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Abstract. Let (M,g) be a time oriented Lorentzian manifold and d the
Lorentzian distance on M . The function τ (q) := supp<q d(p, q) is the
cosmological time function of M , where as usual p < q means that
p is in the causal past of q. This function is called regular iff τ (q) <∞
for all q and also τ → 0 along every past inextendible causal curve. If
the cosmological time function τ of a space time (M,g) is regular it
has several pleasant consequences: (1) It forces (M,g) to be globally
hyperbolic, (2) every point of (M,g) can be connected to the initial
singularity by a rest curve (i.e., a timelike geodesic ray that maximizes
the distance to the singularity), (3) the function τ is a time function in
the usual sense, in particular (4) τ is continuous, in fact locally Lipschitz
and the second derivatives of τ exist almost everywhere.

1. Introduction.

Time functions play an important role in general relativity. They arise
naturally in the global causal theory of spacetime and they permit a decom-
position of spacetime into space and time which is useful, for example, in the
study of the solution of the Einstein equation. The choice of a time func-
tion, however, can be rather arbitrary and a given time function may have
little physical significance. Very few situations have been identified which
lead to a canonically defined time function. In this paper we introduce and
study what may be viewed in the cosmological setting as a canonical time
function.

Let (M,g) be a spacetime (i.e., a time oriented Lorentzian Manifold) and
let d : M ×M → [0,∞] be the Lorentzian distance function. Define the
cosmological time function τ : M → (0,∞] by

τ(q) := sup
p<q

d(p, q)(1.1)

If c is a causal curve in M denote by L(c) the Lorentzian length of c and for
q ∈ M , let C−(q) be the set of all past directed causal curves c in M that
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start at q. Then we have the alternative definition

τ(q) := sup{L(c) : c ∈ C−(q)}.
The number τ(q) can be thought of as the length of time the point q has
been in existence.

In general the function τ need not be at all nice. For example in the
case of flat Minkowski space τ ≡ ∞. We will give examples below where
τ(q) <∞ for all q, (M,g) is globally hyperbolic but τ is discontinuous.

Definition 1.1. The cosmological time function τ of (M,g) is regular if
and only if

1. (M,g) has finite existence times, i.e., τ(q) <∞ for all q ∈M .
2. τ → 0 along every past inextendible causal curve.

The first of these conditions is an assertion that the spacetime has an
initial singularity in the strong sense that for each point of the spacetime
any particle that passes through q has been in existence for at most a time
of τ(q). The second condition is a weak completeness assumption. It asserts
that if we believe that the condition τ = 0 defines the initial singularity and
that world lines of particles are inextendible, then every particle came into
existence at the initial singularity.

Our main result is that if the cosmological time function is regular then
the spacetime is quite well behaved.

Theorem 1.2. Suppose (M,g) is a spacetime such that the function τ :
M → (0,∞) defined by (1.1) is regular. Then the following properties hold.

1. (M,g) is globally hyperbolic.
2. τ is a time function in the usual sense, i.e., τ is continuous and is

strictly increasing along future directed causal curves.
3. For each q ∈M there is a future directed timelike ray γq : (0, τ(q)]→M

that realizes the distance from the “initial singularity” to q, that is, γq
is a future directed timelike unit speed geodesic, which is maximal on
each segment, such that,

γq(τ(q)) = q, τ(γq(t)) = t, for t ∈ (0, τ(q)].(1.2)

4. The tangent vectors {γ′q(τ(q)) : q ∈M} are locally bounded away from
the light cones. More precisely, if K ⊆ M is compact then {γ′q(τ(q)) :
q ∈ K} is a bounded subset of the tangent bundle T (M).

5. τ has the following additional regularity property: it is locally Lipschitz
and its first and second derivatives exist almost everywhere.

Conditions similar to Property 4 have played an important role in the
analysis of the regularity of Lorentzian Busemann functions and their level
sets (cf., [1], [8]). Here Property 4 will be used to establish Property 5.

For regularity properties of the level sets {τ = a} see Section 3 (as well
as the corollary at the end of Section 2). The various conclusions of the
theorem will be proven as separate propositions in the following sections.
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1.1. Terminology and notation. We use the standard terminology and
notation from Lorentzian geometry, following for example [9]. In particular
if (M,g) is a spacetime then p � q (respectively, p < q) means there is a
future directed timelike (resp. causal) curve from p to q. If S ⊂ M then
I+(S) is the chronological future of S and J+(S) is the causal future of
S. Likewise I−(S) and J−(S) are the chronological past and causal past
of S. If p < q, then the Lorentzian distance d(p, q) is the supremum of the
lengths of all the future directed causal curves from p to q and if p 6< q then
d(p, q) = 0. A fact that will be used repeatedly is that if x < p < q then the
reverse triangle inequality

d(x, q) ≥ d(x, p) + d(p, q)

holds.

2. Proofs of the basic properties of the cosmological time

function.

2.1. Continuity of the cosmological time function.

Proposition 2.1. If the cosmological time function τ of (M,g) is regular
then it is continuous and satisfies the reverse Lipschitz inequality

p < q implies τ(p) + d(p, q) ≤ τ(q).(2.1)

Proof. For any p ∈ M the function q 7→ d(p, q) is lower semicontinuous on
M . (That is lim infx→q d(p, x) ≥ d(p, q)). For example cf. [9, p215]. Then
τ(q) = supp<q d(p, q) is a supremum of lower semicontinuous functions and
therefore also lower semicontinuous. Thus to prove continuity of τ it is
enough to show it is upper-semicontinuous, that is lim supx→q τ(x) ≤ τ(q).

Assume, toward a contradiction, that τ is not upper semicontinuous at
q ∈M . Then there is ε > 0 and a sequence x` → q such that for each `

τ(x`) ≥ τ(q) + ε.

For each ` we can choose p` with

d(p`, x`) ≥ τ(x`)−
1
`
.

Moreover, by the regularity of τ , we can choose the sequence {p`} so that
τ(p`) → 0 as ` → 0. (To see this make any choice of p̂` with d(p̂`, x`) ≥
τ(x`)−1/`. Then choose a past directed inextendible curve σ starting at p̂`.
By the definition of regular there is a point p` on σ with τ(p`) < 1/`. Then
d(p`, x`) ≥ d(p̂`, x`) ≥ τ(x`) − 1/` and lim`→∞ τ(p`) = 0.) The condition
τ(p`) → 0 and the lower semicontinuity of τ implies that {p`} diverges to
infinity, that is it has no convergent subsequences.

We now put a complete Riemannian metric h on M and assume that all
causal curves (except possibly those arising as limit curves) are parameter-
ized with respect to arc length in the metric h. Since d(p`, x`) <∞ there is
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a past directed causal curve c` : [0, a`]→M (parameterized with respect to
arc length in h) from x` to p` such that

L(c`) ≥ d(p`, x`)−
1
`
≥ τ(x`)−

2
`
≥ τ(q) + ε− 2

`
(2.2)

where L(·) is the Lorentzian arc length functional. Since {p`} diverges,
a` →∞. Hence, by passing to a subsequence if necessary, we have that {c`}
converges uniformly on compact sets to a past inextendible timelike or null
ray (maximal half geodesic) c : [0,∞)→M (cf. [7, Sections 2–3]). Moreover,
by the upper semicontinuity of the Lorentzian arclength functional (strong
causality is not required, again cf. [7]), for each b > 0

L(c
∣∣
[0,b]

) ≥ lim sup
`→∞

L(c`
∣∣
[0,b]

).(2.3)

Claim 1. The curve c : [0,∞)→M is null.

If not then c is a timelike ray. Choose t > 0 and δ > 0 so that

L(c
∣∣
[0,t]

) + δ ≤ ε

2
.

By (2.3) there is an N such that for all ` ≥ N ,

L(c`
∣∣
[0,t]

) ≤ L(c
∣∣
[0,t]

) + δ ≤ ε

2
.

Hence, by (2.2) and the above,

L(c`
∣∣
[t,a`]

) = L(c`)− L(c`
∣∣
[0,t]

) ≥ τ(q) +
ε

2
− 2

`
.

Thus when ` is sufficiently large,

L(c`
∣∣
[t,a`]

) > τ(q).

On the other hand, since c is timelike, we have that c`(t) ∈ I−(q) for all ` suf-
ficiently large. It follows that τ(q) ≥ L(c`

∣∣
[t,a`]

) > τ(q). This contradiction
establishes the claim.

Claim 2. For each y on c, y 6= q and each neighborhood U of y there is a
y ∈ U so that τ(y) ≥ τ(y) + ε/2.

We have y = c(b) for some b > 0. Since c is null (2.3) implies

L(c`
∣∣
[0,b]

)→ 0.

Let y` := c`(b). Then

τ(y`) ≥ L(c`
∣∣
[b,a`]

) = L(c`)− L(c`
∣∣
[0,b]

)

≥ τ(y) + ε− 2
`
− L(c`

∣∣
[0,b]

) ≥ τ(y) +
ε

2
for all sufficiently large `. Therefore given the neighborhood U of y we see
that the claim holds with y = y` for some sufficiently large `.

We now use Claim 2 to construct a past inextendible causal curve along
which τ does not go to zero:
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1. First choose y` = c(b`), b` →∞ so that lim`→∞ y` does not exist.
2. Then choose {z`} ⊂M so that

(a) z`+1 ∈ I−(z`),
(b) z` ∈ I+(y`),
(c) lim`→∞ z` does not exist.

Let c̃ be a past directed timelike curve which threads through z1 � z2 �
z3 � · · · .
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As lim`→∞ z` does not exist, the curve c̃ is past inextendible. Also I−(z`)
is a neighborhood of y` therefore by Claim 2 there is a y` in I−(z`) with
τ(y`) ≥ τ(q) + ε/2. But for any point p on c there is a ` with z` � p
and therefore τ(p) ≥ τ(z`) ≥ τ(q) + ε/2. As p was any point of c this
contradicts that τ → 0 along every past inextendible causal curve and proves
the continuity of τ .

To prove the reverse Lipschitz inequality assume p < q and let x < p.
Then x < q and so by the reverse triangle inequality (i.e. d(x, p) + d(p, q) ≤
d(x, q)),

τ(p) + d(p, q) = sup
x<p

(d(x, p) + d(p, q)) ≤ sup
x<p

d(x, q) ≤ sup
x<q

d(x, q) = τ(q).

This completes the proof.

2.2. Global hyperbolicity of (M,g).

Proposition 2.2. Let (M,g) be a spacetime so that the cosmological time
function τ is regular. Then (M,g) is globally hyperbolic.

Proof. We have shown in Proposition 2.1 that τ is continuous. Therefore,
if St := {q ∈ M : τ(q) = t} then by elementary topological and causal
considerations, St is closed, achronal, and edge-less. (That St is achronal
follows from the reverse Lipschitz inequality. That St is closed and edge-less
follows from the continuity of τ .)

Recall that the future domain of dependence D+(St) of St is the set of all
points q ∈M such that every past inextendible causal curve from q intersects
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St. The past domain of dependence D−(St) is defined time-dually. The
domain of dependence of St is D(St) = D+(St)∪D−(St). From the definition
of regularity and the continuity of τ we see that D+(St) = {q : τ(q) ≥ t}.
It follows that each point of M is contained in int D+(St) for some t. Since
strong causality holds at each point of int D+(St) (cf. [10, Prop 5.22 p48]),
(M,g) is strongly causal.

Now let p, q ∈ M with p < q. Then choose t > 0 with t < τ(p). Then
J−(q) ∩ J+(p) is a subset of the open set {x : τ(x) > t} ⊂ D(St) and thus
J−(q) ∩ J+(p) is contained in the interior of D(St). This implies (cf. [10,
Prop 5.23 p48]) J−(q)∩ J+(p) is compact. As (M,g) is strongly causal and
p and q were arbitrary points of M with p < q, this verifies the definition of
globally hyperbolic.

2.3. Existence of maximizing rays to the initial singularity.

Proposition 2.3. Let (M,g) be a spacetime with regular cosmological time
function τ . Then for each q ∈ M there is a future directed timelike ray
γq : (0, τ(q)] → M that realizes the distance from the “initial singularity”
to q. That is, γq is a future directed timelike unit speed geodesic that re-
alizes the distance between any two of its points (for 0 < s < t ≤ τ(q),
d(γq(s), γq(t)) = t− s) and satisfies,

γq(τ(q)) = q, τ(γq(t)) = t, for t ∈ (0, τ(q)].(2.4)

Proof. For the purpose of the proof we will parameterize curves with respect
to a complete Riemannian metric h on M as in the proof of Proposition 2.1.
Fix q ∈M . As in the proof of Proposition 2.1, one can construct a sequence
{y`} ⊂ I−(q) that diverges to infinity and such that

d(y`, q) ≥ τ(q)− 1
`

and τ(y`) <
1
`
.

By Proposition 2.2, (M,g) is globally hyperbolic so there is a past directed
maximal geodesic segment γ` : [0, a`] → M from q = γ`(0) to y` = γ`(a`).
Since {y`} diverges to infinity and the curves are parameterized with respect
to h-arclength we have a` → ∞. Hence, by passing to a subsequence if
necessary, the sequence {γ`} converges to a past inextendible timelike or
null ray γ : [0,∞)→M based at q = γ(0). Hence for all b ∈ (0, a`),

L(γ
∣∣
[0,b]

) = d(γ(b), q).(2.5)

Claim. γ is timelike and for each b ∈ (0,∞),

d(γ(b), q) = τ(q)− τ(γ(b)).(2.6)

Hence by suitably reparameterizing γ we obtain a timelike ray γq that sat-
isfies (2.4).

To see the claim holds first note by the reverse Lipschitz inequality,

d(γ(b), q) ≤ τ(q)− τ(γ(b)).(2.7)
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By the maximality of the segments γ`,

d(γ`(b), q) = d(y`, q)− d(y`, γ`(b)) ≥
(

τ(q)− 1
`

)
− τ(γ`(b)).

Letting ` → ∞ we obtain d(γ(b), q) ≥ τ(q) − τ(γ(b)) which, together
with (2.7), establishes (2.6). Moreover since τ(γ(b)) → 0 as b → ∞, by
taking b large enough in (2.6) we see that d(γ(b), q) > 0 and thus γ must be
timelike. This completes the proof of the claim and all of the proposition
save the last statement about γq realizing the distance between its points.
But this follows easily from the reverse Lipschitz inequality for τ .

Proposition 2.4. Assume the cosmological time function τ of M is regular
and that K ⊂ M is compact. For each q ∈ K let γq : (0, τ(q)] → M be a
maximizing ray from the initial singularity to q in the sense that (2.4) holds.
Then {γ′q(τ(q)) : q ∈ K} ⊂ T (M) is bounded in T (M) (or, what is the same
thing, {γ′q(τ(q)) : q ∈ K} has compact closure in T (M)).

Proof. The proof is similar to the last proposition and again we parameterize
curves with respect to a complete Riemannian metric on M . If {γ′q(τ(q)) :
q ∈ K} is not bounded then there exist inextendible timelike rays γ` :
[0,∞)→M , parameterized with respect to h-arclength, which satisfy

d(γ`(b), γ`(0)) = τ(γ`(0)) − τ(γ`(b))(2.8)

for all b ∈ (0,∞), such that γ`(0) → q ∈ K and the h-unit vectors γ′`(0)
converge to an h-unit vector X which is null in the Lorentzian metric. Let
γ : [0,∞) → M be the past inextendible null geodesic parameterized with
respect to h-arclength, satisfying γ(0) = q and γ′(0) = X. Then γ is nec-
essarily a null ray (otherwise the maximality of the γ`’s would be violated).
By (2.8) we have

d(γ(b), γ(0)) = lim
`→∞

d(γ`(b), γ`(0))

= lim
`→∞

(τ(γ`(0))− τ(γ`(b))) = τ(γ(0)) − τ(γ(b)) > 0

for sufficiently large b. But this contradicts that γ is a null ray.

2.4. τ is strictly monotone on causal curves.

Proposition 2.5. If the cosmological time function τ is regular then it is
a time function in the usual sense, that is, it is continuous and strictly
increasing along future directed causal curves.

Proof. We have already shown τ is continuous. Let σ : (a, b) → M be a
future directed causal curve and t1, t2 ∈ (a, b) with t1 < t2. Set p := σ(t1)
and q := σ(t2). If d(p, q) > 0 then τ(q) ≥ τ(p) + d(p, q) > τ(p) by the
reverse Lipschitz inequality for τ . Thus assume d(p, q) = 0. Then there is a
null geodesic ray η from p to q. Let γp be the timelike ray to p guaranteed
by Proposition 2.3. Choose a point x on γp to the past of p. Then by a
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“cutting the corner” argument near p strict inequality holds in the reverse
triangle inequality. This strict inequality and d(p, q) = 0 imply

d(x, q) > d(x, p) + d(p, q) = d(x, p).

Hence,
τ(q)− τ(p) ≥ d(x, q) > d(x, p) = τ(p)− τ(x)

which implies τ(p) > τ(q), as desired.

Recall that for a closed subset S ⊂ M , the future Cauchy horizon
H+(S) is by definition future boundary of the domain of dependence D+(S),

H+(S) = D+(S)− I−(D+(S)).

H−(S) is defined analogously. If S ⊂ M is edge–less and acausal, then S
is called a partial Cauchy surface and if in addition H+(S) = ∅ then S
is called a future Cauchy surface, see [9, Chapter 6] for details. We can
now state to following Corollary.

Corollary 2.6. If the cosmological time function τ is regular then the level
sets Sa := {q : τ(q) = a} (if nonempty) are future Cauchy surfaces.

Proof. As observed in Proposition 2.2, Sa is edge-less. The acausality of
Sa is immediate from Proposition 2.5. Suppose H+(Sa) 6= ∅. Let η be a
past inextendible null geodesic generator of H+(Sa) with future end point
q ∈ H+(Sa) (cf.[9, Prop.6.5.3 p203]). Since q ∈ I+(Sa), τ(q) > a. But then,
since τ → 0 along η and τ is continuous, there is a point p on η such that
τ(p) = a, i.e., η meets Sa, which cannot happen.

Simple examples show that the level sets Sa need not be Cauchy, i.e.,
H−(Sa) need not be empty.

3. Other regularity properties of τ and its level sets

A continuous function u defined on an open subset U of Rn is semicon-
vex if and only if each point x ∈ U there is a smooth function f defined near
x so that u+ f is convex in a neighborhood of x. Using Lemma 3.2 below it
is not hard to check that the class of semiconvex functions is closed under
diffeomorphisms between open subsets of Rn and therefore the definition of
semiconvex extends to smooth manifolds (cf. [3]). By a well known theorem
of Aleksandrov a convex function has first and second derivatives almost
everywhere and thus a semiconvex function has the same property. (For a
beautiful recent proof see [5, Thm A.2 p 56]).

Proposition 3.1. If the cosmological time function τ is regular on (M,g)
then it is semiconvex and thus its first and second derivatives exist at almost
all points of M .

If f is a smooth function on an open subset of Rn then denote by D2f the
matrix of second second partial derivatives of f . Let I be the n×n identity
matrix. For a constant c let D2f(x) ≤ cI mean that cI −D2f(x) is positive



THE COSMOLOGICAL TIME FUNCTION 9

semidefinite. Also recall that if u is continuous then a smooth function ϕ
is a lower support function for u at x0 iff both u and ϕ are defined in a
neighborhood of x0, u(x0) = ϕ(x0) and ϕ ≤ u near x0. The proof of the
proposition is based on the following lemma.

Lemma 3.2. Let U ⊂ Rn be convex and let u : U → R be continuous.
Assume for some constant c and all q ∈ U that u has a lower support
function ϕq at q so that D2ϕ(x0) ≥ cI. Then u − c‖x‖2/2 is convex in U
and therefore u is semiconvex.

Proof. While in some circles this is a well known folk-theorem, the only
explicit reference we know is [1, Sec. 2].

Proof of Proposition 3.1. For any point q ∈ M let γq : (0, τ(q)] → M be a
geodesic segment realizing the distance from the initial singularity to q as
in Proposition 2.3. Define a function ϕq on I+(γq(τ(q)/2)) by

ϕq(x) := τ(q)/2 + d(γq(τ(q)/2), x).

By Proposition 2.3, γq realizes the distance between any two of its points
and thus d(γq(t), q) = τ(q)− t for t ∈ (0, τ(q)]. Hence

ϕq(q) = τ(q)/2 + d(γq(τ(q)/2), q) = τ(q).

By the reverse Lipschitz inequality for τ , if x ∈ I+(γq(τ(q)/2))

τ(x)− τ(γq(τ(q)/2)) ≥ d(γq(τ(q))/2, x),

which implies τ(x) ≥ ϕq(q) and thus ϕq is a lower support function for τ at
q.

Also as γq maximizes the distance between its points the segment γq
∣∣
[τ(q)/2,τ(q)]

will be free of cut points. Thus the map x 7→ d(γq(τ(q)/2), x) is smooth in
a neighborhood of q. This implies ϕq is smooth near q. By standard com-
parison theorems (see e.g., [2, 6]) it is possible to give upper and lower
bounds for the Hessian (defined in terms of the metric connection of (M,g))
of x 7→ d(γq(τ(q)/2), x) just in terms of upper and lower bounds of the time-
like sectional curvatures of two planes containing γ′q(t) for t ∈ [τ(q)/2, τ(q)]
and the length τ(q)/2 of γq

∣∣
[τ(q)/2,τ(q)]

. The same Hessian bound will hold
for ϕp.

Now let K ⊂M be compact. Then by Proposition 2.4 the vectors γ′q(τ(q))
for q ∈ K are all contained in some compact set K̂ of the tangent bundle
of M . Therefore there is a compact set K1 ⊂ M that will contain all the
segments γq

∣∣
[τ(q)/2,τ(q)]

with q ∈ K and a compact set K̂1 ⊂ T (M) that
will contain all the tangent vectors to these segments. Therefore there are
uniform upper and lower bounds for both the sectional curvatures of two
planes containing a tangent vector to all of the segments γq

∣∣
[τ(q)/2,τ(q)]

and
also the lengths τ(q)/2 of these segments. It follows that there are uniform
two sided bounds on the Hessians for the support functions ϕq for q ∈ K.
Therefore given any point q0 and a compact coordinate neighborhood K
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of q0, by writing out the the two sided Hessian bounds in terms of the
coordinates we find that the lower support functions ϕq, q ∈ K, to τ will
also satisfy two sided bounds on the Hessian D2ϕq(q) with respect to the
coordinates. Therefore Lemma 3.2 implies τ is semiconvex near q. As q was
any point of M this completes the proof.

We now consider further the regularity of the level sets Sa := {q : τ(q) =
a} of the cosmological time function. To do this it is convenient to work in
some special coordinate systems. Let q be any point of M and let N0 be
a smooth spacelike hypersurface passing through q. Let (x1, . . . , xn−1) be
local coordinates on N0 centered at q and let xn be the signed Lorentzian
distance (with xn positive to the future of N0 and negative to the past).
Then near q, (x1, . . . , xn) is a local coordinate system so that the form of
the metric in this coordinate system is

g =
n∑

A,B=1

gABdxAdxB =
n−1∑
i,j=1

gijdxidxj − (dxn)2.

Call such a coordinate system an adapted coordinate system centered
at q. Then for any spacelike hypersurface N of M through q we have that
locally N can be parameterized as the graph of a function f . That is,

Ff (x1, . . . , xn−1) = (x1, . . . , xn−1, f(x1, . . . , xn−1)).(3.1)

Proposition 3.3. Let the cosmological time function τ of (M,g) be regular
and for a ∈ (0,∞) let Sa = {x : τ(x) = a} be a nonempty level set of
τ . Then for any q ∈ Sa and every adapted coordinate system x1, . . . , xn

centered at q there is a local parameterization of Sa of the form (3.1) for a
unique function f defined on an neighborhood of the origin in Rn−1. This
function f is semiconcave (that is −f is semiconvex) and therefore it is
locally Lipschitz and its first and second derivatives exist almost everywhere.

Proof. The existence and uniqueness of the function f is elementary, and
follows from the fact that Sa is an acausal hypersurface. We now are going
to construct upper support functions for Sa at each of its points. For any
p ∈ Sa let γp : (0, τ(p)]→M be a ray that realizes the distance to the initial
singularity of M in the sense of Proposition 2.3. Then define

Σp := {x ∈ I+(γp(a/2)) : d(γp(a/2), x) = a/2}.
That is, Σp is the future Lorentzian distance sphere of radius a/2 about the
point γp(a/2). Using that γp realizes the distance between any two its points
and that γp(τ(a)) = p we see d(γp(a/2), p) = d(γp(a/2), γp(a)) = a/2 so that
p is in Σp. Also using the reverse Lipschitz inequality for τ , if x ∈ Σp then

τ(x) ≥ τ(γp(a/2)) + d(γp(a/2), x) =
a

2
+

a

2
= a.

Thus every point of Σp is in the causal future of Sa. As γp is maximizing, the
segment γp

∣∣
[a/2,a]

will be free of conjugate points and therefore the Σp is a
smooth hypersurface in a neighborhood of p. Now let K ⊂ Sa be a compact
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set. Then by Proposition 2.3 the set {γ′p(a) : p ∈ K} has compact closure in
T (M). Therefore an argument like that used in the proof of Proposition 3.1
(based on elementary comparison theory) implies that if h

Σp
p is the second

fundamental form of Σp at the point p then h
Σp
p satisfies a uniform two

sided bound for p ∈ K (or, what is the same thing, the absolute values
of the principle curvatures of Σp at the point p are uniformly bounded for
p ∈ K).

For p ∈ Sa sufficiently close to q we can parameterize Σp by a function Ffp
with Ffp defined as in (3.1). As the hypersurfaces Σp are in the causal future
of Sa the functions fp satisfy fp ≥ f near p and thus they are upper support
functions for f near p. The bound on the second fundamental forms of the
Σp’s can be translated into a bound on the Hessians D2fp (for the details
of this calculation see [1]). Therefore Lemma 3.2 implies −f is semiconvex.
This completes the proof.

4. Examples

4.1. A globally hyperbolic spacetime with τ finite valued but dis-
continuous. Let ϕ : R→ [0,∞) be a smooth function with support in the
interval [1/4, 1/2] and with

∫∞
−∞ ϕ(t) dt =

∫ 1/2
1/4 ϕ(t) dt = 2. Define a function

Φ on the upper half plane M := {(x, y) : y > 0} by

Φ(x, y) =


1 +

1
x

ϕ
(y

x

)
, x > 0

1, x ≤ 0.

Let g be the Lorentzian metric on M given by

g := dx2 − Φ(x, y)2 dy2.

��
��
��
��
��
�

���
���

���
��

Null lines� -

ca�The segments ca
all have length > 2

@
@
@
@
@

@
@

@
@

@@

�
�
�
�
�
�
�
�
�
��

Then this metric is smooth on M and using
∫ 1/2

1/4 ϕ(t) dt = 2 it is not hard to
check that for any a > 0 the length of the timelike curve ca : [a/4, a/2] →M

given by ca(t) := (a, t) has Lorentzian length L(ca) =
∫ a/2
a/4 Φ(a, t) dt =

2+a/4. Let g0 = dx2−dy2 be the standard flat Lorentzian metric on M and
let W be the open wedge W := {(x, y) : x > 0, y > 0, x/4 < y < x/2}. Then
g = g0 outside of W . If F := I+(W ) \W = {(x, y) : y > 0,−y < x ≤ y/2}
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then, using that the segments ca all have Lorentzian length greater than 2,
we see that

τ(x, y) > 2 for all (x, y) ∈ F.

But for (x, y) 6∈ I+(W ) the existence time of (x, y) is the distance of (x, y)
from the x-axis in the usual metric g0, that is

τ(x, y) = y for all (x, y) ∈M \ I+(W ).

This implies that τ is discontinuous at each point of the segment {(x, y) :
−2 < x < 0, y = −x}. But the spacetime (M,g) is globally hyperbolic and
has finite existence times.

4.2. Non-strongly causal spacetimes with τ finite valued. Consider
the well-known example of a spacetime which is causal but not strongly
causal (cf. [9, p 193 Figure 38]). In this example, which is a cylinder with
slits, it is easily verified that τ is finite valued.

If we are willing to drop the requirement that the metric of (M,g) is
smooth, but only of class C1 then there is an example of a Lorentzian met-
ric on a cylinder that has τ finite valued, but which has a closed causal
curve (which turns out to be a null geodesic). This example, which we now
describe, is used in the next subsection to construct a spacetime with a non-
regular τ such that τ → 0 along all past inextendible timelike geodesics. Let
the circle S1 (which we think of as R modulo 2π) have coordinate x and for
any α > 0 define a metric on the space M := S1 ×R by

g := dxdt + |t|2α dx2 = dx(dt + |t|2α dx).

At each point the null directions are defined by dx = 0 and dt+ |t|2αdx = 0.
If the direction of ∂/∂t is used as the direction of increasing time then the
only closed causal curve is the curve {t = 0}.

� t = 0� t = 0

� t = −1

Asymptote

to t = 0.�
�	

6�

Xy6

Pi6

HY6

Xy6

Pi6

HY6

A past inextendible causal curve will either diverge along the cylinder to
t = −∞ or be asymptotic to the the null geodesic {t = 0} as in the figure.
We now show that any past inextendible causal curve asymptotic to {t = 0}
starting at (x0, t0) has length bounded just in terms of (x0, t0). In doing
this it is convenient to work on the universal cover of the cylinder, that is
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R2. And in doing the preliminary part of the calculation it is no harder to
work with a slightly more general class of metrics. Let f(x) be any smooth
positive function defined on the real line (in our example f(x) ≡ 1) and let
ϕ(t) be a C1 function so that t = 0 is the only zero of ϕ (in our example
ϕ(t) = |t|α) again defined on the real line. As t = 0 is the only zero of ϕ
it does not change sign on (0,∞) and we assume that ϕ(t) > 0 on (0,∞).
Define a Lorentzian metric on R2 by

g0 = dxdt + ϕ(t)2f(x)2 dx2 = dx(dt + ϕ(t)2f(x)2 dx)

and use the time orientation so that ∂/∂t points to the future. At each point
the null directions are defined by dx = 0 and dt + ϕ(t)2f(x)2 dx = 0. From
this it follows that {t = 0} is a null geodesic and that every past inextendible
causal curve c either is divergent with t→ −∞ along c or c remains in the
closed upper half plane defined by t ≥ 0 and c is asymptotic to the null
geodesic {t = 0} in such a way that x is monotone increasing along c.

Now let c be a past inextendible causal curve starting at the point (x0, t0)
and so that c is asymptotic to the null geodesic {t = 0}. Then c has a
parameterization of the form c(t) = (x(t), t) defined on (0, t0]. As this curve
is causal we have (using the notation ẋ = dx/dt),

0 ≥ g0(c′(t), c′(t)) = ẋ + ϕ(t)2f(x)2ẋ2

=
(

ẋϕ(t)f(x) +
1

2ϕ(t)f(x)

)2

− 1
4ϕ(t)2f(x)2

≥ −1
4ϕ(t)2f(x)2

,

and thus,

|ẋ + ϕ(t)2f(x)2ẋ2| ≤ 1
4ϕ(t)2f(x)2

.(4.1)

As c is asymptotic to {t = 0} it follows that t ≥ 0 and thus also ϕ(t) ≥ 0
along c. Thus the Lorentzian length of c satisfies

L(c) =
∫ t0

0

√
ẋ + ϕ(t)2f(x)2ẋ2 dt ≤

∫ t0

0

dt

2ϕ(t)f(x(t))

where the inequality follows from using the bound in (4.1). Now letting
ϕ(t) = |t|α with 0 < α < 1 and f(x) ≡ 1 then this leads to the bound
L(c) ≤ t1−α

0 /(2(1 − α)) as required.
Now if we let M := {(x, t) ∈ S1 ×R : t > −1} then the bound on the

length of curves asymptotic to {t = 0} just given implies that if 0 < α < 1
and M has the metric g = dxdt + |t|2α dx2 then (M,g) has τ finite valued,
but τ does not go to zero along the inextendible causal curves asymptotic
to {t = 0}. It is worth noting that in this example τ is continuous.

We know of no example where τ is finite, there are closed causal curves,
and the metric is smooth.
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4.3. A non-regular τ going to zero along all past inextendible causal
geodesics. The definition of τ being regular requires that τ go to zero
along all past inextendible causal curves. It is natural to ask if this can
be weakened to only requiring that τ go to zero along all past inextendible
causal geodesics. Here we give an example to show that this is not the case.
Like the example just given the metric in this example is of class C1 but not
C2.

First let (M2, g2) = (S1×(−1,∞), dxdt+|t|2αdx2) be the two dimensional
example just given (so that 0 < α < 1) and set

f(y) = ey
2 − 1.

Note that f(0) = 0 and f(y) > 0 for y 6= 0. Let M := {(x, y, t) ∈ S1×R×R :
t > −1} with the metric

g := dy2 + e2y(dxdt + (|t|2α + f(y))dx2).

Then the two dimensional submanifold defined by y = 0 is isometric to
(M2, g2). Moreover this submanifold is totally umbilic in (M,g) and so no
curve in (M2, g2) can be a geodesic in (M,g). Let η be the null geodesic
defined by {t = 0, y = 0}. The following is easy to verify.

Lemma 4.1. Let c be a past inextendible causal curve in (M,g). Then one
of the following holds:

1. t → −1 along c and c runs off of the “bottom” of M (that is the part
of the boundary defined by t = −1).

2. t → 0 along c and c is asymptotic to the closed null curve η. Neither
η or any curve asymptotic to it are geodesics.

Harder to show is:

Lemma 4.2. Let c be a past inextendible curve starting at the point (x0, y0, t0)
which is asymptotic to the null curve η. Then there is a finite upper bound
on the length of c only depending on t0.

Proof. Analogous to what was done in the last example, there is a parame-
terization of c of the form c(t) = (x(t), y(t), t) with t ∈ (0, t0]. As c is causal
g(c′(t), c′(t)) ≤ 0 which implies,

0 ≥ g(c′(t), c′(t)) = ẏ2 + e2y
(
ẋ + (|t|2α + f(y))ẋ2

)
= ẏ2 + e2y

(
1

2
√
|t|2α + f(y)

+
√
|t|2α + f(y) ẋ

)2

− e2y

4(|t|2α + f(y))

≥ − e2y

4(|t|2α + f(y))

and thus, √
|g(c′(t), c′(t))| ≤ ey

2
√
|t|2α + f(y)

.
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If y ≤ 3 then,

ey

2
√
|t|2α + f(y)

≤ e3

2
√
|t|2α

=
e3

2|t|α ≤
12
|t|α .

If y ≥ 3 then ey ≤
√

ey
2 − 1 =

√
f(y) and so

ey

2
√
|t|2α + f(y)

≤ ey

2
√

f(y)
≤ 1

2
.

Putting these together we have,√
|g(c′(t), c′(t))| ≤ max

(
12
|t|α ,

1
2

)
,

which implies,

L(c) =
∫ t0

0

√
|g(c′(t), c′(t))| dt ≤

∫ t0

0
max

(
12
|t|α ,

1
2

)
dt,

which is finite as 0 < α < 1. This gives the required bound and completes
the proof of the lemma.

Therefore in the spacetime (M,g) all past inextendible curves c either
have t → −1 along c (in which case τ → 0 along c) or c is asymptotic to
the null curve η (in which case τ does not go to zero). As no geodesics
are asymptotic to η this gives the an example of a spacetime where τ → 0
along all inextendible causal geodesics, but which is not regular. It would
be interesting to know if there is a smooth example where this happens.

Acknowledgments. Joe Fu pointed out the relevance of the reference [3] to the
results of Section 3. Some comments of Jeeva Anandan were also useful in writing
the paper.
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