
CONSTRUCTING COMPLETE PROJECTIVELY FLAT
CONNECTIONS

RALPH HOWARD

Abstract. On any open subset U of the Euclidean space Rn there is
complete torsion free connection whose geodesics are reparameteriza-
tions of the intersections of the straight lines of Rn with U . For any
positive integer m there is a complete projectively flat torsion free con-
nection on the two dimensional torus such that for any point p there is
another point q so that any broken geodesic from p to q has at least m
breaks. This example is also homogeneous with respect to a transitive
Lie group action.

1. Introduction.

The propose of this note is to tie up a couple of loose ends in the classical
theory of linear connections. First, in [6, p. 395], Spivak rises the question
of if, on a compact manifold with complete connection, any two points can
be joined by a geodesic. The answer is “no” even when the connection is
projectively flat and homogeneous:

Theorem 1. Let T 2 be the two dimensional torus. Then for any positive
integer m there is a complete torsion free projectively flat connection, ∇,
on T 2 such that for any point p ∈ T 2 there is a point q ∈ T 2 with the
property that any broken ∇-geodesic between p and q has at least m breaks.
Moreover if T 2 is viewed as a Lie group in the usual manner, this connection
is invariant under translations by elements of T 2.

Another natural question is: For a connected open subset, U , of the
Euclidean space, Rn, is the usual flat connection restricted to U projectively
equivalent to complete torsion free connection on U? This is true and is
a special case of a more general result about connections on incomplete
Riemannian manifolds.

Theorem 2. Let (M, g) be a not necessarily complete Riemannian mani-
fold. Then there is a complete torsion free connection on M that is projective
with the metric connection on M . In particular any connected open subset
M of the Euclidean space, Rn, has a complete torsion free connection ∇ such
that the geodesics of ∇ are reparameterizations of straight line segments of
M ⊆ Rn.
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The main tool is Proposition 2.2 which gives an elementary method of
constructing complete torsion free connections that are projective with a
given torsion free connection.

1.1. Definitions, notation and preliminaries. All of our manifolds are
smooth (i.e. C∞), Hausdorff, paracompact, and connected. The tangent
bundle of M is denoted by T (M). If f : M → N is a smoooth map between
manifolds, then the derivative map is f∗x : T (M)x → T (M)f(x).

We will use the term connection to stand for a linear connection on the
tangent bundle (also called a Koszul connection) as defined in [4, Prop. 2.8
p. 123 and Prop. 7.5 p. 143] or [6, p. 241]. Let c : (a, b) → M be a smooth
immersed curve. Then c is a is a ∇-geodesic iff ∇c′(t)c′(t) = 0. The curve is a
∇-pregeodesic iff there is a reparameterization of c that is a geodesic. This is
equivalent to ∇c′(t)c′(t) = α(t)c′(t) for some smooth function α : (a, b)→ R.
Given a pregeodesic c : (a, b)→M then an affine parameterization of c is a
reparameterization σ : (a1, b1)→ (a, b) so that c ◦ σ is a geodesic.

If f : M → N is a local diffeomorphism and ∇ is a connection on N
then the pull back connection is the connection f∗∇ defined on M by
f∗
(
(f∗∇)XY

)
= ∇f∗Xf∗Y . The connection ∇ on M is homogeneous on

M iff there is a transitive action on M by a Lie group, G, so that ϕ∗∇ = ∇
for all ϕ ∈ G.

Two connections ∇ and ∇ on M are projective iff all geodesics of ∇ are
pregeodesics of ∇. This is an equivalence relation on the set of connections
on M . If ∇i is a connection on Mi for i = 1, 2 then a map f : M1 → M2 is
a projective map iff it is a local diffeomorphism and maps ∇1-geodesics to
∇2-pregeodesics. This is equivalent to the connections ∇1 and f∗∇2 on M1

being projective. The connection ∇ is projectively flat iff every point p ∈M
has an open neighborhood U and projective map f : U → Rn where Rn has
its standard flat connection. Or what, is the same thing for every geodesic
c of M the image f ◦ c is a reparameterization of interval in a line of Rn.
There is a well known criterion, due to Hermann Weyl, for two connections
to be projective. A proof can be found in [6, Cor 19 p. 277].

1.1. Proposition (H. Weyl). Two connections ∇ and ∇ on a manifold are
projective and have the same torsion tensor if and only if there is a smooth
one form ω so that the connections are related by

∇XY = ∇XY + ω(X)Y + ω(Y )X.(1.1)

Therefore if this relation holds and ∇ is torsion free, then so is ∇.

Only the easy direction of this result will be used. That is if ∇ is torsion
free and ∇ is given by (1.1) then ∇ is torsion free and projective with
∇. Note in this case if c : (a, b) → M is a ∇-geodesic then (1.1) implies
∇c′(t)c′(t) = 2ω(c′(t))c′(t) and therefore c is a ∇-pregeodesic. That ∇ is
torsion free is equally as elementary.

The connection∇ is complete iff every∇-geodesic defined on a subinterval
of R extends to a ∇-geodesic defined on all of R. Letting exp∇ be the
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exponential of ∇ (cf. [4, p. 140]), then ∇ is easily seen to be complete if
and only if the domain of exp∇ is all of T (M). A curve c : [0, b) → M is
an inextendible ∇-geodesic ray iff c is a ∇-geodesic and has no extension to
[0, b + ε) as a ∇-geodesic for any ε > 0. Therefore when b = ∞, so that
[0,∞) is the domain of c, c is always inextendible.

1.2. Proposition. Let ∇ be a torsion free connection on the manifold M
and let ∇ be torsion free and projective with ∇. Then ∇ is complete if and
only if every inextendible ∇-geodesic ray c : [0, b) → M has an orientation
preserving reparameterization σ : [0,∞) → [0, b) such that c ◦ σ is a ∇-
geodesic.

Proof. First assume that the reparameterization condition holds and we will
show that ∇ is complete by showing the domain of the exponential map of
∇ is all of T (M). Let v ∈ T (M). As 0 is in the domain of exp∇, as-
sume v 6= 0. Let c : [0, b) → M be the inextendible ∇-geodesic ray with
c′(0) = v. By assumption there is an orientation preserving reparameter-
ization σ : [0,∞) → [0, b) such that c̃ := c ◦ σ is a ∇-geodesic. As the
reparameterization is orientation preserving c̃′(0) = λc′(0) = v for some
positive constant λ. Then ĉ : [0,∞) → M given by ĉ(t) := c̃(t/λ) is also a
∇-geodesic and ĉ′(0) = v. From the definition of exp∇ we have for all t ≥ 0
that tv is in the domain of exp∇ and exp∇(tv) = ĉ(t). In particular letting
t = 1 shows that v is in the domain of exp∇ and completes the proof that
∇ is complete.

Conversely assume ∇ is complete and let c : [0, b)→M be an inextendible
∇-geodesic ray. Assume, toward a contradiction, there is an orientation
preserving reparameterization σ : [0, b1) → [0, b) with b1 < ∞ and so that
c̃ = c ◦ σ is a ∇ geodesic. Then, as ∇ is complete, the curve c̃ extends to
a ∇-geodesic ĉ : [0,∞) → M and therefore is a proper extension of c̃. But
then ĉ can be reparameterized as a ∇-geodesic that extends c, contradicting
that c was an inextendible ∇-geodesic ray and completing the proof.

2. Constructing complete projectively equivalent connections

on incomplete Riemannian manifolds.

We first observe that for some choices of the one form ω in Weyl’s re-
sult 1.1 there is an explicit formula for reparameterizing a ∇-geodesic as a
∇-geodesic.

2.1. Lemma. Let ∇ be a smooth manifold and let ∇ be a connection on
M and let v : M → (0,∞) be a smooth positive function. Define a new
connection by

∇XY = ∇XY +
1
2v
dv(X)Y +

1
2v
dv(Y )X(2.1)

Let c : (a, b) → M be a ∇-geodesic and σ : (α, β) → (a, b) an orientation
preserving reparameterization of c so that c̃ = c ◦ σ is a ∇-geodesic. Then
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the inverse of σ, σ−1 : (a, b)→ (α, β), is given by

σ−1(t) = C0 + C1

∫ t

t0

v(c(τ)) dτ(2.2)

where t0 ∈ (a, b), C0, C1 ∈ R and C1 > 0.

Proof. Let t be the natural coordinate on (a, b) and s the coordinate on
(α, β) related to t by t = σ(s). Our goal is to find s = s(t) = σ−1(t). Note
dt = σ′(s) ds so that σ′(s) = dt

ds . Therefore

c̃′(s) = (c ◦ σ)′(s) = σ′(s)c′(σ(s)) =
dt

ds

dc

dt

∣∣∣∣
t=σ(s)

.

Because of this, and because it makes applications of the chain rule easier
to follow, we will denote c̃′(s) as dc

ds and think of s as “the affine parameter
for ∇ along c”. We will abuse notation a bit and write v(t) = v(c(t)). As
∇ dc

dt

dc
dt = ∇c′(t)c′(t) = 0, we have using (2.1) that ∇ dc

ds

dc
dt = dt

ds∇ dc
dt

dc
dt = 0,

and dv
(
dc
ds

)
= dv

ds

0 = ∇ dc
ds

dc

ds
= ∇ dc

ds

dc

ds
+

1
v

(dv
ds

)dc
ds

= ∇ dc
ds

(
dt

ds

dc

dt

)
+
d(ln v)
ds

dc

ds

=
d2t

ds2

dc

dt
+
dt

ds
∇ dc

ds

dc

dt
+
d(ln v)
ds

dc

ds
=
d2t

ds2

dc

dt
+
d(ln v)
ds

dt

ds

dc

dt

=
(
dt

ds

)((
dt

ds

)−1 d2t

ds2
+
d(ln v)
ds

)
dc

dt
=
(
dt

ds

)(
d

ds
ln
(
v
dt

ds

))
dc

dt
.

This shows that ln
(
v dtds
)
, and therefore also v dtds , is constant. As v, dtds > 0

(the reparmaterization is orientation preserving implies dt
ds = σ′(s) > 0)

there is a constant C1 > 0 such that

v(t)
dt

ds
=

1
C1
.

This differential equation can be integrated to give s(t) = σ−1(t) as a func-
tion of t and the result is the required formula (2.2).

2.2. Proposition. Let M be a smooth manifold with smooth torsion free
connection ∇ and let v : M → (0,∞) be a smooth positive function. Then
the connection ∇ defined by (2.1) is a torsion free connection projective
with ∇ and ∇ is complete if and only if for each inextendible ∇-geodesic ray
c : [0, b)→M the growth condition∫ b

0
v(c(t)) dt =∞.(2.3)

holds.
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Proof. That ∇ is projective to ∇ and torsion free follows from Proposi-
tion 1.1 using ω = (2v)−1dv. So all that is left to check is that ∇ is complete
if and only if (2.3) holds along inextendible ∇-geodesic rays.

First assume that the growth condition (2.3) holds along inextendible ∇-
geodesic rays. Let c : [0, b) → M be be such a ray and let σ : [0, β) → [0, b)
be an orientation preserving reparameterization of c so that c̃ = c ◦ σ is a
∇-geodesic. We claim that β =∞. By Lemma 2.1 σ−1(t) is given by

σ−1(t) = C1

∫ t

0
v(c(τ)) dτ(2.4)

with C1 > 0. But then the growth condition (2.3) implies β = C1

∫ b
0 v(c(τ)) dτ =

∞. As c was any inextendible ∇-geodesic ray, the completeness of ∇ follows
from Proposition 1.2.

Conversely assume ∇ is complete and let c : [0, b) → M be an inex-
tendible ∇-geodesic ray. Then by Proposition 1.2 there is an orientation
preserving reparameterization σ : [0,∞) → [0, b) so that c̃ = c ◦ σ is a ∇-
geodesic. Again Lemma 2.1 implies that σ−1 is given by (2.4). Therefore
C1

∫ b
0 v(c(τ)) dτ = limt↑b σ

−1(t) = ∞ which shows that the condition (2.3)
holds along all inextendible ∇-geodesic rays.

For a general connection, ∇, it is not clear how to choose a positive smooth
function v so that the growth condition (2.3) holds along all inextendible
∇-geodesics rays. However when ∇ is the metric connection of a Riemann-
ian metric the behavior of geodesics is closely related to the properties of
the distance function of the metric and this can be exploited to find an
appropriate v.

Proof of Theorem 2. If (M, g) is complete as a metric space, then the metric
connection ∇ is complete (cf. [7, p. 462]) and taking ∇ = ∇ completes the
proof. Therefore assume that M is incomplete. Let M be the completion
of M as a metric space and let ∂M = M rM be the boundary of M in M .
For x ∈ M let δ(x) be the distance of x from ∂M . A standard partition of
unity argument shows that there is a smooth function v on M so that

v(x) ≥ max{1, 1/δ(x)}
for all x ∈ M . Let c : [0, b) → M be an inextendible ∇-geodesic ray. There
are two cases: b = ∞ and b < ∞. In the case b = ∞, then from the
definition of v we have v(c(t)) ≥ 1 and so

∫ b
0 v(c(t)) dt ≥

∫∞
0 1 dt = ∞ and

the condition (2.3) holds in this case.
In the second case, where b <∞, the length of the velocity vector c′(t) is

constant and thus there is a constant C > 0 so that for all t1, t2 ∈ [0, b) the
distance d(c(t1), c(t2)) between c(t1) and c(t2) satisfies

d(c(t1), c(t2)) ≤ C|t2 − t1|.
Therefore in the completion M the limit p = limt↑b c(t) will exist and from
the definition of δ as the distance from the boundary ∂M the estimate
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δ(c(t)) ≤ d(c(t), p) ≤ C|b− t| holds. This yields∫ b

0
v(c(t)) dt ≥

∫ b

0

dt

δ(c(t))
≥
∫ b

0

dt

C|b− t|
=∞.

Thus (2.3) holds in all cases and therefore ∇ is complete by Proposition 2.2

2.3. Remark. In a complete Riemannian manifold any two points can be
joined by a geodesic. For complete connections this is no longer true and
Hicks [3] has constructed an example of a complete connection on a mani-
fold, M , so that for any positive integer m there are two points of M that
not only can not be connected by a geodesic, but any broken geodesic be-
tween the points must have at least m breaks. For open sets U in R2 the
behavior of geodesics is easy to visualize and, using Theorem 2, it is trivial
to generate such examples that are also projectively flat. For example, set

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
Figure 1. Let U ⊂ R2 be the compliment of the pictured rays. Then
there a complete torsion free connection on U whose geodesics are the
restriction of the line segments of R2 to U .

K :=
⋃∞
k=−∞{2k} × [−1,∞) ∪

⋃∞
k=−∞{2k + 1} × (−∞, 1], which is a union

of rays parallel to the y-axis, and let U = R2
r K (See Figure 1). Use

Theorem 1 to put a complete projectively flat connection on U that has line
segments as its geodesics and polygonal paths as its broken geodesics. With
this connection U has the property that any broken geodesic between the
points (1/2, 0) and (m+ 1/2, 0) must have at least m+ 1 corners.

3. Homogeneous examples

Before specializing to two dimensions for the proof of Theorem 1 we do
the preliminary calculations in arbitrary dimensions. This leads to higher
dimensional examples.

Let ∇ be the standard flat connection on Rn and let U := Rn
r{0} be Rn

with the origin deleted. Then any nonsingular linear map A : Rn → Rn pre-
serves the connection ∇ and therefore the general linear group GL(n,R) has
a transitive action on U that preserves ∇. Let O(n) be the orthogonal group
of the standard inner product, 〈 , 〉, on Rn and let R+ be the multiplicative
group of positive real numbers. Let G be the product group G = O(n)×R+.
View G as a subgroup of GL(n,R) by letting it act on Rn by (P, c)x = cPx.
This action of G is transitive on U and preserves the connection ∇. Let
v : U → (0,∞) be the function v(x) = 1/‖x‖. Then, if g = (P, c) ∈ G, the
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pull back of v by g is (g∗v)(x) = v(gx) = ‖cPx‖−1 = c−1‖x‖−1 = c−1v(x)
as P ∈ O(n) so that ‖Px‖ = ‖x‖. The pull back of the one form dv/v is

g∗
(
dv

v

)
=
g∗dv

g∗v
=
d(g∗v)
g∗v

=
d(c−1v)
c−1v

=
dv

v

and so dv/v is invariant under the action of G. Therefore if we define a
connection ∇ on U by

∇XY = ∇XY +∇XY +
1
2v
(
dv(X)Y + dv(Y )X

)
with v(x) =

1
‖x‖

(3.1)

then ∇ will be invariant under the action of the group G. The inextendible
∇-geodesic rays in U are the curves c : [0, b) → U given by c(t) = x0 + tx1

where x1 6= 0 and either b = ∞ or c(b) := limt↑b c(t) = 0. In either case it
is easy to check that

∫ b
0 v(c(t)) dt =∞ and therefore by Proposition 2.2 the

connection ∇ is complete and projectively flat on U .
To get compact examples let λ > 1 and let Γ be the cyclic subgroup of

G given by Γ := {(I, λk) : k ∈ Z} where Z is the integers. The action of
Γ on U is fixed point free and properly discontinuous and therefore if M is
defined to be the quotient space M := Γ\U then M is a smooth manifold
(cf. [1, Thm 8.3 p. 97]) and it is not hard to see that M is diffeomorphic to
Sn−1 × S1. Let π : U →M be the natural projection. Then π is a covering
map and Γ is the group of deck transformations. As the connection ∇ is
invariant under these transformations it follows there is a unique connection
∇M on M so that π∗∇M = ∇. The ∇M -geodesics on M are π ◦ c where c
is a ∇-geodesic on U . As the ∇-geodesics in U are complete, it follows that
the ∇M geodesics in M are complete. Also this implies that π is a projective
map and therefore ∇M is projectively flat on M .

For any g = (P, c) ∈ G and a = (I, λk) ∈ Γ we have ag = ga. As
for x ∈ U the image π(x) is the orbit π(x) = Γx we see for g ∈ Γ that
π(gx) = Γgx = gΓx = gπ(x). Therefore there is a well defined action of
G on M given by gπ(x) = π(gx). This action is transitive on M as G is
transitive on U .

We now claim that if x ∈ U and y = −αx for α > 0, then there is no
geodesic from π(x) to π(y) in M . Assume, toward a contradiction, that
there is a geodesic c : [a, b] → M with c(a) = π(x) and c(b) = π(y). Then
there is is a unique geodesic ĉ : [a, b] → U with ĉ(a) = x and π ◦ ĉ = c.
Therefore π(ĉ(b)) = c(b) = π(y) which implies that ĉ(b) = ay for some
a ∈ Γ. From the definition of Γ this implies that for some k ∈ Z that
ĉ(b) = λky = −λkαx. But as ∇ is projective with the flat metric ∇ the
geodesics segments of ∇ are reparameterizations of straight line segments
in U . But then ĉ is a reparameterization of a straight line segment of U
form ĉ(a) = x to ĉ(b) = −λkαx, which is impossible as λkα > 0 so that any
line segment connecting these points must pass through the origin, which
is not in U . This contradiction verifies our claim that there is no geodesic
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of M from π(x) to π(y). Letting α vary over the positive real numbers we
get uncountable many points π(y) that can not be connected to π(x) by
a geodesic. As every point p ∈ M is of the form p = π(x) this can be
summarized as:

3.1. Proposition. Let M = Γ\U and ∇M be the manifold and connection
just constructed. Then M is diffeomorphic to Sn−1×S1 and the connection
∇M on M is complete, projectively flat and with homogeneous with respect
to the group action of G on M . For any p ∈M there are uncountable many
points q that can not be connected to p by a ∇M -geodesic.

3.1. Proof of Theorem 1. In the case that n = 2 it is possible to be more
explicit. On U = R2

r {0} there are severals sets of coordinates that will
be convenient to use. First the standard Euclidean coordinates x and y.
With respect to these coordinates the standard flat connection ∇ is given
by ∇ ∂

∂x

∂
∂x = ∇ ∂

∂x

∂
∂y = ∇ ∂

∂y

∂
∂x = ∇ ∂

∂y

∂
∂y = 0.

The simply connected covering space, Û , of U is diffeomorphic to R2.
Using polar coordinates r, θ on Û (with (r, θ) ∈ (0,∞) × R) we have the
usual formula for the covering map: x = r cos θ and y = r sin θ. In polar
coordinates the connection is given by

∇ ∂
∂r

∂

∂r
= 0, ∇ ∂

∂r

∂

∂θ
= ∇ ∂

∂θ

∂

∂r
=

1
r

∂

∂θ
, ∇ ∂

∂θ

∂

∂θ
= −r ∂

∂r
.

(More precisely this is the pull back of the connection∇ to Û by the covering
map. We will still denote this connection by∇.) The function v = ‖(x, y)‖−1

used in the definition (3.1) of the connection ∇ is given in polar coordinates
a v = r−1. Then dv = −r−2dr. Using this in (3.1) gives

∇XY = ∇XY −
1
r

(dr(X)Y + dr(Y )X)

and therefore ∇ is given explictly in polar coordinates as

∇ ∂
∂r

∂

∂r
=
−1
r

∂

∂r
, ∇ ∂

∂r

∂

∂θ
= ∇ ∂

∂θ

∂

∂r
=

1
2r

∂

∂θ
, ∇ ∂

∂θ

∂

∂θ
= −r ∂

∂r
.

The formulas for ∇ simplify even farther if we replace the coordinate r on
Û by ρ related to r by r = eρ. The vector field ∂

∂ρ is related to the vector
field ∂

∂r by ∂
∂ρ = r ∂∂r and ∂

∂r = e−ρ ∂∂ρ . Therefore in the coordinates ρ, θ the
connection ∇ is given by

∇ ∂
∂ρ

∂

∂ρ
= 0, ∇ ∂

∂ρ

∂

∂θ
= ∇ ∂

∂θ

∂

∂ρ
=

1
2
∂

∂θ
, ∇ ∂

∂θ

∂

∂θ
= − ∂

∂ρ
.

This explicit form of the connection ∇ makes it clear that it is invariant
under translations ρ 7→ ρ + a and θ 7→ θ + b. From the construction ∇ is
complete and projectively flat.

Using the coordinates ρ and θ and letting Z be the integers, then the
original open set U is naturally identified with the quotient group R2/({0}×
2πZ) (that is identify (ρ, θ) with (ρ, θ + 2kπ) for k ∈ Z). As in the original
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set U the ∇-geodesics are reparmeterized line segments it is not hard to see
that a point z ∈ U can be connected to a point z0 on the positive real axis
by a ∇-geodesic if and only if z is not on the negative real axis. That is
z can be connected to z0 by a ∇-geodesic if and only if |θ(z)| < π. (See

z00

z
(((

((((
((((

(

Figure 2. As the connection ∇ is projective with the usual flat con-
nection, a point z in the set U = R2

r {0} can be connected to a point
z0 on the positive real axis by a ∇-geodesic if and only if |θ(z)| < π.

Figure 2.) But because of the homogeneity of the connection with respect
to translations θ 7→ θ + b this implies:

3.2. Lemma. Two points z1, z2 ∈ Û can be connected by a ∇-geodesic if
and only if |θ(z1)−θ(z2)| < π. Therefore if z1, z2 satisfy |θ(z1)−θ(z2)| ≥ mπ
for some positive integer m any piecewise broken geodesic from z1 to z2 must
have at least m breaks.

3.3. Remark. There is a less geometric, but possibly more informative, proof
of this lemma. Using the coordinates ρ, θ on Û and the coordinates x, y on U ,
the covering map from Û to U is given by x = eρ cos θ and y = eρ sin θ. In U
the ∇-geodesics are reparameterization of straight lines and thus along a ∇-
geodesic the coordinates x and y are related by ax+ by = 0 (if geodesic goes
through the origin) or ax + by = 1 (if it does not pass through the origin).
The first case leads to a relation between ρ and θ of the form eρ(a cos θ +
b sin θ) = 0 along the geodesic which implies θ = θ0 on the geodesic, for
some constant θ0. In the second case we get eρ(a cos θ + b sin θ) = 1 along
the geodesic. Let A =

√
a2 + b2 and let α be so that A cosα = a and

A sinα = b. Then the equation between ρ and θ becomes eρA cos(θ−α) = 1.
From this it follows that given a point in Û with coordinates (ρ0, θ0) the ∇-
geodesics of Û through this point are the line θ = θ0 and the curves defined
for |θ − α| < π/2 by the equation

eρ cos(θ − α) = eρ0 cos(θ0 − α)(3.2)

where α varies over real numbers with |α − θ0| < π/2. This makes it clear
a point (ρ1, θ1) with |θ1− θ0| ≥ π can not be on a geodesic through (ρ0, θ0).
And conversely if |θ1 − θ0| < π then either θ1 = θ0, and the points are both
on the geodesic θ = θ0, or θ1 6= θ0 and straightforward calculus argument
shows that there is a unique α ∈ (θ0 − π/2, θ0 + π/2) ∩ (θ1 − π/2, θ1 + π/2)
so that eρ1 cos(θ1 − α) = eρ1 cos(θ0 − α). For this choice of α both of the
points (ρ0, θ0) and (ρ1, θ1) will be on the ∇-geodesic defined by (3.2)
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We now complete the proof of Theorem 1. Given the positive integer m
let k be an integer with k ≥ m. Let T 2 be the torus

T 2 = Û/(Z× 2πkZ)

(that is identify (ρ, θ) with (ρ+ j, θ+ 2πk`) for j, ` ∈ Z). As the connection
∇ is translation invariant it well defined as a connection on T 2 and will be
invariant under translations of T 2 when T 2 is viewed as a Lie group. We
have already seen that ∇ is complete and projectively flat. Let $ : Û → T 2

be the covering map. We now claim that any broken ∇-geodesic in T 2

from $(ρ0, θ0) to $(ρ0, θ0 + mπ) must have at least m breaks. For let
c : [a, b]→ T 2 be such a broken geodesic. By the Path Lifting Theorem ([2,
p. 22] or [5, p. 67]) there is a unique curve ĉ : [a, b]→M with ĉ(a) = (ρ0, θ0)
and $ ◦ ĉ = c. This curve will also be a broken geodesic. Also $(ĉ(b)) =
c(b) = $(ρ0, θ0 + mπ), and therefore ĉ(b) = (ρ0 + j, θ0 + mπ + 2πk`) for
some j, ` ∈ Z. The difference in the θ coordinates of the ends of ĉ is

|θ0 +mπ + 2πk`− θ0| = |m+ 2k`|π ≥ mπ

as k ≥ m. By Lemma 3.2 this implies that ĉ has at least m breaks. But
then c = $ ◦ ĉ also has at least m breaks. As $(ρ0, θ0) was an arbitrary
point of T 2 this completes the proof of Theorem 1.

3.4. Remark. The connection ∇ has another property worth noting. If
c(t) = (ρ(t), θ(t)) is a smooth curve in Û then the equations for c to be
a ∇-geodesic are

ρ̈ = θ̇2, θ̈ = −ρ̇θ̇.
These imply

1
2
d

dt
(ρ̇2 + θ̇2) = ρ̇ρ̈+ θ̇θ̈ = ρ̇θ̇2 − θ̇ρ̇θ̇ = 0.

Therefore ρ̇2 + θ̇2 is constant along ∇-geodesics. Thus all ∇-geodesics have
constant speed with respect to the flat Riemannian metric ds2 = dρ2 + dθ2

on Û . As this metric is translation invariant it is also well defined on the
torus T 2 = Û/(Z×2πkZ) and the ∇-geodesics on T 2 will also have constant
speed with respect to this metric. This can be used to give another proof
that ∇ is complete
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