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Abstract. Suppose {fk(x)}∞k=−∞ is a sequence of functions on R
n with ∆fk =

fk+1 (where ∆ denotes the Laplacian) that satisfies the growth condition: |fk(x)| ≤
Mk(1 + |x|)a where a ≥ 0 and the constants have sublinear growth

Mk
k
→ 0 as k →

±∞. Then ∆f0 = −f0. This characterizes eigenfunctions f of ∆ with polynomial
growth in terms of the size of the powers ∆kf , −∞ < k < ∞. It also generalizes
results of Roe (where a = 0, Mk = M , and n = 1) and Strichartz (where a = 0,
Mk = M , for n). The analogue holds for formally self-adjoint constant coefficient
linear partial differential operators on R

n .

1. Introduction

Let ∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

be the Laplacian operator on Rn. Recently Strichartz

[8] has given a characterization of the bounded solutions of ∆f = −f in terms
of bounds on the iterates ∆kf , where k ∈ Z; more precisely, if 〈fk〉∞k=−∞ is a
doubly infinite sequence of functions on Rn with ∆fk = fk+1 and |fk(x)| ≤M , for
some M , then ∆f0 = −f0. If n = 1, this is Roe’s theorem [6]: If 〈fk〉∞k=−∞ is a

sequence of real-valued functions with
d

dx
(fk(x)) = fk+1(x) and |fk(x)| ≤M , then

f0(x) = A sin (x + α). (See also the paper by Burkill [2] and and the paper [3] for
generalizations of Roe’s theorem.)

This does not characterize all solutions of ∆f = −f on Rn because many are
unbounded. For example, let Pj be the vector space of all complex-valued poly-
nomials in x and y of degree at most j. For reasons of dimension the linear map
p 7→ pxx + pyy + 2ipx from Pj to Pj−1 has nontrivial kernel. Let p be a solution of
degree j to pxx + pyy + 2ipx = 0. Then u(x, y) = p(x, y)eix satisfies ∆u = −u and
has polynomial growth at infinity. In Fourier analysis the functions with polyno-
mial growth are interesting because they are exactly the ones that can be viewed as
tempered distributions (i.e., as elements of the dual of the space S(Rn) of rapidly
decreasing functions (see [4], Chapter 1)). As such they have Fourier transforms
that are also tempered distributions. The following gives a characterization of so-
lutions to ∆f = −f of (at most) polynomial growth in terms bounds on the powers
∆kf for −∞ < k <∞.
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Theorem 1. Let a ≥ 0 and let 〈fk〉∞−∞ be a sequence of complex-valued functions
on Rn that satisfy

∆fk = fk+1

and
|fk(x)| ≤Mk(1 + |x|)a

where the constants Mk have sublinear growth:

(1.1) lim
k→∞

Mk

k
= lim
k→∞

M−k
k

= 0

Then ∆f0 = −f0.

Conversely if f is of polynomial growth |f(x)| ≤M(1 + |x|)a and satisfies ∆f =
−f , then fk = ∆kf = (−1)kf satisfies |fk(x)| ≤M(1+ |x|)a. The growth condition
(1.1) is as weak as possible if polynomial growth of the functions is to be allowed.

For example (in one dimension) if fk(x) = (−1)k(x − 2ki)eix then
d2

dx2
fk = fk+1

and |fk(x)| ≤ (1 + 2|k|)(1 + |x|) but
d2

dx2
f0 6= −f0. Even in the one dimensional

case this gives the strengthening of Roe’s theorem due to Burkill [2]: If 〈fk〉∞−∞
satisfies f ′k(x) = fk+1(x) and |fk(x)| ≤M(1 + |x|)a, then f0(x) = A sin (x + α).

In section 2 we extend Theorem 1 to any formally self-adjoint constant-coefficient
differential operator. The proof has the flavor of Roe’s original proof — using
the growth conditions to show that the support of the Fourier transform of f0 is
contained in the unit sphere — but concluding that f0 is an eigenfunction requires
first showing that f0 is a generalized eigenfunction of ∆. A nonzero function f is
a generalized eigenfunction of ∆ with eigenfunction λ if and only if (∆− λ)Nf = 0
for some N ≥ 1. In one dimension the generalized eigenfunctions of ∆ = d2

dx2 were
characterized in [3] and [5]. In Rn the result is

Theorem 2. If in Theorem 1 the sublinear growth condition (1.1) is replaced by
the subexponential growth condition

lim
k→∞

Mk

(1 + ε)k
= lim

k→∞

M−k
(1 + ε)k

= 0,

for all ε > 0, then f0 is a generalized eigenfunction of ∆ with eigenvalue λ = −1.

We shall extend this to all formally self-adjoint constant-coefficient differential
operators in section 2 (see Theorem 4.). Although the following is well known to
experts, it seems to be interesting enough to record here.

Corollary. A smooth function of polynomial growth is a generalized eigenfunction
of ∆ with eigenfunction −1 if and only if the support of its Fourier transform is
contained in the unit sphere {ξ : |ξ| = 1}.

Finally, we note that for n ≥ 2 there are many eigenfunctions of ∆ than have
greater than polynomial growth. For example (when n = 2)

f(x, y) = e2ix+
√

3y
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satisfies ∆f = −f and has exponential growth. However, it seems unlikely that it is
possible to characterize eigenfunctions of ∆ in the class of functions of exponential
growth: Let φ be any continuous function on [−δ, δ] and set

fk(x) =
∫ δ

−δ
(sin θ + i cos θ)2ke(sin θ+i cos θ)xφ(θ) dθ.

Then ∆fk =
d2fk
dx2

= fk+1 and

|fk(x)| ≤
∫ δ

−δ
ex sin θ|φ(θ)| dθ ≤Me(sin δ)|x|,

for all x. But f0 is not an eigenfunction.

2. The general results.

Let x1, . . . , xn be the usual coordinates in Rn and i2 = −1. Set

Dj =
1
i

∂

∂xj

The factor of 1
i is included to make the operator Dj formally self-adjoint. For a

multi-index α = (α1, . . . , αn) and ξ = (ξ1, . . . , ξn) ∈ Rn, let ξα = ξα1
1 · · · ξαnn and

Dα = Dα1
1 · · ·Dαn

n . Let
P (ξ) =

∑
α

aαξα

be a polynomial in ξ and let

(2.1) L = P (D) =
∑
α

aαDα

be the corresponding constant-coefficient linear partial differential operator. If P
is real-valued then L will be formally self-adjoint. We now state our main result.

Theorem 3. Suppose P (ξ) =
∑
α aαξα is real-valued and L = P (D). Let 〈fk〉∞−∞

be a sequence of complex-valued functions on Rn so that

Lfk = fk+1

and

(2.2) |fk(x)| ≤Mk(1 + |x|)a,

where 〈Mk〉∞−∞ satisfies the sublinear growth condition

(2.3) lim
k→∞

M|k|
k

= 0.
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Then f = f+ + f−, where Lf+ = f+ and Lf− = −f−. If 1 (or -1) is not in the
range of P then f+ = 0 (or f− = 0).

If P (ξ) = −|ξ|2 then L = ∆. Then f0 = f− which yields Theorem 1. For

operators such as the d’Alembertian � =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
p

− ∂2

∂x2
p+1

− · · · − ∂2

∂x2
n

,

we see that both f+ 6= 0 and f− 6= 0 are possible. (cf. Theorem 3.1 of [6]).
The theorem applies to a class of operators more general than differential oper-

ators. In S(Rn), the Fourier transform and its inverse are given by

f̂(ξ) =
1

(2π)
n
2

∫
e−iξ·xf(x) dx

and

(2.4) f̌(x) =
1

(2π)
n
2

∫
eix·ξf(ξ) dξ.

By duality these definitions extend to the space of tempered distributions; i.e., the
dual space S(Rn). Then, for the operator in (2.1), we have

(2.5) L̂f(ξ) = P (ξ)f̂(ξ).

This can be used to define an operator L on the space of tempered distributions
even when P (ξ) is not a polynomial. Such operators are called multiplier operators
or translation-invariant pseudo-differential operators. For example convolution op-
erators Lf = φ ∗ f are of this type. We note that for our result to hold it suffices
that P (ξ) be smooth and that (for each multi-index α) there be numbers C and N
with

|DαP (ξ)| ≤ C(1 + |ξ|)N .

Then L (defined by (2.5)) is a linear operator on the space of tempered distributions.
Although many such functions exist, for example P (ξ) = Ce−|ξ|

2
, the theorem is

most interesting when L is a differential operator.
To prove the theorem we first show that the support of f̂0 is contained in the

set {ξ : |P (ξ)| = 1}. Formally from (2.5) and the Fourier inversion formula (2.4)
we get

fk(x) = Lkf0(x) =
1

(2π)
n
2

∫
eix·ξP (ξ)kf̂0(ξ) dξ.

If this is to stay bounded (as k varies), the support of f̂0 must be contained in the
set {ξ : |P (ξ)| = 1}. More precisely, we have

Proposition (A). If a function f satisfies, for k = 0, 1, 2, . . .

|Lkf(x)| ≤Mk(1 + |x|)a,
where the constants Mk satisfy the subexponential growth condition

(2.6) lim
k→∞

Mk

(1 + ε)k
= 0,

for all ε > 0, then
spt(f̂) ⊆ {ξ : |P (ξ)| ≤ 1}.
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(B). If 〈fk〉0k=−∞ is a sequence of functions with Lfk = fk+1, for k ≤ −1,

|fk(x)| ≤Mk(1 + |x|)a,

and

lim
k→∞

M|k|
(1 + ε)k

= 0,

for all ε > 0, then
spt(f̂0) ⊆ {ξ : |P (ξ)| ≥ 1}.

Unlike in theorem 3 the function P can be complex valued and the proposition
will still hold. This proposition is very closely related to to the results of section
3 of Garbardo’s paper [3]. He shows this is related to the Paley-Wiener-Schwartz
theorem.

Lemma. Let Φ and φ be C∞-functions with φ compactly supported. Assume
|Φ(ξ)| ≤ r < 1, for all ξ ∈ spt(φ). For any sequence 〈Mk〉∞k=0 of constants sat-
isfying the subexponential growth condition (2.6) and, for any multi-index α,

lim
k→∞

Mk‖Dα(φΦk)‖L2 = 0.

Proof. By the product rule there are constants C(β, γ) ≥ 0 so that

‖Dα(φΦk)‖L2 =

∥∥∥∥∥∥
∑

β+γ=α

C(β, γ)DγφDβΦk

∥∥∥∥∥∥
L2

≤
∑

β+γ=α

C(β, γ)‖DγφDβΦk‖L2

Since spt(Dαφ) ⊆ spt(φ), we may assume |Φ(ξ)| ≤ r < 1 on the support of ψ =
Dγφ. It is (thus) enough to show:

lim
k→∞

Mk‖ψDβ(Φk)‖L2 = 0.

Assume k > |β| := β1 + · · ·+ βn. Writing Φk = Φ · · ·Φ and using the product
rule gives a sum with k|β| terms. Each term is a product of k factors, at least
k−|β| of which are Φ. The other factors are of the form DγΦ, where 0 ≤ |γ| ≤ |β|.
Setting

Ψβ(x) =
(

max
|γ|≤|β|

|DγΦ(x)|
)|β|

and using |Φ(x)| ≤ r on spt(ψ), we get

|ψDβ(Φk)| ≤ k|β||ψ(x)||Φ(x)|k−|β|Ψβ(x)

≤ k|β|rk−|β||ψ(x)|Ψβ(x).
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Thus
Mk‖ψDβ(Φ)k‖L2 ≤ ‖ψΨβ‖L2k

|β|Mkr
k−|β|.

The growth condition (2.6) implies that the right-hand side goes to zero as k →
∞. �

To prove part (A) of the proposition, it suffices to show 〈f̂ , φ〉 = 0 if φ ∈ C∞0 (Rn)
and spt(φ) ∩ {ξ : |P (ξ)| ≤ 1} = ∅. Since spt(φ) is compact, there is some r < 1 so
that 1

|P (ξ)| ≤ r, for all ξ ∈ spt(φ). Then

〈f̂ , φ〉 = 〈P kf̂ ,
φ

P k
〉

= 〈L̂kf,
φ

P k
〉

= 〈Lkf, (
φ

P k
)̂ 〉

Choose an integer m with 2m ≥ 2a + n + 1. A calculation, using the hypothesis of
the proposition and the Cauchy-Schwartz inequality, implies

|〈f̂ , φ〉| ≤
∫
|Lkf(x)||( φ

P k
)̂ | dx

≤Mk

∫
(1 + |x|)a

(1 + |x|2)m2 (1 + |x|2)m2 |( φ

P k
)̂ | dx

≤Mk

(∫
(1 + |x|)2a

(1 + |x|2)m dx

) 1
2
(∫

(1 + |x|2)m|( φ

P k
)̂ |2 dx

) 1
2

= MkC1(a, m, n)
(∫

(1 + |x|2)m|( φ

P k
)̂ |2 dx

) 1
2

.

By a standard estimate (cf. [4], Chapter 1), there is a constant C2(m, n) with(∫
(1 + |x|2)m|f̂(x)|2 dx

) 1
2

≤ C2

∑
|α|≤m

‖Dαf‖L2.

Using this in the above leads to

|〈f̂ , φ〉| ≤ C3(m, n, a)Mk

∑
|α|≤m

‖Dα(
φ

P k
)‖L2 .

By the lemma the right-hand side of this goes to zero as k →∞, and so 〈f̂ , φ〉 = 0.
This completes the proof of part (A); part (B) is similar. Let φ ∈ C∞0 (Rn) so that
spt(φ) ∩ {ξ : |P (ξ)| ≥ 1} = ∅. We shall show that 〈f̂0, φ〉 = 0. Then, for some
r < 1, the inequality |P (ξ)| ≤ r holds for all ξ in spt(φ). Thus

〈f̂0, φ〉 = 〈L̂kf−k, φ〉

= 〈P kf̂−k, φ〉

= 〈f−k, P̂ kφ〉.
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The rest follows as in part (A).
We now prove Theorem 3. We first assume that -1 is not a value of P (ξ), and

show that Lf0 = f0. Let S = {ξ : P (ξ) = 1}. That spt(f̂0) ⊆ S follows from the
growth conditions on the sequence 〈fk〉∞−∞, the proposition, and the assumption
that P (ξ) 6= −1 .

The topology on the space S(Rn) is defined by the seminorms

‖φ‖N,m = sup
x

∑
|α|≤N

(1 + |x|)m|Dαφ(x)|.

Therefore, since f̂0 is a continuous linear functional on S(Rn), there is a constant
C and integers m and N so that

(2.7) |〈f̂0, φ〉| ≤ C‖φ‖N,m,

for all φ ∈ S(Rn). Therefore (as a distribution) f̂0 is of order ≤ N .

Claim. For this N ,

(2.8) (P − 1)N+1f̂0 = 0.

To simplify notation set h := (P − 1). Then we need to show, for any compactly
supported C∞ function φ, that

〈hN+1f̂0, φ〉 := 〈f̂0, h
N+1φ〉 = 0.

Let g : R → [0, 1] be a C∞ function with g = 1 on [−1/2, 1/2] and g = 0 outside
(−1, 1). Set

gr(t) := g

(
t

r

)
.

Letting B = max{|g(k)(t)| : t ∈ [−1, 1], k ≤ N}, we have

(2.9) |g(k)
r (t)| ≤ B

rk
≤ B

|t|k ,

for all k ≤ N . Set
Hr = gr(h)hN+1φ.

Then Hr = hN+1φ in a neighborhood of {ξ : h(ξ) = 0} = {ξ : P (ξ) = 1} ⊇ spt f̂−0.
Thus by (2.7) we have

|〈f̂0, h
N+1φ〉| = |〈f̂0, Hr〉| ≤ C‖Hr‖N,m.

To verify (2.8), it suffices to demonstrate ‖Hr‖N,m → 0 as r → 0. Write Dk for
any Dα with |α| = k and (Dh)k for a product Dj1h · · ·Djkh of k first order partial
derivatives of h. Then (ignoring factors of i) and assuming k ≤ N

Dk(Hr) = Dk(gr(h)hN+1φ)
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is a sum of terms of the form

Tr(k1, . . . , kl+1) = g(k1)
r (h)(Dh)k1(Dk2h) · · · (Dklh)hN+1−k2−···−klDkl+1φ

where k1 + · · ·+ kl+1 = k. Since the support of φ is compact, there is a bound K
so that, for all x ∈ spt(φ),

(1 + |x|)m|Dαφ(x)| ≤ K and |Dαh(x)| ≤ K,

whenever |α| ≤ N . Since |h| ≤ r on the support of Hr, the inequality (2.9) implies
that on the support of Tr(k1, . . . , kl+1),

(1 + |x|)m|Tr(k1, . . . , kl+1)| ≤
B

|h|k1
|h|N+1−k2−···−klKKkl−1Kk1

= B|h|N+1−k+kl+1Kl+k1

≤ BKl+k1rN+1−k+kl+1 .

But k ≤ N so this goes to zero as r → 0. The sum defining ‖Hr‖N,m is a finite
sum of terms of of this type and so ‖Hr‖N,m → 0 as r → 0. This completes the
proof of the claim.

Inverting the Fourier transform in (2.8) yields that

(2.10) (L− 1)N+1f0 = 0.

This equation implies

span{f0, f1, f2, . . .} = span{f0, Lf0, L
2f0, . . .} = span{f0, . . . , L

Nf0}.

We shall now show that we can take N = 0 in (2.10). If not then (L − 1)f0 6= 0.
Let K be the largest positive integer so that (L−1)Kf0 6= 0. Clearly K ≤ N . Thus

f := (L− 1)K−1f0 ∈ span{f0, . . . , fN}

will satisfy

(2.11) (L− 1)2f = 0 and (L− 1)f 6= 0.

Write
f = a0f0 + · · ·+ aNfN ,

for constants a0, . . . , aN . Then

Lkf = a0fk + · · ·+ aNfN+k.

If Ck = |a0|Mk + · · ·+ |aN |Mk+N , then this and (2.2) imply

(2.12) |(Lkf)(x)| ≤ Ck(1 + |x|)a.
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By (2.3) these satisfy the sublinear growth condition

(2.13) lim
k→∞

Ck
k

= 0.

An induction using (2.11) implies for k ≥ 2 that

Lkf = kLf − (k − 1)f = k(L− 1)f + f.

|((L− 1)f)(x)| ≤ 1
k
|(Lkf)(x)|+ |f(x)|

k
≤ Ck

k
(1 + |x|)a +

|f(x)|
k

Letting k→∞ and using (2.13) implies (L− 1)f = 0. But this contradicts (2.11).
Consequently, N = 0 in (2.10). This completes the proof in the case that −1 is not
in the range of P .

In the case that +1 is not in the range of P we apply the same argument to −L to
conclude Lf0 = −f0. In the general case, let L0 = L2. Then L̂0f(ξ) = P (ξ)2f̂(ξ).
L0f2k = f2(k+1) and P (ξ)2 6= −1. Thus we can (as before) conclude, for the
sequence 〈f2k〉∞k=−∞ that

L0f0 = L2f0 = f0.

Set f+ = 1
2 (f0 + Lf0) and f− = 1

2 (f0 − Lf0). Then f = f+ + f−, Lf+ = f+, and
Lf− = −f−. This completes the proof of Theorem 3.

Theorem 4. If, in Theorem 3, we replace (2.3) with

(2.14) lim
k→∞

M|k|
(1 + ε)k

= 0,

for all k > 0, then the span of 〈fk〉 is finite dimensional. Moreover, f0 = f+ + f−,
where, for some integer N , (L − 1)Nf+ = 0 and (L + 1)Nf− = 0. Thus f+ (or
f−) is a generalized eigenfunction of L with eigenvalue +1 (or -1).

The proof will be based on the following result from linear algebra.

Lemma. Let X be a finite dimensional complex vector space, and let A : X → X
be a linear map with eigenvalues λ1, . . . , λp. Then X = X1 ⊕ · · · ⊕ Xp, where
Xj = ker((A− λj)N) and N = dim X.

This can be deduced from the Jordan normal form. (cf. [1], Chapter 10.)
We first prove Theorem 4 under the assumption that P (ξ) 6= −1. Using the

growth condition (2.14) and the proposition, we may still conclude that spt(f̂0) ⊆
S = {ξ : P (ξ) = 1}. But then, as before, we can conclude that (2.10) holds. But
this is enough to complete the proof in this case. A similar argument shows that if
P (ξ) 6= 1, then (L + 1)Nf0 = 0.

In the general case we again let L0 = L2 and P0 = P 2. Then P0(ξ) 6= −1 and
the span of 〈f2k〉 is finite dimensional. The map L takes the span of 〈f2k〉 onto the
span of 〈f2k+1〉. Thus X is finite dimensional. Any f ∈ X will have spt(f) inside
the set defined by P (ξ) = ±1. From this it is not hard to show the only possible
eigenvalues of L restricted to X are +1 and −1. The result now follows from the
last lemma.
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