\sum_{j \in F_{k}} \frac{1}{B^{m(j)}} \leq \frac{1}{B}
$$

for $k=1, \ldots, B$. Since $\sum_{j=0}^{n-1} 1 / B^{m(j)}<1$, and since $1 \leq m(0) \leq m(1) \leq$ $\cdots \leq m(n)$, there exists k_{0} such that

$$
\begin{equation*}
\sum_{j \in F_{k_{0}}} \frac{1}{B^{m(j)}} \leq \frac{1}{B}-\frac{1}{B^{m(n-1)}} \leq \frac{1}{B}-\frac{1}{B^{m(n)}} \tag{2.3}
\end{equation*}
$$

Put $P_{k_{0}}=P_{k_{0}} \cup\{n\}$ and $P_{k}=F_{k}$ for $k \neq k_{0}$ to complete the induction.

Theorem 2. E is extremal, that is if $h: \Delta_{n} \rightarrow \mathbb{R}$ is approximately convex with respect to Δ_{B-1} and $h(e(j)) \leq 0$ for $j=0,1, \ldots, n$, then

$$
h(x) \leq E(x) \quad \text { for all } x \in \Delta_{n}
$$

Proof. Let $s=|\operatorname{supp} x|$, so that $1 \leq s \leq n+1$. The proof is by induction on s. If $s=1$ then $x=e(j)$ for some j, so that

$$
E(x)=E(e(j))=0 \geq h(e(j))=h(x) .
$$

As inductive hypothesis, we suppose that $h(x) \leq E(x)$ whenever $|\operatorname{supp} x|<$ s. Now suppose that $s \geq 2$ and that $|\operatorname{supp} x|=s$. Without loss of generality we may assume that supp $x=\{0, \ldots, s-1\}$, so that $E(x)=\sum_{j=0}^{s-1} m(j) x(j)$, where $\sum_{j=0}^{s-1} 1 / B^{m(j)} \leq 1$. Note that each $m(j) \geq 1$ since $s \geq 2$.

If $\sum_{j=0}^{s-1} 1 / B^{m(j)} \leq 1 / B$, let $P_{1}=\{0, \ldots, s-2\}, P_{2}=\{s-1\}$, and $P_{k}=\varnothing$ for $2<k \leq B$. Note that $\left|P_{k}\right|<s$ for $1 \leq k \leq B$ and that $\sum_{j \in P_{k}} 1 / B^{m(j)} \leq 1 / B$.

On the other hand, if $\sum_{j=0}^{s-1} 1 / B^{m(j)}>1 / B$, then applying Lemma 1 with $n=s-1$, we can write $\{0,1, \ldots, s-1\}$ as the disjoint union of sets P_{1}, \ldots, P_{B} such that $\sum_{j \in P_{k}} 1 / B^{m(j)} \leq 1 / B$ for each $1 \leq k \leq B$. Note that this implies that $\left|P_{k}\right|<s$ for $1 \leq k \leq B$.

If $P_{k} \neq \varnothing$, let $x_{k}=\left(1 / t_{k}\right) \sum_{j \in P_{k}} x(j) e(j)$, where $t_{k}=\sum_{j \in P_{k}} x(j)$. If $P_{k}=\varnothing$, let $x_{k}=e(0)$ and let $t_{k}=0$. Thus $x=\sum_{k=1}^{B} t_{k} x_{k}$, where $t_{k} \geq 0$ and $\sum_{k=1}^{B} t_{k}=1$. Note that

$$
\left|\operatorname{supp} x_{k}\right|=\max \left\{1,\left|P_{k}\right|\right\}<s \quad(1 \leq k \leq B) .
$$

If $P_{k} \neq \varnothing$, then $m(j) \geq 1$ for all $j \in P_{k}$, and $\sum_{j \in P_{k}} 1 / B^{m(j)-1} \leq 1$. Since $\left|\operatorname{supp} x_{k}\right|<s$, our inductive hypothesis implies that $h\left(x_{k}\right) \leq E\left(x_{k}\right)$. Finally,

$$
\begin{aligned}
h(x) & =h\left(\sum_{k=1}^{B} t_{k} x_{k}\right) \leq 1+\sum_{k=1}^{B} t_{k} h\left(x_{k}\right) \leq 1+\sum_{P_{k} \neq \varnothing} t_{k} E\left(x_{k}\right) \\
& \leq 1+\sum_{P_{k} \neq \varnothing} t_{k} \sum_{j \in P_{k}}(m(j)-1) x_{k}(j) \\
& =1+\sum_{P_{k} \neq \varnothing} \sum_{j \in P_{k}}(m(j)-1) x(j) \\
& =1+\sum_{j=0}^{s-1} m(j) x(j)-\sum_{j=0}^{s-1} x(j) \\
& =\sum_{j=0}^{s-1} m(j) x(j)=E(x) .
\end{aligned}
$$

This completes the induction.

Following the convention that $x \log _{B} x=0$ when $x=0$, the entropy function $F: \Delta_{n} \rightarrow \mathbb{R}$ is defined as follows:

$$
F(x)=-\sum x(j) \log _{B} x(j) .
$$

Proposition 2. F is approximately convex with respect to Δ_{B-1} and satisfies

$$
F(x) \leq E(x) \leq F(x)+1 \quad\left(x \in \Delta_{n}\right) .
$$

Proof. Let $x \in \Delta_{n}$. A standard Lagrange multiplier calculation yields

$$
\begin{equation*}
F(x)=\min \left\{\sum_{j \in A} y(j) x(j): \sum_{j \in A} \frac{1}{B^{y(j)}} \leq 1, y(j) \geq 0\right\} \tag{2.4}
\end{equation*}
$$

where $A=\operatorname{supp} x$. Using (2.4) in place of (2.2), minor changes in the proof of Proposition 1 show that F is approximately convex with respect to Δ_{B-1}. Suppose that

$$
\begin{equation*}
F(x)=\sum_{j \in A} y(j) x(j) \tag{2.5}
\end{equation*}
$$

for some $y(j) \geq 0$ satisfying $\sum_{j \in A} 1 / B^{y(j)} \leq 1$. Let $m(j)=\lceil y(j)\rceil$. Then $\sum_{j \in A} 1 / B^{m(j)} \leq 1$, and so

$$
E(x) \leq \sum_{j \in A} m(j) x(j) \leq \sum_{j \in A}(y(j)+1) x(j)=F(x)+1
$$

On the other hand, since F is approximately convex with respect to Δ_{B-1}, it follows from Theorem 2 that $F(x) \leq E(x)$.

Recall that a face of a compact convex set A is an intersection of A with any of its supporting hyperplanes. An open face is the interior of a face in the minimal affine space containing it. When A is a simplex, the faces of A are just the sub-simplices of A of lower dimension.
Proposition 3. (i) E is piecewise-linear and the restriction of E to each open face of Δ_{n} is continuous.
(ii) E is lower semi-continuous;
(iii) E is concave.

Proof. To prove that E is piecewise linear it is enough to show that E is piecewise linear on the interior Δ_{n}° of Δ_{n}. For then by an induction on n we will have that E is piecewise linear on Δ_{n}° and the induction hypothesis implies that it is piecewise linear when restricted to any of the faces of Δ_{n}, which implies that E is piecewise linear on Δ_{n}. For fixed n and B let

$$
\mathcal{F}(n, B):=\left\{\left(m_{0}, \ldots, m_{n}\right): m_{k} \in \mathbb{N}, \sum_{k=0}^{n} \frac{1}{B^{m_{k}}} \leq 1\right\}
$$

be the set of feasible $(n+1)$-tuples. For $\left(m_{0}, \ldots, m_{n}\right) \in \mathcal{F}(n, B)$ let $\Lambda_{\left(m_{0}, \ldots, m_{n}\right)} \Delta_{n} \rightarrow \mathbb{R}$ be the linear function

$$
\Lambda_{\left(m_{0}, \ldots, m_{n}\right)}\left(x_{0}, \ldots, x_{n}\right)=m_{0} x_{0}+m_{1} x_{1}+\cdots+m_{n} x_{n}
$$

Figure 1. Graph of $y=E(x, y, 1-x-y)$ for $B=2$ over the simplex $0 \leq y \leq 1-x \leq 1$ showing the discontinuity along the boundary. On the boundary E_{S} has the value 1 except at the three vertices where it has the value 0 .
so that $E: \Delta_{n} \rightarrow \mathbb{R}$ is given by

$$
E(x)=\min \left\{\Lambda_{\left(m_{0}, \ldots, m_{n}\right)}(x):\left(m_{0}, \ldots, m_{n}\right) \in \mathcal{F}(n, B)\right\} .
$$

Let

$$
\begin{aligned}
\mathcal{E}(n, B):=\left\{\left(m_{0}, \ldots, m_{n}\right)\right. & \in \mathcal{F}(n, B): \\
& \left.\Lambda_{\left(m_{0}, \ldots, m_{n}\right)}(x)=E(x) \text { for some } x \in \Delta_{n}^{\circ}\right\}
\end{aligned}
$$

be the set of extreme $(n+1)$-tuples. Then

$$
\left.E\right|_{\Delta_{n}^{\circ}}(x)=\min \left\{\Lambda_{\left(m_{0}, \ldots, m_{n}\right)}(x):\left(m_{0}, \ldots, m_{n}\right) \in \mathcal{E}(n, B)\right\}
$$

and therefore showing that $\left.E\right|_{\Delta_{n}^{\circ}}$ is piecewise linear is equivalent to showing that $\mathcal{E}(n, B)$ is finite.

Lemma 2. Let $\left(m_{0}, \ldots, m_{n}\right) \in \mathcal{E}(n, B)$ and $\left(m_{0}^{\prime}, \ldots, m_{n}^{\prime}\right) \in \mathcal{F}(n, B)$ with $m_{k}^{\prime} \leq m_{k}$ for $0 \leq k \leq n$. Then $\left(m_{0}^{\prime}, \ldots, m_{n}^{\prime}\right)=\left(m_{0}, \ldots, m_{n}\right)$.

Proof. For if not then there is an index k with $m_{k}^{\prime}<m_{k}$. As all the components of $x=\left(x_{0}, \ldots, x_{n}\right)$ are positive on Δ_{n}° this implies that on $x \in \Delta_{n}^{\circ}$

$$
\begin{aligned}
E(x) & \leq \Lambda_{\left(m_{0}^{\prime}, \ldots, m_{n}^{\prime}\right)}(x)=\Lambda_{\left(m_{0}, \ldots, m_{n}\right)}(x)+\Lambda_{\left(m_{0}^{\prime}, \ldots, m_{n}^{\prime}\right)}(x)-\Lambda_{\left(m_{0}, \ldots, m_{n}\right)}(x) \\
& \leq \Lambda_{\left(m_{0}, \ldots, m_{n}\right)}(x)+\left(m_{k}^{\prime}-m_{k}\right) x_{k}<\Lambda_{\left(m_{0}, \ldots, m_{n}\right)}(x) .
\end{aligned}
$$

This contradicts that for $\left(m_{0}, \ldots, m_{n}\right) \in \mathcal{E}(n, B)$ there is an $x \in \Delta_{n}^{\circ}$ with $\Lambda_{\left(m_{0}, \ldots, m_{n}\right)}(x)=E(x)$.

Let $\operatorname{Perm}(n+1)$ be the group of permutations of $\{0,1, \ldots, n\}$. Then it is easily checked that $\mathcal{E}(n, B)$ is invariant under the action of $\operatorname{Perm}(n+1)$ given by $\sigma\left(m_{0}, m_{1}, \ldots, m_{n}\right)=\left(m_{\sigma(0)}, m_{\sigma(1)}, \ldots, m_{\sigma(n)}\right)$. Therefore if $\mathcal{E}^{*}(n, B)$ is the set of monotone decreasing elements of $\mathcal{E}(n, B)$, that is

$$
\mathcal{E}^{*}(n, B):=\left\{\left(m_{0}, \ldots, m_{n}\right) \in \mathcal{E}(n, B): m_{0} \geq m_{1} \geq \cdots \geq m_{n}\right\}
$$

then

$$
\mathcal{E}(n, B)=\left\{\sigma\left(m_{0}, \ldots, m_{n}\right):\left(m_{0}, \ldots, m_{n}\right) \in \mathcal{E}^{*}(n, B), \sigma \in \operatorname{Perm}(n+1)\right\}
$$

and to show that $\mathcal{E}(n, B)$ is finite it is enough to show that $\mathcal{E}^{*}(n, B)$ is finite.
Lemma 3. Suppose that $n \geq 0$. Let $m_{0} \geq m_{1} \geq \cdots \geq m_{n}$ be a nonincreasing sequence of $(n+1)$ positive integers, and let C be a positive real number such that

$$
\sum_{k=0}^{n} \frac{1}{B^{m_{k}}} \leq C
$$

and such that if $m_{0}^{\prime}, m_{1}^{\prime}, \ldots, m_{n}^{\prime}$ are any positive integers with $m_{k}^{\prime} \leq m_{k}$ for $0 \leq k \leq n$, then

$$
\sum_{k=0}^{n} \frac{1}{B^{m_{k}^{\prime}}} \leq C
$$

implies that $\left(m_{0}^{\prime}, \ldots, m_{n}^{\prime}\right)=\left(m_{0}, \ldots, m_{n}\right)$. (We will say that $\left(m_{0}, \ldots, m_{n}\right)$ is extreme for (n, C).) Let

$$
\eta=\eta(n, C):=\min \left\{j \geq 2: C B^{j} \geq n+B\right\}
$$

Then $m_{n}<\eta(n, C)$. (The explicit value of η is $\eta(n, C)=\max \left\{2,\left\lceil\log _{B}((n+\right.\right.$ B) $/ C)\rceil\}$.)

Proof. From the definition of η we have $\eta \geq 2$ and $C B^{\eta} \geq n+B$ which is equivalent to

$$
\frac{n+1}{B^{\eta}} \leq C-\frac{1}{B^{\eta-1}}+\frac{1}{B^{\eta}}
$$

Assume, toward a contradiction, that $m_{n} \geq \eta$. Then

$$
\frac{1}{B^{m_{0}}}+\cdots+\frac{1}{B^{m_{n-1}}}+\frac{1}{B^{m_{n}}} \leq \frac{n+1}{B^{\eta}} \leq C-\frac{1}{B^{\eta-1}}+\frac{1}{B^{\eta}}
$$

This can be rearranged to give

$$
\frac{1}{B^{m_{0}}}+\cdots+\frac{1}{B^{m_{n-1}}}+\frac{1}{B^{\eta-1}} \leq C+\frac{1}{B^{\eta}}-\frac{1}{B^{m_{n}}} \leq C
$$

This contradicts that $\left(m_{0}, \ldots, m_{n}\right)$ is (n, C) extreme and completes the proof.

We now prove $\mathcal{E}^{*}(n, B)$ is finite. First some notation. For positive integers l_{1}, \ldots, l_{j} let $C\left(l_{1}, \ldots, l_{j}\right):=1-\sum_{i=1}^{j} 1 / B^{l_{j}}$. If $\left(m_{0}, \ldots, m_{n}\right) \in \mathcal{E}^{*}(n, B)$ then by Lemma 2 (and with the terminology of Lemma 3) for each j with $1 \leq j \leq n$ the tuple $\left(m_{0}, \ldots, m_{n-j}\right)$ is $\left(n-j, C\left(m_{n-j+1}, \ldots, m_{n}\right)\right)$ extreme, and (m_{0}, \ldots, m_{n}) itself is ($n, 1$) extreme. Therefore, by Lemma $3, m_{n}<$ $\eta(n, 1)$, whence there are only a finite number of possible choices for m_{n}. For each of these choices of m_{n} we can use Lemma 3 again to get $m_{n-1}<$ $\eta\left(n-1, C\left(m_{n}\right)\right)$, and so there are only finitely many choices for the ordered pair $\left(m_{n-1}, m_{n}\right)$. And for each of these pairs $\left(m_{n-1}, m_{n}\right)$ we have that so there are only finitely many possibilities for m_{n-2}. Continuing in this manner it follows that $\mathcal{E}^{*}(n, B)$ is finite. This completes the proof that $E_{S}^{\Delta_{n}}$ is piecewise linear and thus point (i) of Propsition 3

To prove point (ii) let A be a nonempty subset of $\{0,1, \ldots, n\}$. In proving point (i) we have seen that there is a finite collection $\mathcal{L}(A)$ of linear mappings $\Lambda: \Delta_{n} \rightarrow \mathbb{R}$, each one of the form $\Lambda(x)=\sum_{j \in A} m(j) x(j)$ for some nonnegative integers $m(j), j=0,1, \ldots, n$, with $\sum_{j \in A} 1 / B^{m(j)} \leq 1$, such that

$$
\begin{equation*}
E(x)=\min \{\Lambda(x): \Lambda \in \mathcal{L}(A)\} \tag{2.6}
\end{equation*}
$$

for all $x \in \Delta_{n}$ such that $\operatorname{supp} x=A$. Clearly, we may also assume that $\mathcal{L}(B) \subseteq \mathcal{L}(A)$ whenever $A \subseteq B$. Suppose that $\left(x_{i}\right)_{i=1}^{\infty} \subseteq \Delta_{n}$ and that $x_{i} \rightarrow x$ as $i \rightarrow \infty$. Note that $\operatorname{supp} x \subseteq \operatorname{supp} x_{i}$ for all sufficiently large i, so that $\mathcal{L}\left(\operatorname{supp} x_{i}\right) \subseteq \mathcal{L}(\operatorname{supp} x)$ for all sufficiently large i. Thus,

$$
\begin{aligned}
E(x) & =\min \{T(x): T \in \mathcal{L}(\operatorname{supp} x)\} \\
& =\lim _{i \rightarrow \infty} \min \left\{T\left(x_{i}\right): T \in \mathcal{L}(\operatorname{supp} x)\right\} \\
& \leq \liminf _{i \rightarrow \infty} \min \left\{T\left(x_{i}\right): T \in \mathcal{L}\left(\operatorname{supp} x_{i}\right)\right\} \\
& =\liminf _{i \rightarrow \infty} E\left(x_{i}\right) .
\end{aligned}
$$

Thus, E is lower semi-continuous.
Finally we prove point (iii). It follows from (2.6) that the restriction of E to the interior of any face is the minimum of a finite collection of linear functions, and hence is continuous and concave. The lower semi-continuity of E forces E to be concave on all of Δ_{n}.

Remark. The algorithm implicit in the proof that $\mathcal{E}^{*}(n, B)$ is finite is rather effective for small values of n. In the case of most interest, when $B=2$ so that $S=\Delta_{1}$, it can be used to show

$$
\begin{aligned}
& \mathcal{E}^{*}(2,2)=\{(2,2,1)\}, \quad \mathcal{E}^{*}(3,2)=\{(3,3,2,1),(2,2,2,2)\} \\
& \mathcal{E}^{*}(4,2)=\{(4,4,3,2,1),(3,3,2,2,2)\} \\
& \left.\mathcal{E}^{*}(5,2)=\{5,5,4,3,2,1),(3,3,3,3,2,2)\right\} .
\end{aligned}
$$

When $n=2$ this leads to the explicit formula

$$
E(x, y, 1-x-y)=\min \{1+x+y, 2-x, 2-y\}
$$

for $0<x<1-y<1$. (Cf. Figure 1). The sets $\mathcal{E}^{*}(n, 2)$ can be used to give messier, but equally explicit formulas, for higher values of n.

Proposition 4. The maximum of E is given by

$$
\begin{equation*}
\kappa(n, B)=\left\lfloor\log _{B} n\right\rfloor+\frac{\left\lceil B\left(n+1-B^{\left\lfloor\log _{B} n\right\rfloor}\right) /(B-1)\right\rceil}{n+1} \tag{2.7}
\end{equation*}
$$

For small values of B and $n, \kappa_{S}(n)$ is given in Table 1 .

$B \backslash n$	1	2	3	4	5	6	7	8	9	10
2	1.0	1.6667	2.0000	2.4000	2.6667	2.8571	3.0000	3.1111	3.4000	3.5455
3	1.0	1.0	1.5000	1.6000	1.8333	1.8571	2.0000	2.0000	2.2000	2.2727
4	1.0	1.0	1.0	1.4000	1.5000	1.5714	1.7500	1.7778	1.8000	1.9091
5	1.0	1.0	1.0	1.0	1.3333	1.4286	1.5000	1.5556	1.7000	1.7273
6	1.0	1.0	1.0	1.0	1.0	1.2857	1.3750	1.4444	1.5000	1.5455
7	1.0	1.0	1.0	1.0	1.0	1.0	1.2500	1.3333	1.4000	1.4545
8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.2222	1.3000	1.3636
9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.2000	1.2727
10	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.1818
11	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

TABLE 1. Values of $\kappa(n, B)$ for $2 \leq B \leq 11$ and $1 \leq n \leq 10$.

Proof. E is a symmetric function of $x(0), \ldots, x(n)$ and E is also concave. Thus E achieves its maximum at the barycenter $\bar{x}=(1 /(n+1)) \sum_{j=0}^{n} e(j)$. So there exist nonnegative integers $m(j)(j=0,1, \ldots, n)$ such that $E(\bar{x})=$ $(1 /(n+1)) \sum_{j=0}^{n} m(j)$ and $\sum_{j=0}^{n} 1 / B^{m(j)} \leq 1$. We may also assume that $(m(j))_{j=0}^{n}$ have been chosen to minimize $\sum_{j=0}^{n} 1 / B^{m(j)}$ among all possible choices of $(m(j))_{j=0}^{n}$. Suppose that there exist i and k such that $m(k) \geq$ $m(i)+2$. Note that

$$
\begin{equation*}
\frac{1}{B^{m(i)+1}}+\frac{1}{B^{m(k)-1}} \leq \frac{2}{B^{m(i)+1}} \leq \frac{B}{B^{m(i)+1}}<\frac{1}{B^{m(i)}}+\frac{1}{B^{m(k)}} . \tag{2.8}
\end{equation*}
$$

Thus replacing $m(i)$ by $m(i)+1$ and replacing $m(k)$ by $m(k)-1$ leaves $(1 /(n+1)) \sum_{j=0}^{n} m(j)$ unchanged while it reduces $\sum_{j=0}^{n} 1 / B^{m(j)}$, which contradicts the choice of $(m(j))_{j=0}^{n}$. Thus $|m(i)-m(k)| \leq 1$ for all i, k. It follows that there exist integers $\ell \geq 0$ and $1 \leq s \leq n+1$ such that

$$
\begin{equation*}
\kappa(n, B)=\frac{\ell(n+1-s)+(\ell+1) s}{n+1}=\ell+\frac{s}{n+1} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{n+1-s}{B^{\ell}}+\frac{s}{B^{\ell+1}} \leq 1 \tag{2.10}
\end{equation*}
$$

Moreover, it is clear from (2.9) that ℓ is the least nonnegative integer satsifying (2.10) for some $1 \leq s \leq n+1$, i.e.

$$
\ell=\left\lfloor\log _{B} n\right\rfloor .
$$

For this value of ℓ it is clear from (2.9) that s is the smallest integer in the range $1 \leq s \leq n+1$ satisfying (2.10), i.e.

$$
s=\left\lceil\frac{B(n+1)-B^{\ell+1}}{B-1}\right\rceil=\left\lceil\frac{B}{B-1}\left(n+1-B^{\ell}\right)\right\rceil .
$$

Substituting these values for ℓ and s into (2.9) gives (2.7).

3. Best Constants in Stabilty Theorems of Hyers-Ulam Type

Hyers and Ulam [6] introduced the following definition. Fix $\varepsilon>0$. A function $f: U \rightarrow \mathbb{R}$, where U is a convex subset of \mathbb{R}^{n}, is ε-convex if

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)+\varepsilon
$$

for all $x, y \in U$ and all $t \in[0,1]$.
Note that f is ε-convex if and only if $(1 / \varepsilon) f$ is approximately convex with respect to Δ_{1}. So let us generalize this notion by defining f to be ε convex with respect to Δ_{B-1} if $(1 / \varepsilon) f$ is approximately convex with respect to Δ_{B-1}.

The proof of the following theorem is adapted from Cholewa's proof [1] of the Hyers-Ulam stability theorem for ε-convex functions.

Theorem 3. Suppose that $U \subseteq \mathbb{R}^{n}$ is convex and that $f: U \rightarrow \mathbb{R}$ is ε-convex with respect to Δ_{B-1}. Then there exist convex functions $g, g_{0}: U \rightarrow \mathbb{R}$ such that

$$
g(x) \leq f(x) \leq g(x)+\kappa(n, B) \varepsilon \quad \text { and } \quad\left|f(x)-g_{0}(x)\right| \leq \frac{\kappa(n, B) \varepsilon}{2}
$$

for all $x \in U$. Moreover, $\kappa(n, B)$ is the best constant in these inequalities.
Proof. By replacing f by f / ε, we may assume that $\varepsilon=1$. Set $W=\{(x, y) \in$ $U \times \mathbb{R}: y \geq f(x)\} \subseteq \mathbb{R}^{n+1}$ and define g by

$$
\begin{equation*}
g(x)=\inf \{y:(x, y) \in \operatorname{Co}(W)\} . \tag{3.1}
\end{equation*}
$$

Clearly $-\infty \leq g(x) \leq f(x)$. Suppose that $(x, y) \in \operatorname{Co}(W)$. By Caratheodory's Theorem (see e.g. [7, Thm. 17.1]) there exist $n+$ 2 points $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n+1}, y_{n+1}\right) \in W$ such that $(x, y) \in \Delta:=$ $\operatorname{Co}\left(\left\{\left(x_{0}, y_{0}\right), \ldots,\left(x_{n+1}, y_{n+1}\right)\right\}\right)$. Let $\bar{y}=\min \{\eta:(x, \eta) \in \Delta\}$. Then (x, \bar{y}) lies on the boundary of Δ and so it is a convex combination of $n+1$ of the points $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n+1}, y_{n+1}\right)$. Without loss of generality, $(x, \bar{y})=\sum_{j=0}^{n} t_{j}\left(x_{j}, y_{j}\right)$ for some $\left(t_{0}, \ldots, t_{n}\right) \in \Delta_{n}$. Note that

$$
h\left(\sum_{j=0}^{n} x(j) e(j)\right):=f\left(\sum_{j=0}^{n} x(j) x_{j}\right)-\sum_{j=0}^{n} x(j) f\left(x_{j}\right) \quad\left(x \in \Delta_{n}\right)
$$

is approximately convex with respect to Δ_{B-1} and satisfies $h(e(j))=0$ for $j=0,1, \ldots, n$. By Proposition 4, $\max _{x \in \Delta_{n}} h(x) \leq \kappa(n, B)$. Thus

$$
\begin{aligned}
y & \geq \bar{y}=\sum_{j=0}^{n} t_{j} y_{j}=\sum_{j=0}^{n} t_{j} f\left(x_{j}\right) \\
& =f\left(\sum_{j=0}^{n} t_{j} x_{j}\right)-h\left(\sum_{j=0}^{n} t_{j} e(j)\right) \\
& \geq f\left(\sum_{j=0}^{n} t_{j} x_{j}\right)-\kappa(n, B) \\
& =f(x)-\kappa(n, B) .
\end{aligned}
$$

Taking the infimum over all y yields $g(x) \geq f(x)-\kappa(n, B)$, i.e. $f(x) \leq$ $g(x)+\kappa(n, B)$. Finally, set $g_{0}(x)=g(x)+\kappa(n, B) / 2$.

The fact that $\kappa(n, B)$ is the best constant follows by taking f to be E, where E is the extremal approximately convex function (with respect to Δ_{B-1}) with domain Δ_{n}.

Setting $B=2$ in Theorem 3, gives the best constants in the Hyers-Ulam stability theorem and completes the proof of Theorem 1.

References

[1] Piotr W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[2] S. J. Dilworth, Ralph Howard and James W. Roberts, Extremal approximately convex functions and estimating the size of convex hulls, Adv. in Math. 148 (1999), 1-43.
[3] S. J. Dilworth, Ralph Howard and James W. Roberts, On the size of approximately convex sets in normed spaces, Studia Math. 140 (2000), 213-241.
[4] John W. Green, Approximately subharmonic functions, Duke Math. J. 19 (1952), 499-504.
[5] Donald H. Hyers, George Isac and Themistocles M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston, 1998.
[6] D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc. 3 (1952), 821-828.
[7] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
Department of Mathematics, University of South Carolina, Columbia, SC 29208, U.S.A.

E-mail address: dilworth@math.sc.edu
Department of Mathematics, University of South Carolina, Columbia, SC 29208, U.S.A.

E-mail address: howard@math.sc.edu
Department of Mathematics, University of South Carolina, Columbia, SC 29208, U.S.A.

E-mail address: roberts@math.sc.edu

[^0]: Date: August 23, 2001.
 2000 Mathematics Subject Classification. Primary: 26B25, 41A44; Secondary: 39B72, 51M16, 52A40.

 Key words and phrases. Convex functions, approximately convex functions, HyersUlam Theorem, best constants.

