A STRONG MAXIMUM PRINCIPLE FOR WEAK SOLUTIONS OF QUASI-LINEAR ELLIPTIC EQUATIONS WITH APPLICATIONS TO LORENTZIAN AND RIEMANNIAN GEOMETRY

LARS ANDERSSON, GREGORY J. GALLOWAY, AND RALPH HOWARD

ABSTRACT. The strong maximum principle is proved to hold for weak (in the sense of support functions) sub- and super-solutions to a class of quasi-linear elliptic equations that includes the mean curvature equation for C^0 spacelike hypersurfaces in a Lorentzian manifold. As one application a Lorentzian warped product splitting theorem is given.

Contents

1. Introduction 2
2. The Analytic Maximum Principle
2.1. Outline of the Proof
2.2. Reduction to a Standard Setup
2.3. Some Calculus Lemmata
2.4. Proof of the Maximum Principle 13
3. Geometric Maximum Principles for Hypersurfaces in Lorentzian
and Riemannian Manifolds 16
3.1. Reduction to the Analytic Maximum Principle 20
3.2. Proof of Theorem 3.6 22
3.3. A Geometric Maximum Principle for Riemannian Manifolds 24
4. Applications to Warped Product Splitting Theorems 23
4.1. Statement of Results 25
4.2. Proofs 28
References 36

¹⁹⁹¹ Mathematics Subject Classification. Primary: 58G03, 35B50 Secondary: 53C21, 83C75.

Key words and phrases. maximum principle, elliptic PDE, quasilinear PDE, mean curvature, splitting theorems, Lorentzian geometry.