ON THE SIZE OF APPROXIMATELY CONVEX SETS

IN NORMED SPACES

S. J. DILWORTH, RALPH HOWARD AND JAMES W. ROBERTS

ABSTRACT. Let X be a normed space. A set A C X is approz-
imately convex if d(ta + (1 — t)b,A) < 1 for all a,b € A and
t € [0,1]. We prove that every n-dimensional normed space con-
tains approximately convex sets A with H (A4, Co(A)) > logyn — 1
and diam(A4) < Cy/n(Inn)?, where H denotes the Hausdorff dis-
tance. These estimates are reasonably sharp. For every D > 0, we
construct worst possible approximately convex sets in C(0,1) such
that H(A, Co(A4)) = diam(A) = D. Several results pertaining to
the Hyers-Ulam stability theorem are also proved.
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Let (X, ||-]]) be a normed space. In the following definition d(x, A) =
inf{||z — a|| : @ € A} denotes the distance from = to the set A.

Definition 1.1. A set A C X is approximately convex if

d(tz + (1 —t)y, A) < 1

for all z,y € A and t € [0, 1].
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Recall that the Hausdorff distance between subsets A and B of X is
defined by

H(A, B) = sup{d(z, B),d(y, A) : x € A,y € B}.
Thus, A is approximately convex if and only if
sup H(tA+ (1 —-1)AA) < 1.

t€[0,1]
The aim of this article is to study the relationship betwen the size of
an approximately convex set, as measured by its diameter

diam(A) = sup{flz —y[| : z,y € A},

and the extent to which A fails to be convex, as measured by the
Hausdorff distance H(A, Co(A)) from A to its conver hull Co(A).

In Section B we extend some of the results of [6] to the case of ap-
proximately convex sets. In particular, it is shown that if X is an
n-dimensional normed space then the quantity

C(X) = sup{H(A,Co(A)) : A C X is approximately convex}
satisfies
(1) logyn < C(X) < [logy(n + 1)1,

where [2] denotes the smallest integer n > «. For the Euclidean spaces
R™, we prove that C(R™) = log, n for infinitely many values of n. Thus,
the lower bound in ([) is sharp.

We also prove in Section B that every infinite-dimensional normed
space contains an approximately convex set A with H(A, Co(A)) = oc.
This is used to show that the Hyers-Ulam stability theorem fails rather
spectacularly in every infinite-dimensional normed space.

In our previous paper [B] we studied the quantity H(A, Co(A)) for
the class of approzimately Jensen-convex sets defined as follows.

Definition 1.2. A set A C X is approximately Jensen-conver if
d ( r ‘g y,A) <1

Suppose again that X is an n-dimensional normed space. In the
construction of approximately convex sets A C X presented in Sec-
tion fJ, we find that diam(A) — oo as H(A, Co(A)) approaches C(X).
Section [ refines this construction to produce such sets whose diame-
ters are not too large in an asymptotic sense as n — oo. To make
this precise, let us say that an approximately convex set A is bad
if H(A,Co(A)) > logyn — 1. Then our main result says that every

for all x,y € A.



APPROXIMATELY CONVEX SETS IN NORMED SPACES 3

n-dimensional normed space contains bad approximately convex sets
of diameter O(y/n(logn)?). The proof uses a result of Bourgain and
Szarek [l] from the local theory of Banach spaces.

In Section f we show that the factor \/n in the latter result is sharp
by demonstrating the lower bound diam(A) > 0.76+/n for all bad ap-
proximately convex sets in the Euclidean space R"™ when n is sufficiently
large. We also construct nearly extremal approximately convex sets in
R™ of diameter O(y/nlogn), which is better than our estimate in the
general normed space case.

Our constructions uses the clasical entropy function

n+1
En(ty, ... thy1) = Z tilogy(1/t;)
i—1

defined on the standard n-simplex. In particular, we make heavy use of
the fact that E,, is an approximately convex function. This observation
seems to be new, and we include its short proof in Section B. As
a corollary we obtain the best constants in the classical Hyers-Ulam
stability theorem [I0] when n 4 1 is a power of 2.

The last two sections concern approximately convex sets in infinite-
dimensional spaces. The results in Section [ are in principle not new:
they are essentially reformulations of known results of Larsson [I1] and
of Casini and Papini [3] (also of Bruck [2]). It is shown that X is
B-convex if and only if there exists ¢ > 0 such that

diam(A) > cexp(cH(A, Co(A)))

for every approximately convex set A C X. A similar bound with a
sharp exponent is given for spaces of type p.

Our deepest and perhaps most interesting result is Theorem [ of
Section [, which says that the trivial inequality

diam(A) > H(A, Co(A))

is actually best possible in general Banach spaces. More precisely, we
show that for every M > 0 there exists a Banach space X (which is
isomorphic to ¢;) and an approximately convex set A C X such that

diam(A) = H(A, Co(A)) = M.

The space X is obtained from a rather complicated combinatorial con-
struction which may conceivably have other applications in Banach
space theory. Theorem [[.1 and its proof may be read independently of
the rest of the paper.

Finally, a few words about notation. All normed spaces are assumed
to be real. The closed unit ball {x € X : ||z]| < 1} of a normed space
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X is denoted Bx. The closed ball of radius R is denoted Br(X). The
dual space of X is denoted X*. A closed subspace Y of X has a finite-
dimensional decomposition if there exist finite-dimensional subspaces
F, CY (n>1) such that every y € Y admits a unique representation
as a convergent series y = >~ y,, with y,, € F},. This implies that the
finite-dimensional projections P,(y) = Y, y; are uniformly bounded
in the operator norm. We write Y =Y >  @F,. The sequence spaces
{p, the finite-dimensional spaces £}, the Lebesgue spaces L,(0,1) (1 <
p < 00), and the space C(0, 1) of all continuous functions on [0, 1], are
all equipped with their classical norms. More specialized terminology
from Banach space theory will be introduced as needed.

2. APPROXIMATELY CONVEX FUNCTIONS

Hyers and Ulam [I0] introduced the notion of an e-convex function.

Definition 2.1. Let C' be a convex subset of X and let ¢ > 0. A
function f: C' — R is e-convex if

(2) flz+ (1 —t)y) <tf(x)+ (1 -1)f(y) +e
for all z,y € C and t € [0, 1].
Note that if f is e-convex then the function Af is Ae-convex for each

A > 0. Thus, € merely plays the role of a scaling factor. For our results
it is convenient to normalize by taking ¢ = 1 as follows.

Definition 2.2. Let C' be a convex subset of X. A function f: C' — R
is approximately conver if

(3) flz+ (1 =t)y) <tf(z)+ (1 —-1)f(y) +1
for all z,y € C and t € [0, 1].
For n > 1, let A, = {t = ()"} : t; > 0,574t = 1} be the

standard n-simplex. Let e; (1 < i < n+1) be the vertices of A,, and let
F.. be the collection of all approximately convex functions f: A, — R
satisfying f(e;) <0 for 1 <i <n+ 1. Now define
(4) k(n) = sup sup f(z).
fEF, zEA,
Cholewa [6] (cf. [@]) proved the following sharp version of the famous
Hyers-Ulam stability theorem [I0].

Theorem A. [5] Let U C R" be a convex set and let € > 0. For every

e-convex function f : U — R there exist convex functions g and gy such
that

() @) <) < F@) +nme and  |f() - qolo)] < e
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Moreover, k(n) is the sharp constant in (B) and satisfies the upper
bound k(n) <k for 281 <n < 2% ie. k(n) < [logy(n + 1)].

Remark 2.3. Lazckovich [12] observed that x(n) is the sharp constant
for every convex U with nonempty interior.
The following lemma will be used repeatedly.

Lemma 2.4. Let f : C — R be approximately convex, where C' C X
s convex. Suppose that n > 1 and that xq, ..., 2,11 € C. Then

(6) f (Z til’i) < Z tif(z;) + k(n)

for all ()14} € A,,.
Proof. Define F : A,, — R by

n+l n+1
=f (Z ti$i> — thf(xz)

Then F' is approximately convex and F'(e;) =0 for 1 <i<n+ 1. So
F(t) < k(n) for all t € A,,, which gives ([). O

For our results on approximately convex sets we require a good lower
bound for k(n): we shall show that x(n) > log,(n+ 1), which improves
the bound k(n) > (1/2)log,(n + 1) given in [12].

We require the following lemma from [6] concerning the function ¢(t)

defined by ¢(0) = 0 and ¢(t) = —tlog,t (¢t € (0, 1]). For completeness
we include the proof.

Lemma 2.5. For allt,z,y € [0,1], we have
0 < lts + (1 — t)y) — té(x) — (1 — Holy) < 6() + 6(1 — Dy,

Proof. The left-hand inequality just says that ¢ is concave (to see this
note that ¢”(t) = —1/(tIn2) < 0). To prove the right-hand inequality,
first consider the case 0 < x <y < 1. For fixed t and y, let

U(x) = o(te + (1 —t)y) — to(x) — (1L = t)d(y).
Then

P'(z) = - 2(lnx —In(tz + (1 —t)y)) <O0.

Thus ¢(z) is decreasing on [0,y| and attains its maximum at = = 0.
But

¥(0) = ¢((1 —t)y) — (1 = 1)o(y)
—(1 =t)ylogy((1 = t)y) + (1 —t)ylogyy
—(1—=t)ylogy(1 —t) = ¢(1 — t)y.
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Thus, if # < y, then
o(te + (L —t)y) —tp(x) — (1 =1)o(y) < o(1 —t)y < )z + ¢(1 —t)y.
Similarly, if y < z, then
otz + (1 —t)y) —td(z) — (1 = )o(y) < () < d(t)x + ¢(1 — t)y.
0

The approximately convex sets which we construct in the next section
are essentially graphs of the entropy functions

n+1

Eu(ti, .. tat1) Ztlog2 1/t) (L) € Ay).

The following crucial observation seems to be new.

Proposition 2.6. E, is a continuous concave approrimately convex
function on A,,. In particular, E, is approzimately affine, i.e.

(7) [En(te + (1= t)y) —tEu(z) — (1 ) En(y)| < 1
forall z,y € A, and t € [0,1].

Proof. E,(t) = Y.""'¢(t;) is a sum of concave functions (by
Lemma P.5) and so E,, is concave. For z = (x;)1! and y = (y;)/] in

A, and t € [0, 1], we can use Lemma P.J for the first inequality to get
Eu(ta+ (1 - ) —tEu(x) — (1 — ) Ea(y)

— Z o(tr; + (1 —t)y;) — td(x;) — (1 —t)o(ys))
<Z l‘z—l—gbl—t)yz)

:¢(t)zxi+¢(1_t)zyi

= o(t) + o(1 = 1).
The function ¢(t) + ¢(1 — t) is concave and symmetric about ¢ = 1/2.
Thus,
o(t) + (1 — 1) <2¢(1/2) =1,
with equality in the last inequality only if ¢ = 1/2. O
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Remark 2.7. The fact that F, has the weaker property of being ap-
proximately Jensen-conver (which corresponds to setting t = 1/2 in
Definition 2.2) is well-known and has been observed by various authors,

e.g. [I2].
Note that the following theorem gives the sharp constant in the Hyers-
Ulam stability theorem when n + 1 is a power of 2.

Theorem 2.8. The constants k(n) satisfy the bounds
(8) logy(n +1) < r(n) < [logy(n + 1)].
In particular, k(n) = logy(n + 1) when n+ 1 is a power of 2.

Proof. The upper bound is due to Cholewa [6]. For the lower bound,
since F,, € F,, we have

k(n) > ?e%fEn(t) =FE,(1/(n+1),...,1/(n+1)) =logy(n + 1).
U

Remark 2.9. Obviously, k(1) = 1. Green [8] showed that x(2) = 5/3.
In a later paper we shall show that, for n > 1,

21+[log2(n+l)]

k(n) = [logeg(n+1)]+2 — ———

Y

n+1

where [x] is the greatest integer function. The proof is too long to be
included here. The corresponding constants for bounded Jensen-convex
functions were computed in [6].

3. APPROXIMATELY CONVEX SETS

Theorem 3.1. let X be an n-dimensional normed space. There is a
least positive constant C'(X) such that

(9) H(A, Co(A)) < C(X) sup} HtA+ (1 —t)A, A)

te(0,1
for every nonempty A C X. Moreover, C(X) satisfies
(10) logy,n < C(X) < k(n).
In particular, logon < C(X) < [logy(n+1)] <logyn + 1.
Proof. We may assume that the right-hand side of (B) is finite, oth-
erwise there is nothing to prove. Observe that the effect of replacing

A by AA is to multiply both sides of ({) by |A|. So, by choosing A
appropriately, we may assume that

sup H(tA+ (1 —t)AA) = 1.

te[0,1]
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The right-hand estimate for C(X) is due to Casini and Papini [3].
For completeness we recall the proof. Let f(z) = d(z, A) (z € X).
First note that f is 1-Lipschitz and non-negative. To see that f is
approximately convex, note that for x,y € X, a,b € A, and t € [0, 1],
we have

fltz+ (1 —t)y)

d(tz + (1 —t)y, A)

< Itz + (1 = t)y) — (ta+ (1 = 1)D)]]
+d(ta+ (1 —t)b, A)

<tz —all+ 1 =1y =) + 1.

Taking the infimum of this expression over all choices of a and b yields

Flta+ (1= t)y) < tf(@) + (1= ) f(y) + L.

Now suppose that € Co(A). By Carathéodory’s Theorem (see e.g.
(18, Thm. 17.1]), x = 37" t;a;, a convex combination of n+1 elements
a; € A. Then Lemma P-4 yields

r) < Z tif(a;) + x(n) = K(n),

since f(a) =0 for all a € A. The left-hand inequality uses the entropy
functions E,. Let (e;)?—y be an Auerbach basis for X (see e.g. [I4, p.
16]). Recall that this means that

n—1
E a;€;

(11) max |a;| <

n—1
<2 lail
=0

for all scalars ag, ..., a,-1. Set e, = 0 so that Co{e; : 1 <i <n}isan
(n — 1)-simplex. For each M > 0, we define a set A, thus:

n—1
AM = {MZtZel + En—l(tla Ce ,tn)e() . (tz)?zl € An—l}

i=1

First let us verify that Ay, 1s approximately convex. Suppose that 0<
t <1 and that a = M > ") Y2ie; + B, 1(z)eq andb—]\/[zl | yie; +
E,._1(y)eo belong to AM, where z = (z;)", and y = (y;)?.; belong to
A,_i. Then ¢ = MZZ | zie;i + E,_1(2)eg also belongs to Ay, where
z =tx + (1 —t)y. Since ¢g is a unit vector and F,_; is approzimately

affine ([0), we have
lta+ (1 —t)b— ¢l

= |tEn—1(x) + (1 - t)En—l(y) - En—l(tx + (1 - t)y)‘
<1,
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and so A,y is approximately convex. Note that zog = (M/n) Z;:ll e €
Co(Apr). We shall show that d(zg, Ayr) — logyan as M — oo. To see
this, fix € > 0. By continuity of E,_; there exists a > 0 such that if
maxi<i<n—1 |[ti — 1/n| < a then E,_(t1,...,t,) > logyn — ¢, whence
by (L)
n—1
g — (M Z tie; + En_1(ty,. .. 7tn)60> > Epi(ty, ... ty)
i=1

> logyn —e.

Now suppose, on the other hand, that maxj<;<,,—1|t; — 1/n| > a. By

(IT)

> M max |t; —1/n|
1<i<n—1

n—1
To — (M Z tie; + En_1(ty,. .. 7tn)60>

i=1
> Mo — oo

as M — oo. Thus, for all sufficiently large M, we have d(xg, Ap) >
log, n —e. Since € > 0 is arbitrary, this gives the lower bound C(X) >
log, n.

O

For large n the lower bound C(X) > log,n is actually attained for
certain Euclidean spaces (e.g. for X = R19).

Theorem 3.2. Suppose that n = 2%, where k > 4. Then C(R") =
log, n.

Proof. For n = 2% we have x(n — 1) = log,n. The argument used to
prove Theorem 3.7 of [G] (too lengthy to recall here) shows that the
result will follow provided n = 2* is large enough to ensure that
V2n(v2n +v/n — 1)
k(n—1) > :
n+1
This holds for k£ > 4. O

Remark 3.3. The calculation of C(R™) for small n seems problematic.
Clearly C(R) = 1, and examples show that C'(R?) > 1.37. In [6] the
corresponding constants for approximately Jensen-convex sets in R”
were computed in all dimensions.

Before turning to infinite-dimensional spaces, let us make the follow-
ing definition (the analogue of Definition B.T]).

Definition 3.4. Let ¢ > 0. A set A C X is e-convex if
d(ta+ (1 —1t)b,A) <e
for all a,b € A.
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Theorem 3.5. Let X be an infinite-dimensional normed space. There
exists an approzimately convezr set A C X such that H(A, Co(A)) = oo.

Proof. We shall use the following consequence of Theorem B1. Let
e > 0and M > 0. Then every normed space of sufficiently large
dimension contains a compact e-convex set A such that H(A, Co(A)) >
M. Using this fact repeatedly, a routine argument (cf. [[4, p. 4]) shows
that X contains a subspace Y with a finite-dimensional decomposition
Yoo @DF, and sets A,, C F,, (n > 1) such that A, is a 27"-convex set
containing zero and H(A,, Co(A,)) > n. Let A be the collection of all
vectors of the form ) ,, where z,, € A, and only finitely many of
the x,,’s are nonzero.

First let us verify that A is approximately convex. Suppose that
r=>, x,andy =) y,arein Aandthat 0 <t <1. Since A, is27"-
convex and compact, there exists z, € A, with ||z, —(tz,+(1—1t)y,)|| <
27", Moreover, we may choose the z,’s so that only finitely many
are nonzero, ensuring that z = )z, belongs to A. By the triangle
inequality

|z — (tz + (1 —t)y H<Z|]zn— tr, + (1= ty,)| <> 27" =1

Let us verify that H(A, Co(A)) = oco. Since Y~ ®F, is a finite-
dimensional decomposition, the natural projection maps from
> @®F, onto F, are uniformly bounded in operator norm by K
say. Since H(A,, Co(A,)) > n, there exists w, € Co(A,) such that
d(wy, A,) > n, and since A, C F,,, we have

d(wp, A) > (1/K)d(w,, A,) > n/K.
Thus, H(A, Co(A)) = oco. O

As an application of the last result we show that the Hyers-Ulam sta-
bility theorem (Theorem A above) fails rather dramatically in every
infinite-dimensional normed space (cf. [3]).

Corollary 3.6. Let X be an infinite-dimensional normed space. There
exists a 1-Lipschitz approzimately convex function f : X — R with the
following property. For all M > 0 there exists R > 0 such that for
every convex function g : BR(X) — R, we have
sup | f(z) —g(x)| > M.
z€BR(X)

In particular, sup{|f(z)—g(x)| : © € X} = 0o for every convex function
g: X —R.
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Proof. Using the notation of Theorem B.H, we prove that f(z) = d(x, A)
has the required property. It was shown in Theorem B.1 that f is
approximately convex and 1-Lipschitz. Choose R so that Co(A,) C
Br(X). Suppose that g : Bg(X) — R is a convex function satisfying
lg(z) — f(z)] < M. Since f(z) = 0 for all z € A,, it follows that
g(x) < M for all x € A,,, and hence g(z) < M for all z € Co(A,). But
f(wy) > n, and so M > n/2. O

Recall that a normed space X is B-conver if X does not ‘contain
(’s uniformly’, i.e., if there exist n > 2 and a > 0 such that

i=1
for all z; € B(X) (1 <i<n).

For general normed spaces, Corollary is close to optimal in view
of the following positive result on the approximation of Lipschitz e-
convex functions on bounded sets from [4]. (Here (a)=-(c) is [@, Thm.
1] and (b)=-(a) is implicit in [@, Props. 1,2]. The other implication
(c)=(b) is trivial.)

min <n-—u«
+

Theorem B. [d] Let X be a normed space. The following are equiva-
lent:
(a) X is B-convex;
(b) there exist k < 1/2 and a > 0 such that for every e < a and for
every e-convez 1-Lipschitz function f: B(X) — R there ezists a
convez function g : B(X) — R such that

l9(z) = f@)| <k (v € B(X));

(c) there exist ¢ > 0 and o > 0 such that for every e < « and for
every e-convez 1-Lipschitz function f : B(X) — R there ezists a
convez function g : B(X) — R such that

l9(z) — f(2)] < celogy(1/e)  (z € B(X)).

Remark 3.7. Condition (b) of this result is very pertinent to Section []
below, where we prove (Corollary [(.13) that for X = C(0,1) there is
no constant & < 1 such that (b) holds. This is clearly an optimal result
since every 1-Lipschitz function f on B(X) satisfies |f(z) — ¢| < 1,
where ¢ = (inf f + sup f)/2, i.e. (b) holds for k = 1.

4. DIAMETER OF APPROXIMATELY CONVEX SETS

Our next goal is to prove that every n-dimensional normed space
contains a “bad” approximately convex set (that is, H(A, Co(A)) >
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logy(n + 1) — €) of diameter O(y/n(logn)?). In the next section we
shall prove that for Euclidean spaces this estimate for the diameter is
fairly sharp.

For two isomorphic Banach spaces X and Y recall that their Banach-
Mazur distance d(X,Y") is defined thus:

d(X,Y) =inf{|T|||T" " : T : X — Y is an isomorphism}.
Theorem 4.1. Let ¢ € (0,3). For all sufficiently large n and all

normed spaces X of dimension n there exists an approrimately con-
ver set A C X such that

(12) H(A,Co(A)) > logon — e
and
(13) diam(A) < 25—5(10g2 n)2d(X, (7).

Proof. In order to simplify notation we shall prove the result for all
normed spaces X of dimension n+1 (with n+1 replacing n in ([Z) and
(13)). Note that X contains a subspace Z of codimension one such that
d(Z,07) < d(X, 07 (since £7 contains subspaces isometric to /7).
Let F' be a linear functional in X* of unit norm such that Z = ker(F).
Let ey be an unit vector in X which is normed by F', i.e., such that
F(eg) = ||leo|| = 1. Note that by the triangle inequality

z
00) el 2 maxel - AL 1) > o (21 )

for all z € Z (= ker(F)) and A € R. Since d(Z,(}) < d(X,(7™), Z has
a basis (ey)}_, satisfying

(15) D lal <> arer| < d(X, 67D axl,
k=1 k=1 k=1

for all choices of scalars (ay)}_,. For each M > 0, define Ay; C X by

Ay = {M (Z%%) + Epa(t, . stn)eo t (..o tn) € An1} .

k=1

It was proved in Theorem B.1] that A, is approximately convex for all
choices of M. Observe also that

M n
To= - Zek € Co(Ap).
k=1
In order to verify ([[2), it suffices to show that

d(zg, Apr) > loge(n+1) —¢



APPROXIMATELY CONVEX SETS IN NORMED SPACES 13

for a suitable choice of M. To that end, fix @ € (0,1) and fix y =
MO o p trer) + O r_y telogy(1/ty)) eo € Apr. Let

By ={k:ty > (1+a)/n}, By ={k:ty < (1+a)/n},

and set u(B;) = > cp tr (i = 1,2). Then, by ([4) for the first in-
equality and the left-hand side of ([[5) for the second, we have

> Mt — (1/n))ex + (Z t, log,(1 /tk)) eo
D logz(l/tk)>
max % Z [tk — (1/n)], Ztk Ing(l/tk>>

max Z %Hk — (1/n)], Z tr| Ing(tk>|>

Hy - yL’OH =

1
> max | =
2

> Mty — (1/n))ex

v

>
kEB1 kEB
M [«
> max > (5 Z tk> , (Z tk> (logy n — log, (1 + &)))
keB; ke€B2

(since tp — (1/n) > (a/(1 + )t > (a/2)ty for k € By)

> max (@wn, (logy n — (3a/2))u(32)) ,

where at the last step we use the fact that log,(1 + «) < 3a/2 for
a € [0,1]. Now set M = 4(logyn)?/a. There are two cases to consider.

First, if u(B2) > 1 — o/ logy n, then

3
Iy = anll > (1o~ % ) o)

3 5
2(log2n—_a> (1 @ )Zloggn—?a.

2 B log, n
Secondly, if p(B1) > a/ log, n, then

M
Iy = woll >

=1 .
log, n 827

Hence ||y — xo|| > logyn — (5a/2). Setting o = €/3 we see that ([2)
is satisfied (with n replaced by n + 1) by A = A whenever n is large
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enough to ensure that log,(n + 1) — logy(n) < a/2. Finally, the right-
hand side of ([3) yields

diam(A) < 2d(X, 7T YM + logy n
< d(X, 7)(4(logy n)? /) + logy n
< 25(1l0g nd(X, 1)z,
for all sufficiently large n, and so A satisfies condition ([[J). O
Since d(£2, 1) = n® /P for 1 < p < 2, we get the following corollary.

Corollary 4.2. Let 1 < p < 2 and let € € (0,3). For all sufficiently
large n there exists an approzimately conver set A C (] such that

H(A,Co(A)) = logyn —¢
and

2
diam(A) < ?571(79_1)/1’(10g2 n)?.

Remark 4.3. For p = 2, a much stronger result will be proved in the
next section.

For p = 1, we may reduce the exponent of log, n.

Proposition 4.4. Let ¢ € (0,2). For all sufficiently large n there
exists an approximately conver set A C 7 such that

(16) H(A,Co(A)) > logyn —¢
and
(17) diam(A) < (g + 1> log, n.

Proof. Setting X = ¢}, we follow Theorem [.1] taking advantage of
some simplifications in the proof which we now indicate. First, we may
choose (e, . .., eyn) to be the standard unit vector basis of £7*!, so that
([4) becomes simply ||z + Aeg|| = ||z]| + |A], for all z =" | ae; € Z.
The estimate for ||y — xo|| then becomes

Iy = aall > (%5050 + oz ~ (Ga/D)u(B) ).

Setting M = 2(log, n)/a, we obtain

3 3a
o= aall = (1o = %) (u(B0) 4 B2) = oy = 5
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Setting o = £/2 we see that ([[f) is satisfied (with n replaced by n+ 1)
by A = Aj; whenever n is large enough to ensure that logy(n + 1) —
log,(n) < a/2. Finally,

4
diam(A) < 2M + log,n < (— + 1) log, n,
a

which yields ([[7). O

Remark 4.5. In particular, ¢} contains “bad” approximately convex
sets of “small” diameter O(logn). Indeed, the trivial lower bound

diam(A) > H(A,Co(A)) > logyn — ¢
shows that the diameter must grow at least logarithmically with n.
Finally, we come to the main result of this section.

Theorem 4.6. Let ¢ € (0,6). For all sufficiently large n and all
normed spaces X of dimension n there exists an approrimately con-
vex set A C X such that

(18) H(A,Co(A)) > logyn — ¢
and
(19) diam(A) < %W

where K is an absolute constant.

Proof. Fix 6 € (0,1). Bourgain and Szarek [1] (cf. also [19]) proved
that every n-dimensional normed space X contains a subspace Y, with
dimY = k > [fn], satisfying

(20) d(Y,£7) < C(1-6)2V/n,
where C'is a constant. Set § =1 —¢/6. Then, for e < 1,
(21) log, k > logyn — logy(1/6) > logyn — £/2.

Applying Theorem [I.1 to Y and to /2 yields an approximately convex

set A CY satisfying ([[§) (from (B1]) and ([[2)) and ([9) (from (R0) and
(13)). O
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5. BOUNDS IN EUCLIDEAN SPACES

In this section we prove that the “bad” approximately convex sets
constructed in Theorem [.G necessarily have diameter larger than
0.764/n in n-dimensional Euclidean spaces when n is large. The proof
uses only elementary geometry. Along the way we prove a result about
Hilbert space (Theorem [.7) which may be of independent interest be-
cause of its sharp constants. We also improve the upper bound of
Corollary .7 by constructing a nearly extremal approximately convex
set in R” of diameter O(y/nlogn).

Recall that a simplex ¥ C R" is reqular if its edges all have the same
Euclidean length.

Lemma 5.1. Let X be an n-simplex which contains the origin in its
interior and whose vertices lie on the Euclidean unit sphere S"~'. For
each 0 < k <n —1 there exists a k-face Fy of ¥ such that

n—=k

A0, F) < app =] ——
(7 k)—a,k ’I’L(l{?—i-l)

with equality if 3 is a reqular simplex.

Proof. First we prove the result for k =n—1. Let V' be one of the ver-
tices for which the corresponding barycentric coordinate of the origin
is at most 1/(n + 1). Let the line segment through the origin joining
V' to the opposite (n — 1)-face F' intersect F' in a point P, say. Then
the origin divides the line joining V' to P into two segments bearing a
ratio of not less than n to 1. Since V' lies on the unit sphere, it follows
that d(0,P) < 1/n. Thus, d(0,F) < 1/n = ay -1, which completes
the proof for the case k =n — 1.

The proof for 0 < k < n — 1 is by induction on n. Suppose that
the result holds for n — 1 and for 0 < &k < n — 1. Let F,_; be an
(n — 1)-face of ¥ nearest to the origin and let @ be the point in F,,_4
nearest to the origin. Then 0 < d = d(0,Q) = d(0, F},—1) < 1/n. The
largest Euclidean ball inscribed in 3 with center the origin touches
F,_1 at Q. Hence @ is in the interior of the (n—1)-simplex F,,_; whose
vertices lie on the (n — 2)-sphere with center @) and radius /1 — d?.
Fix 0 < k < n—1. By the inductive hypothesis applied to @ and F},_;
there exists a k-face F), of F,,_; such that

d(QJ Fk) S Op—1,kV 1 —da2.

So
d(0, Fr)® = d(0,Q)* + d(Q, F)* < d® + (1 — d*)aj_y 4,
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where 0 < d < 1/n. The right-hand side is greatest when d = 1/n,
which gives
o _ 1 1 2 2
d(0, Fy)* < T g ) ke = e
O

The following theorem is perhaps of independent interest because of
the sharp constants.

Theorem 5.2. Let (z;)!4] be elements from the unit ball of a Hilbert
space H and suppose that 0 € Co({z; : 1 < i < n+1}). For each
1 <j<n, there exists J C{i: 1 <i<n+1} such that |J| = j and

d(0, Co({z; i € J}) < ,/%ﬂ,‘j.

Proof. By slightly perturbing the elements, if necessary, we may assume
that the set {x; : 1 <i < n+ 1} is affinely independent and that the
origin lies in the interior of the simplex Co({x; : 1 <i <mn+ 1}). Let
Y, = xz/szH Clearly,

d(0,Co({x; : i € A})) < d(0,Co({y; : i € A}))

forall AC {i:1<4i<n+1}. Now Lemma p.1| applied to the simplex
Y. with vertices {y; : 1 <@ < n+ 1} yields the desired result. O

Theorem 5.3. Suppose that A C R" is approximately convex and sat-
isfies H(A, Co(A)) > logyn—1. Then, for any integer j with1 < j <n
we have
: (logyn — 1 — [log, j1)V/j )

22 diam(A) > n

) (= (Prn i RalDVI ) g

In particular, A satisfies the (nontrivial) lower bounds diam(A) >
0.7525y/n for all n > 20, and diam(A) > 0.768y/n for all sufficiently

large n.

Proof. Assuming (as we may) that A is compact, there exists xy €
Co(A) with d(zp, A) > logyn — 1. By translating A, we may as-
sume that g = 0. Thus, 0 € Co(A) and d(0,A) > log,n — 1. The
fact that diam(A) = D now implies that ||z]] < D for all z € A.
By Carathéodory’s Theorem, there exist (z;)f! in A such that 0 €
Co({z; : 1 <i<n+1}). Let 1 < j <mn, then by Theorem b.7 there
exists J C {i:1 <i<n+ 1} such that |J| = j and

. n—j+1 _ n—j+1 2
d(0,Co({z; : EJ}))S( 77”, )D (1/7], )ﬁ
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Let yo be the point in Co({x; : ¢ € J}) nearest the origin. Because A is
approximately convex, the function d(z, A) is an approximately convex
function which vanishes at each z;. So, by Lemma P4, d(yy, A) <
k(j — 1) < [logyj] for 2 < j < n and if j = 1 then yp € A and
d(yo,A) = 0 = [logy1]. Thus d(yo, A) < [logyj] for 1 < j < n.
Therefore

n—j+1 D .
logyn—1<d(0,A) < [lyoll +d(yo, A) < (\/f ) N [log, 7

which yields

(logzn— 1 - HOng—‘>\/j
vn—7+1
where this defines f(j,n). If k is a non-negative integer with 2¥ < n

then [log, 28] = k = log,(2¥). Therefore

fh = (omn — 1o )V logy(n/2) — 1
,7’L - et
n—2F+1 V(n/2k) — 1+ 27k
= F(n/2%) + r(k,n)
where F(a) = (logy(a) — 1)/(Va—1) and r(k,n) — 0 as n, k — oo.
For each n and o« > 0 there is an integer k£ so that a < n/2k < 2a, and
for ag = 9.109883742

ap < a <2 implies F(a) > 0.76811996 .

Therefore if n is sufficiently large and k is chosen so that oy < n/ 2k <
2ap then

max f(j,n) > f(2¥,n) > 0.768

1<j<n

and thus D > 0.768+/n.
For any n and k£ > 1
log, (n/2") — 1

R ey Dy

where G(8) = (logy(8) — 1)//0 —1/2. If By = 9.919205826, then
Bo < B < 20, implies G(5) > 0.7525. Now assume that n > 20, and

that By < n/2F < 283,. Then 1.008 < 20/(28,) < n/(26y) < 2%, so
k > 1. Therefore the argument above implies that for n > 20 the
bound D > 0.75254/n holds. For this lower bound to be nontrivial we
also require 0.7525y/n > log, n — 1. However this holds for all n > 1
and so the lower bound on D holds and is nontrivial for all » > 20. O
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Remark 5.4. A similar argument shows that there exists ¢ > 0 such
that if A C R™ is approximately convex and satisfies H(A, Co(A)) >
log, n — ¢, then diam(A) > 1.164/n for infinitely many n.

Finally, we improve the upper estimate for the diameter provided by
Corollary £.2.

Theorem 5.5. Let (e;)%, be the unit vector basis of £4+". Then, for
n >4 and M = +/(2/In2)nlog, n, the set

A= {Mztzez + En—l(tla s 7t7’b)€0 : (t17 s atn) € An—l}

t=1
s approximately convex and satisfies the following:

H(A,Co(A)) =logyn and diam(A) < 2 v nlogyn + log, n.
vIn2
Remark 5.6. Theorem p.3 is a significant improvement on Corollary E.2
as it eliminates the dependence on € and reduces the exponent of logn
in the estimate for diam(A). When n+ 1 = 2%, the set A is very nearly
extremal, since in this case H(A, Co(A)) < logy(n + 1) = C(R"™) by
Theorem B2

The proof of this result is a consequence of the solution to a con-
strained optimization problem. Consider the following functional:

) =r [ (@) da + ( / ) d)

where y(x) is a non-negative function defined on the open interval
(0,n). (Recall that ¢(t) = tlogy(1/t).) The problem is to minimize
I(y) subject to the following constraints on y:

0<y<1 and /y(x)dle.
0

We prove in Lemma below that, for M? = (2/In2)nlogyn, 1(y)
is minimized by yo = (1/n)X(0,n)-
Assuming this result, let us complete the proof of Theorem b.5.

Proof of Theorem B.J. Clearly,
H(A,Co(A)) < max E,_1(t) = log,n.

teAn_1

To establish the reverse inequality, we show that d(zq, A) = log, n for
zo = (M/n) > ", ;. Observe that

n 1 2
d(.To,A)Q = min {M2Z (tl — —) —|—En,1(t1, ce ,tn)Q . (tl,. .. ,tn) € Anl}y

- n
=1
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and also that

i 1\? M?>
M? ti— — Enq(ty,.. ) =g(tr,... t,) — —,
; ( n) + l( 1, 3 ) g( 1 ) n
where
n n 2
glt, . te) = M*Y 2+ (Z ¢<ti>> .
i=1 i=1
Hence
M2
d(.ﬁC(],A)2 = min{g(tl, c. 7tn> . (th c. ,tn) € Anfl} - .
n

But g(t1,...,t,) = I(g), where g(z) = >} _; tuXp—1,k)- (Note that g(z)
satisfies the constraints for the optimization problem.) Since I(y) is
minimized by yo = (1/n)X(0,n) (see Lemma p.10), we get

g(ty, ..., tn) =1(9) > I(yo) = g(1/n,...,1/n).

Hence ,

d(xg, A)* = g(1/n,...,1/n) — M7 = (log, n)?.

Thus, H(A, Co(A)) > log,n. The estimate for diam(A) is straightfor-
ward. [

The next four lemmas solve the constrained optimization problem.

Lemma 5.7. Let M > 0 and n > 1. There exists a right-continuous
non-increasing function yo on (0,n) which solves the constrained opti-
mization problem.

Proof. Let m be the infimum of I(y) taken over all y which satisfy the
constraints. There exist y,, (n > 1) satisfying the constraints such that
I(y,) — m as n — oo. By replacing each y, by its non-increasing
rearrangement, we may assume that each y, is right-continuous and
non-increasing. By Helly’s selection theorem (see e.g. [I5, p. 221]),
we may also assume (by passing to a subsequence) that y,(z) — go(z)
pointwise. Since 0 < y,, < 1, it follows from the Bounded Convergence
Theorem that g satisfies the constraints and that I(go) = lim,, I(y,) =
m. Finally, let yy be the right-continuous modification of . O

Lemma 5.8. There exists a € (0,1) such that the set of values taken
by yo is a subset of {0,1,a}.

Proof. In the notation of Lemma B.7, we may assume that y; is a step
function minimizing I(y) over all step functions of the form

Zle a;X[(j—1)n/k,jn/k) Satisfying the constraints. A value A € (0,1)
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taken by y, must satisfy the following Lagrange multiplier equation for
a local minimum:

(23) 2M2)\ + (2 /O ' o(y) dx) ¢'(N\) = 24,

where A is a constant. It is easily seen that this equation has at most
two roots in (0, 1). By the pointwise convergence of y; to 7o, it follows
that yo takes at most two values in (0,1). Therefore we may apply
the method of Lagrange multipliers again to deduce that these values
must also satisfy (B3) (with y replaced by yo). Equivalently, setting

B = fon é(yo) dxr > 0,
(24) M?X+ B(logy(1/)) — (1/In2)) = A.

Suppose that there are two distinct roots, o and 3, with 0 < o < 3 <
1, and suppose that y, takes one of these values, « say, on an interval J.
(The argument is similar if yo takes the value (3.) Let g take the value 0
on the complement of J, and the values 1 and —1 on the left-hand and
right-hand halves of J, respectively. Since a € (0,1), it follows that
Yo + €g satisfies the constraints, provided ¢ > 0 is sufficiently small.
Moreover,

Iy +29) = I(yo) + 1] (M? - ) 2 4 o).

B
(In2)a

Since 1o minimizes I,

, B
(25) M? - e 2 0.

To derive a contradiction, suppose that 1y, also takes the value # on an
interval. Then, by the same argument,

M2—i>0.

(n2)3 =

Since (B4) is satisfied by A = a and A = 3, the Mean Value Theorem
implies the existence of 7 € («, §) such that

M? — =0.
(In2)y
Thus,
B B
2 2 _ —
(In2)a < (In2)y 0

But this contradicts (B5§). Thus, yo cannot take the value (3, which
completes the proof. O
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Lemma 5.9. Suppose that n > 4 and that
2
5n < M? < —nl )
n < gnlogan
Then yo does not take the value 1.

Proof. For n > 4, we have
(26)

Two) <1 (2 =ML ogyn)? < 2Ty n + (logyn)? < AL
= o (6] o .
Yo) > nX[O,n] n o T =~ 1n2 oM a1 9

Suppose that y, takes the value 1 on [0, 2] and the nonzero value k €
(0,1) on an interval of length (1 —z)/k < n —x. If k > 1/2 then
I(yo) > (1/2)M?, which contradicts (6). So we may assume that
k€ (0,1/2). Now
I(yo) = M*(z + k(1 — 2)) + ((1 — ) logy(1/k))*.

So

91(yo)

ox

= M*(1 — k) — 2log,(1/k)*(1 — )
e
(since (1 —z) < k(n —x))

M2
> — =2 ( max klogQ(l/k)2) n

2 0<k<1/2

(25 Vo
—\2 e*(In2)? '

Since I(yo) minimizes I(y), it follows that x = 0, as desired. O
Lemma 5.10. Suppose that n > 4 and that M? = (2/In2)nlog,n.
Then yo = (1/n)X(0n) and I(yo) = 2log, n + (logy n)?.

Proof. By Lemma [.9, yo takes only one nonzero value k € [1/n,1) on
an interval of length 1/k. So I(yo) = M?k + (logy(1/k))?. Thus,

OI(yo) _ 2 2(logy(L/K))

ok (In2)k
= 2 (nlogyn— ~logy(1/k) ) > 0
_1n2 n10gy M kOgQ -

with equality if and only if £ = 1/n. Since yo minimizes I(y), it follows
that k = 1/n, which gives the result. O
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Remark 5.11. Setting M? = 6n in Lemma yields an approximately
convex set set A C R"™ with diam(A) = O(y/n) and H(A, Co(A)) >
log, n — clog, log, n for some constant c.

6. LOWER BOUNDS IN SPACES OF TYPE p

First we recall the notion of type. In the following definition (g;)5°,
is a sequence of independent Bernoulli random variables, with P(g; =
1) = P(e; = —1) = 1/2, defined on a probability space (§2,%, P). The
expected value of a random variable Y is denoted EY .

Definition 6.1. Let 1 < p < 2. A normed space X is of type p if
there exists a constant 7),(X) (the ‘type p constant’) such that

n p\ 1/p n 1/p
i=1 =1

for all n > 1 and for all choices of z; € X (1 <i <mn).

The following theorem can be deduced from (and in fact is essentially
equivalent to) [3, Thm. 3.6]. For completeness we give a short direct
proof. We show in Corollary 6.6 below that the exponent of (p — 1)/p
in this theorem is sharp.

Theorem 6.2. Let 1 < p <2 and let X be a normed space of type p.
Suppose that A C X is approximately convex. Let D = diam(A) and
let d =H(A,Co(A)). Then, provided d > 2, we have
BV oy o-1)/p

@7) D> for o
Proof. We may assume (cf. Theorem [.3) that 0 € Co(A), that d =
d(0,A), and that ||a]| < D for all @ € A. Since 0 € Co(A) there
exist m > 1, a; € Aand p; > 0 (1 <i <m), with >7" p; = 1 and
D i1 pia; = 0.

Let (Y;)%2, be a sequence of independent identically distributed X-
valued random variables defined by

P(Y; = a;) =p; (1<i<m).

Then |[Y;(w)|| < D (w € Q) and EY; = ", pia; = 0. Thus, [I3,
Prop. 9.11] yields (for each n)

n p\ 1/p n
(15:, Yy, ) < 2T,(X) (ZEIIKIV”)

< 2T,(X)n'/?D.

1/p
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So there exist ' € A (1 <i <n) with

1=,
2

Since A is approximately convex,

1 n
d| — b A < —1)<l1 1.
(n; 7 ) _H(TL )— Og2n+

(28) < 2T,(X)n=P/Pp

So

d(0, A) <

1~ 1~
ﬁ;bi +d<E;bi,A>

< 2T,(X)n=P/PD tlogyn + 1

Put n = 2d-2 (noting that n > 1 since d > 2 by assumption) so that
logon +1 < d—1. Then

d = d(0, A) < 2T,(X)D(2*=P/P g1,
which yields (27). O

Remark 6.3. () and its probabilistic proof are from [2]. It is proved
in [2] that X has the convexr approximation property if and only if X
has type p for some p > 1. When X is a Hilbert space, Theorem
above gave a deterministic proof of (B§) with the sharp constants.

Corollary 6.4. Let X be a Banach space. The following are equiva-
lent:
(a) X is B-convex;
(b) there exists ¢ > 0 such that for every approximately convex set
A C X, we have

(29) diam(A) > cexp(cH(A, Co(A))).

Proof. 1t is known that X is B-convex if and only if X has type p
for some p > 1 [I7]. Thus, (a)=-(b) follows from Theorem [(.3. Now
suppose that X is not B-convex. By definition (see Section ), X
contains ‘almost isometric’ copies of ¢} for all n. So by Remark f.5
X contains approximately convex sets A, such that H(A,, Co(4,)) >
log,n — 1 and diam(A,,) < C'log, n, where C'is an absolute constant.
Clearly, (29) cannot hold in X, and so (b)=(a). O

Remark 6.5. The above result is essentially equivalent to [3, Thm. 3.7,
which was first obtained in [IT].
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The following corollary is a partial converse to Corollary 3. When
combined with the latter it shows that the factor n®~1/? in Corol-
lary .7 and the exponent of (p — 1)/p in Theorem p.9 are both sharp.

Corollary 6.6. Let 1 < p < co. There exists a constant ¢, > 0 such
that if A C  L,(0,1) is approzimately conver and satisfies
H(A,Co(A)) > logyn — 1, then

eV (1< p<2)
cpnt/? (2 <p<o0).

diam(A) > {

Proof. 1t is known that L,(0, 1) has type min(p, 2). Setting d = log, n—
1 in Theorem (.2 gives the result. O

7. SETS WITH diam(A) = H(A, Co(A))

In this section we show that there exists an infinite-dimensional Ba-
nach space Y such that for every prescribed diameter D there exists an
approximately convex set A C Y such that diam(A) = H(A, Co(A)) =
D. This is clearly “worst possible”. More precisely, we shall prove the
following theorem.

Theorem 7.1. Let M > 0. There exist a Banach space (X, ||-||) that is
linearly isomorphic to {1 and an approximately convex set A C By (X)

such that H(A, Co(A)) = diam(A) = 2M.

First observe that Theorem [1 admits the following reformulation
in terms of e-convex sets.

Theorem 7.2. Let € > 0. There exist a Banach space (X,|| - ||) that
is linearly isomorphic to {1 and an e-convexr set A’ C B(X) such that
H(A',Co(A")) = diam(A") = 2.

Proof. Let M = 1/¢ and let X and A satisfy the conclusion of Theo-
rem [7.1. Then A’ = A has the required properties. O

The following lemma is known [3], but for completeness we outline
the proof.

Lemma 7.3. Suppose that A C X is approximately Jensen-conver.
Then A is 2-convex. In particular, (1/2)A is approximately convez.

Proof. Let f(x) = d(xz,A) (x € X). Then f is a continuous approxi-
mately Jensen-convex function, i.e.

F(55Y) = 5u@+ s+ 1

2 -2
By [18] f is a 2-convex function, which implies that A is a 2-convex
set. 0
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Lemma [.3 shows that Theorem [ is equivalent to the following
result.

Theorem 7.4. Let M € N. There exist a Banach space (X, || -||) that
is linearly isomorphic to {1 and an approximately Jensen-conver set
A C By(X) such that H(A, Co(A)) = diam(A) = 2M.

Remark 7.5. The restriction M € N is made only to simplify notation
in the proof. Clearly the result will hold for all M > 0 by scaling.

The rest of the paper is devoted to the lengthy proof of Theorem [4.
To construct the space X appearing in the conclusion of the theorem,
let us begin with the ‘tree-like’ combinatorial structure which will form
a Schauder basis for X. Fix M € N. Let L1 = N, and for n > 1 define

L,, recursively as follows:
Ly=A{(a,b):aeLijbe Lji+j=n1<ij<n}

Let L = U2 L, and, for a € L, let e, denote the indicator function
of {a}. For R C L, let cypo(R) denote the vector subspace of {(R)
spanned by the set {e, : a € R}. For x = Y _; Aea € coo, let
supp(a) ={a € L: \, # 0}

We introduce two norms, || - ||; and || - ||}, on co(L):
> dacall =2 1Al
aclL 1 a€L
and
/
S —u T hs T
aclL 1 a€ls a€L\L,
Note that || - ||; is the usual ¢; norm and that || - ||} is a weighted

¢, norm with respect to the basis {e, : @ € L}. A linear mapping
T : coo(L) — coo(L) is defined (extending linearly) thus:

0 if a E‘Ll,
T(ea) = ep + €.

ifa € U, L, and a = (b, ).

Note that T'(coo(Ln)) C coo(UPZ; L) and that T"(x) = 0 for all z €
coo(Ly). Hence S = I — T is an invertible operator on coo(L) with
inverse S~ = Y2/ T*. Note also that

S 7)) < Y (o)

a€l acl
if z(a) > 0 for all a € A, with equality if supp(z) C U2, L,,.
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Define a norm || - || on cgo(L) thus:
o]l = inf{M Iyl + IS () :x =y + 2} (¢ € con(L)).
Let (X, || -]|) be the completion of (coo(L), || -||) and let A = {e, : a €
L}y CX.
The verification that X and A satisfy the conclusion of Theorem [(-4
will be broken down into four lemmas.

Lemma 7.6. Suppose that F' € B(X*). Then the mapping ¢ : L — R
defined by ¢(a) = F(e,) satisfies the following:

(a) |¢p(a)] < M for alla € L;

(b)

for all a = (b,c) € UX,L,.
Conversely, every ¢ which satisfies (a) and (b) corresponds to a unique
F e B(X™).
Proof. ;jFrom the definition of || - || we see that F' € B(X™) if and only
if
(30) |F(2)] < min(M]lz]l, ST @)) (@ € coo(L))
Indeed, if F satisfies (B0), then for every x € coo(L), we have
[l = it {M]lylls + 157 (=)} : 2 =y + 2}
>inf{F(y)+ F(2): e =y+ 2z} = F(x),
and so ||F|| < 1. Conversely, if ||F|| < 1, then
F(z) < |lz]| < min(M]jz]s, |S7(2)]5),

and (B() is satisfied.

The condition | F(x)| < M]||z||, is clearly equivalent to (a). Since |||y

is a weighted ¢; norm, the condition |F(x)| < ||S~(x)||] is equivalent
to the condition

(31) [F(S(ea)l < lleally (@ € L).

Suppose that a € Ly. Then S(e,) = e, and ||e,]|} = M, and so (BI)
becomes |¢p(a)| < M. Now suppose that a = (b,¢) € U>2,L,. Then
S(eq) = ea — (1/2)(ep + €.) and ||e,]|; = 1, and so (BI) becomes

¢(b) + ¢(c)

d)(a)_f < ]-7

and so (b) is satisfied. Conversely, if ¢ satisfies (a) and (b), then the
mapping F'(e,) = ¢(a) will extend linearly to an element of B(X*). [
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Remark 7.7. From the description of X* it follows that
1
lally < llell < M2l

So (X, || - ||) is isomorphic to ¢; (and the Banach-Mazur distance from
X to ¢ is at most 2M).

Lemma 7.8. Suppose that E C L has the property that whenever a =
(b,c) € E, thenb,c € E. If ¢g : E — [—M, M| satisfies

il - S0l

for all a = (b,c) € E, then ¢y admits an extension ¢ : L — [—M, M]
satisfying

(33) ’Gb(a) -5
for all a = (b,c) € UX,L,.

Proof. We define ¢ recursively. First define ¢ from L; into [—M, M] to
be an arbitrary extension of the restriction of ¢y to L;. Suppose that
n > 1 and that ¢ has been defined on U}~ L to extend the restriction
of ¢ to UpZ Lg. Let a = (b,c) € L,,. Then b,c € U] Ly, and so ¢(b)
and ¢(c) have already been defined. If a € E, then b,¢ € E, and so
d(b) = ¢o(b) and ¢(c) = ¢p(c). Tt follows from (B2) that (BF) will be
satisfied with ¢(a) = ¢o(a). If a ¢ E, define ¢(a) = (1/2)(o(b) + ¢(c)),
so that (BJ) is trivially satisfied. This completes the definition of ¢ on
L,. O

(32) <1

Now fix a € L and let E, = U2 supp(T™(e,)) (= UNZ,) supp(T™(e,))
for a € Ly). For d € E,, we define the a-order of d, denoted o,(d),
thus:

0,(d) =min{n > 0:d € supp(T"(e,))}-

Lemma 7.9. Given a € L, there exists ¢ : L — [—M, M] satisfying
(B3) such that

(34) ¢(d)=—-M  (d€ L\ Ey,),
(35) ¢(d) = max(M — o,(d), —M) (de LiNE,),
and

(36) ¢(d) = max(M — oq(d), —M)  (d € E,).
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Proof. First we define a mapping ¢o : £, U L, — [-M,M]. If d €
Ly \ B, let ¢o(d) = —M, and if d € E, N Ly, let

¢o(d) = max(M — o,(d), —M),
so that (B4) and (BY) are satisfied. Now extend to the rest of FE,
recursively as follows. Suppose that n > 1 and that ¢y has been defined
on E, N (UPZiLy) to satisfy (B3) and (Bd). Let d € E, N L,. Then
d = (b,c) for some b,c € E, N (U}Z;Ly,). Define

éo(d) = min <M, 9o(b) + do(c) —; Pl 1) .
If ¢o(d) = M, then, as do(b) < M and ¢o(c) < M, we have
¢0(d)_M§w+1§M+I_M+L
so that
iy~ B0

i.e., (BJ) is satisfied by d = (b,c). Also, if ¢o(d) = M, then (BG) is
trivially satisfied.

On the other hand, if ¢o(d) = (¢o(b) + ¢o(c))/2 + 1, then (B3) is
trivially satisfied by d = (b,¢). In order to verify (Bf), suppose that
0,(d) = k. Then both o,(b) < k+1 and o,(c) < k+1. Moreover, both
b and c¢ satisfy (Bf) by the recursive hypothesis. Thus,

Go(d) = Po(D) 42' Po(c) 1
> max(M — oa(b),—M);rmaX(M —04(c),—M) +1
> max(M — (k+1),—M) —;—max(M —(k+1),—-M) 11

> max(M — k,—M)
= max(M — o,(d), —M).
Thus, (B6) is satisfied by d, which completes the recursive definition

of ¢9. Now ¢y and E, U Ly (replacing E) satisfy the hypotheses of
Lemma [-§. Let ¢ be the extension of ¢y given by Lemma [/8. O

The following lemma completes the proof of Theorem [74.

Lemma 7.10. Let A= {e,:a € L}. Then A satisfies the following:
(i) AC Bu(X);
(ii) A is approzimately Jensen-convex;

(iii) H(A, Co(A)) = 2M.
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Proof. Suppose that F' € B(X*). By Lemma [(.G, |F(e,)| < M for all
a € A, and so (i) follows from the Hahn-Banach Theorem. Suppose
that b,c € A. Then a = (b,¢) € A, and by Lemma [(.q
|Fea) = F((1/2)(eb +€c))| < 1,
which gives (ii). To prove (iii), note that (i) implies that Co(A) C
B (X) (since By (X) is convex), and hence
H(A,Co(A)) < diam(By (X)) = 2M.

So it suffices to prove that H(A, Co(A)) > 2M. Fix N > 1 and choose
distinct elements aq,...,ay € L. We shall prove that

N
1
d (N;eak,fl> >2M — ey,

where ey — 0 as N — o0o. Let a € L. If d € E, and o,(d) = k, then
T*(eq)(d) > 27%. Since >, ; T*(eq)(b) < 1, it follows that Ej, = {d €
L :0,(d) = k} has cardinality at most 2. Thus

2M—1 2M -1

U E.| < Z ok = 92M _ 1
k=0 k=0

Let ¢ : L — [—M,M] be the function associated to a defined in
Lemma [(.9, and let F' € B(X™) be the linear functional corresponding
to ¢. If a; € Ly \ E,, then ¢(a;) = —M by (B4). If a; € E, and
04(a;) > 2M, then ¢(a;) = —M by (BH). Hence if a; ¢ G = UM By,
then ¢(a;) = —M. Moreover, ¢(a) = M by (Bf), since o,(a) = 0. So

1 (& 1
F <€a N (Z 6%)) = ¢(a) — N ;M‘W

k=1

1
2 M — (N = |G)(=M) +|G|M)
2
=2M — —|G|M
=1e
92M+1 1
>2M — ——
- N )
and so
|
Nzeak —eq|| = 2M —en,
k=1
where ey = 221NV /N — 0 as N — oo as desired. O

Theorem 7.11. There exists a Banach space Y such that for every
e > 0 there exists an e-convex set A C B(Y) with H(A,Co(A)) = 2.
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Proof. Let X,, denote the space constructed above for M = n. Then
the ly-sum Y = (37 ®X,,), has the required property. O

Remark 7.12. Since X, is isomorphic to ¢; (Remark [7.7), it has both
the Radon-Nikodym property (see e.g. [[1]) and the approximation prop-
erty (see e.g. [, p. 29]). Hence Y = (3.7, ®X, ) has the Radon-
Nikodym property [[4, p. 219] and (as is easily verified) the approxima-
tion property.

Since C'(0,1) is a universal space for separable Banach spaces
(Mazur’s theorem), it satisfies the conclusion of Theorem [.I1. So,
finally, let us reformulate Theorem [.2 to make good the claim made
in Remark B72.

Corollary 7.13. Let ¢ > 0. There exists a (non-negative) e-convex
1-Lipschitz function on B(C(0,1)) such that

sup{|f(x) — g(z)| : z € B(C(0,1))} > 1
for every convex function g.

Proof. By Theorem there exists A C B(C(0,1)) such that A is e-
convex and H(A, Co(A)) = 2. Then f(z) = d(x, A) has the required
properties. Ul
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