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Abstract. Let X be a normed space. A set A ⊆ X is approx-
imately convex if d(ta + (1 − t)b, A) ≤ 1 for all a, b ∈ A and
t ∈ [0, 1]. We prove that every n-dimensional normed space con-
tains approximately convex sets A with H(A,Co(A)) ≥ log2 n− 1
and diam(A) ≤ C

√
n(lnn)2, where H denotes the Hausdorff dis-

tance. These estimates are reasonably sharp. For every D > 0, we
construct worst possible approximately convex sets in C(0, 1) such
that H(A,Co(A)) = diam(A) = D. Several results pertaining to
the Hyers-Ulam stability theorem are also proved.
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1. Introduction

Let (X, ‖·‖) be a normed space. In the following definition d(x,A) =
inf{‖x− a‖ : a ∈ A} denotes the distance from x to the set A.

Definition 1.1. A set A ⊆ X is approximately convex if

d(tx+ (1− t)y, A) ≤ 1

for all x, y ∈ A and t ∈ [0, 1].

Date: 16 August 1999.
The work of the second author was supported in part by DoD Grant No. N00014-

97-1-0806.
1



2 S. J. DILWORTH, RALPH HOWARD AND JAMES W. ROBERTS

Recall that the Hausdorff distance between subsets A and B of X is
defined by

H(A,B) = sup{d(x,B), d(y, A) : x ∈ A, y ∈ B}.
Thus, A is approximately convex if and only if

sup
t∈[0,1]

H(tA+ (1− t)A,A) ≤ 1.

The aim of this article is to study the relationship betwen the size of
an approximately convex set, as measured by its diameter

diam(A) = sup{‖x− y‖ : x, y ∈ A},
and the extent to which A fails to be convex, as measured by the
Hausdorff distance H(A,Co(A)) from A to its convex hull Co(A).

In Section 3 we extend some of the results of [6] to the case of ap-
proximately convex sets. In particular, it is shown that if X is an
n-dimensional normed space then the quantity

C(X) = sup{H(A,Co(A)) : A ⊆ X is approximately convex}
satisfies

log2 n ≤ C(X) ≤ dlog2(n+ 1)e,(1)

where dxe denotes the smallest integer n ≥ x. For the Euclidean spaces
R
n, we prove that C(Rn) = log2 n for infinitely many values of n. Thus,

the lower bound in (1) is sharp.
We also prove in Section 3 that every infinite-dimensional normed

space contains an approximately convex set A with H(A,Co(A)) =∞.
This is used to show that the Hyers-Ulam stability theorem fails rather
spectacularly in every infinite-dimensional normed space.

In our previous paper [6] we studied the quantity H(A,Co(A)) for
the class of approximately Jensen-convex sets defined as follows.

Definition 1.2. A set A ⊆ X is approximately Jensen-convex if

d

(
x+ y

2
, A

)
≤ 1

for all x, y ∈ A.

Suppose again that X is an n-dimensional normed space. In the
construction of approximately convex sets A ⊆ X presented in Sec-
tion 3, we find that diam(A)→∞ as H(A,Co(A)) approaches C(X).
Section 4 refines this construction to produce such sets whose diame-
ters are not too large in an asymptotic sense as n → ∞. To make
this precise, let us say that an approximately convex set A is bad
if H(A,Co(A)) ≥ log2 n − 1. Then our main result says that every
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n-dimensional normed space contains bad approximately convex sets
of diameter O(

√
n(log n)2). The proof uses a result of Bourgain and

Szarek [1] from the local theory of Banach spaces.
In Section 5 we show that the factor

√
n in the latter result is sharp

by demonstrating the lower bound diam(A) ≥ 0.76
√
n for all bad ap-

proximately convex sets in the Euclidean space Rn when n is sufficiently
large. We also construct nearly extremal approximately convex sets in
R
n of diameter O(

√
n log n), which is better than our estimate in the

general normed space case.
Our constructions uses the clasical entropy function

En(t1, . . . , tn+1) =
n+1∑
i=1

ti log2(1/ti)

defined on the standard n-simplex. In particular, we make heavy use of
the fact that En is an approximately convex function. This observation
seems to be new, and we include its short proof in Section 2. As
a corollary we obtain the best constants in the classical Hyers-Ulam
stability theorem [10] when n+ 1 is a power of 2.

The last two sections concern approximately convex sets in infinite-
dimensional spaces. The results in Section 6 are in principle not new:
they are essentially reformulations of known results of Larsson [11] and
of Casini and Papini [3] (also of Bruck [2]). It is shown that X is
B-convex if and only if there exists c > 0 such that

diam(A) ≥ c exp(cH(A,Co(A)))

for every approximately convex set A ⊆ X. A similar bound with a
sharp exponent is given for spaces of type p.

Our deepest and perhaps most interesting result is Theorem 7.1 of
Section 7, which says that the trivial inequality

diam(A) ≥ H(A,Co(A))

is actually best possible in general Banach spaces. More precisely, we
show that for every M > 0 there exists a Banach space X (which is
isomorphic to `1) and an approximately convex set A ⊆ X such that

diam(A) = H(A,Co(A)) = M.

The space X is obtained from a rather complicated combinatorial con-
struction which may conceivably have other applications in Banach
space theory. Theorem 7.1 and its proof may be read independently of
the rest of the paper.

Finally, a few words about notation. All normed spaces are assumed
to be real. The closed unit ball {x ∈ X : ‖x‖ ≤ 1} of a normed space
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X is denoted BX . The closed ball of radius R is denoted BR(X). The
dual space of X is denoted X∗. A closed subspace Y of X has a finite-
dimensional decomposition if there exist finite-dimensional subspaces
Fn ⊆ Y (n ≥ 1) such that every y ∈ Y admits a unique representation
as a convergent series y =

∑∞
n=1 yn with yn ∈ Fn. This implies that the

finite-dimensional projections Pn(y) =
∑n

i=1 yi are uniformly bounded
in the operator norm. We write Y =

∑∞
n=1⊕Fn. The sequence spaces

`p, the finite-dimensional spaces `np , the Lebesgue spaces Lp(0, 1) (1 ≤
p ≤ ∞), and the space C(0, 1) of all continuous functions on [0, 1], are
all equipped with their classical norms. More specialized terminology
from Banach space theory will be introduced as needed.

2. Approximately convex functions

Hyers and Ulam [10] introduced the notion of an ε-convex function.

Definition 2.1. Let C be a convex subset of X and let ε ≥ 0. A
function f : C → R is ε-convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ε(2)

for all x, y ∈ C and t ∈ [0, 1].

Note that if f is ε-convex then the function λf is λε-convex for each
λ > 0. Thus, ε merely plays the role of a scaling factor. For our results
it is convenient to normalize by taking ε = 1 as follows.

Definition 2.2. Let C be a convex subset of X. A function f : C → R

is approximately convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + 1(3)

for all x, y ∈ C and t ∈ [0, 1].

For n ≥ 1, let ∆n = {t = (ti)
n+1
i=1 : ti ≥ 0,

∑n+1
i=1 ti = 1} be the

standard n-simplex. Let ei (1 ≤ i ≤ n+1) be the vertices of ∆n and let
Fn be the collection of all approximately convex functions f : ∆n → R

satisfying f(ei) ≤ 0 for 1 ≤ i ≤ n+ 1. Now define

κ(n) = sup
f∈Fn

sup
x∈∆n

f(x).(4)

Cholewa [5] (cf. [9]) proved the following sharp version of the famous
Hyers-Ulam stability theorem [10].

Theorem A. [5] Let U ⊆ Rn be a convex set and let ε > 0. For every
ε-convex function f : U → R there exist convex functions g and g0 such
that

f(x) ≤ g(x) ≤ f(x) + κ(n)ε and |f(x)− g0(x)| ≤ κ(n)

2
ε.(5)
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Moreover, κ(n) is the sharp constant in (5) and satisfies the upper
bound κ(n) ≤ k for 2k−1 ≤ n < 2k, i.e. κ(n) ≤ dlog2(n+ 1)e.

Remark 2.3. Lazckovich [12] observed that κ(n) is the sharp constant
for every convex U with nonempty interior.

The following lemma will be used repeatedly.

Lemma 2.4. Let f : C → R be approximately convex, where C ⊂ X
is convex. Suppose that n ≥ 1 and that x1, . . . , xn+1 ∈ C. Then

f

(
n+1∑
i=1

tixi

)
≤

n+1∑
i=1

tif(xi) + κ(n)(6)

for all (ti)
n+1
i=1 ∈ ∆n.

Proof. Define F : ∆n → R by

F (t) = f

(
n+1∑
i=1

tixi

)
−

n+1∑
i=1

tif(xi).

Then F is approximately convex and F (ei) = 0 for 1 ≤ i ≤ n + 1. So
F (t) ≤ κ(n) for all t ∈ ∆n, which gives (6).

For our results on approximately convex sets we require a good lower
bound for κ(n): we shall show that κ(n) ≥ log2(n+ 1), which improves
the bound κ(n) ≥ (1/2) log2(n+ 1) given in [12].

We require the following lemma from [6] concerning the function φ(t)
defined by φ(0) = 0 and φ(t) = −t log2 t (t ∈ (0, 1]). For completeness
we include the proof.

Lemma 2.5. For all t, x, y ∈ [0, 1], we have

0 ≤ φ(tx+ (1− t)y)− tφ(x)− (1− t)φ(y) ≤ φ(t)x+ φ(1− t)y.
Proof. The left-hand inequality just says that φ is concave (to see this
note that φ′′(t) = −1/(t ln 2) < 0). To prove the right-hand inequality,
first consider the case 0 < x ≤ y ≤ 1. For fixed t and y, let

ψ(x) = φ(tx+ (1− t)y)− tφ(x)− (1− t)φ(y).

Then

ψ′(x) =
t

ln 2
(lnx− ln(tx+ (1− t)y)) ≤ 0.

Thus ψ(x) is decreasing on [0, y] and attains its maximum at x = 0.
But

ψ(0) = φ((1− t)y)− (1− t)φ(y)

= −(1− t)y log2((1− t)y) + (1− t)y log2 y

= −(1− t)y log2(1− t) = φ(1− t)y.
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Thus, if x ≤ y, then

φ(tx+ (1− t)y)− tφ(x)− (1− t)φ(y) ≤ φ(1− t)y ≤ φ(t)x+ φ(1− t)y.

Similarly, if y ≤ x, then

φ(tx+ (1− t)y)− tφ(x)− (1− t)φ(y) ≤ φ(t)x ≤ φ(t)x+ φ(1− t)y.

The approximately convex sets which we construct in the next section
are essentially graphs of the entropy functions

En(t1, . . . , tn+1) =
n+1∑
i=1

ti log2(1/ti) ((ti)
n+1
i=1 ∈ ∆n).

The following crucial observation seems to be new.

Proposition 2.6. En is a continuous concave approximately convex
function on ∆n. In particular, En is approximately affine, i.e.

|En(tx+ (1− t)y)− tEn(x)− (1− t)En(y)| ≤ 1(7)

for all x, y ∈ ∆n and t ∈ [0, 1].

Proof. En(t) =
∑n+1

i=1 φ(ti) is a sum of concave functions (by
Lemma 2.5) and so En is concave. For x = (xi)

n+1
i=1 and y = (yi)

n+1
i=1 in

∆n and t ∈ [0, 1], we can use Lemma 2.5 for the first inequality to get

En(tx+ (1− t)y)−tEn(x)− (1− t)En(y)

=
n+1∑
i=1

(φ(txi + (1− t)yi)− tφ(xi)− (1− t)φ(yi))

≤
n+1∑
i=1

(φ(t)xi + φ(1− t)yi)

= φ(t)
n+1∑
i=1

xi + φ(1− t)
n+1∑
i=1

yi

= φ(t) + φ(1− t).

The function φ(t) + φ(1− t) is concave and symmetric about t = 1/2.
Thus,

φ(t) + φ(1− t) ≤ 2φ(1/2) = 1,

with equality in the last inequality only if t = 1/2.
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Remark 2.7. The fact that En has the weaker property of being ap-
proximately Jensen-convex (which corresponds to setting t = 1/2 in
Definition 2.2) is well-known and has been observed by various authors,
e.g. [12].

Note that the following theorem gives the sharp constant in the Hyers-
Ulam stability theorem when n+ 1 is a power of 2.

Theorem 2.8. The constants κ(n) satisfy the bounds

log2(n+ 1) ≤ κ(n) ≤ dlog2(n+ 1)e.(8)

In particular, κ(n) = log2(n+ 1) when n+ 1 is a power of 2.

Proof. The upper bound is due to Cholewa [5]. For the lower bound,
since En ∈ Fn, we have

κ(n) ≥ max
t∈∆n

En(t) = En(1/(n+ 1), . . . , 1/(n+ 1)) = log2(n+ 1).

Remark 2.9. Obviously, κ(1) = 1. Green [8] showed that κ(2) = 5/3.
In a later paper we shall show that, for n ≥ 1,

κ(n) = [log2(n+ 1)] + 2− 21+[log2(n+1)]

n+ 1
,

where [x] is the greatest integer function. The proof is too long to be
included here. The corresponding constants for bounded Jensen-convex
functions were computed in [6].

3. Approximately convex sets

Theorem 3.1. let X be an n-dimensional normed space. There is a
least positive constant C(X) such that

H(A,Co(A)) ≤ C(X) sup
t∈[0,1]

H(tA+ (1− t)A,A)(9)

for every nonempty A ⊆ X. Moreover, C(X) satisfies

log2 n ≤ C(X) ≤ κ(n).(10)

In particular, log2 n ≤ C(X) ≤ dlog2(n+ 1)e ≤ log2 n+ 1.

Proof. We may assume that the right-hand side of (9) is finite, oth-
erwise there is nothing to prove. Observe that the effect of replacing
A by λA is to multiply both sides of (9) by |λ|. So, by choosing λ
appropriately, we may assume that

sup
t∈[0,1]

H(tA+ (1− t)A,A) = 1.
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The right-hand estimate for C(X) is due to Casini and Papini [3].
For completeness we recall the proof. Let f(x) = d(x,A) (x ∈ X).
First note that f is 1-Lipschitz and non-negative. To see that f is
approximately convex, note that for x, y ∈ X, a, b ∈ A, and t ∈ [0, 1],
we have

f(tx+ (1− t)y) = d(tx+ (1− t)y, A)

≤ ‖(tx+ (1− t)y)− (ta+ (1− t)b)‖
+ d(ta+ (1− t)b, A)

≤ t‖x− a‖+ (1− t)‖(y − b)‖+ 1.

Taking the infimum of this expression over all choices of a and b yields

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + 1.

Now suppose that x ∈ Co(A). By Carathéodory’s Theorem (see e.g.
[18, Thm. 17.1]), x =

∑n+1
i=1 tiai, a convex combination of n+1 elements

ai ∈ A. Then Lemma 2.4 yields

f(x) ≤
∑

tif(ai) + κ(n) = κ(n),

since f(a) = 0 for all a ∈ A. The left-hand inequality uses the entropy
functions En. Let (ei)

n−1
i=0 be an Auerbach basis for X (see e.g. [14, p.

16]). Recall that this means that

max |ai| ≤

∥∥∥∥∥
n−1∑
i=0

aiei

∥∥∥∥∥ ≤
n−1∑
i=0

|ai|.(11)

for all scalars a0, . . . , an−1. Set en = 0 so that Co{ei : 1 ≤ i ≤ n} is an
(n− 1)-simplex. For each M > 0, we define a set AM thus:

AM =

{
M

n−1∑
i=1

tiei + En−1(t1, . . . , tn)e0 : (ti)
n
i=1 ∈ ∆n−1

}
First let us verify that AM is approximately convex. Suppose that 0 ≤
t ≤ 1 and that a = M

∑n−1
i=1 xiei + En−1(x)e0 and b = M

∑n−1
i=1 yiei +

En−1(y)e0 belong to AM , where x = (xi)
n
i=1 and y = (yi)

n
i=1 belong to

∆n−1. Then c = M
∑n−1

i=1 ziei + En−1(z)e0 also belongs to AM , where
z = tx + (1− t)y. Since e0 is a unit vector and En−1 is approximately
affine (7), we have

‖ta+ (1− t)b− c‖
= |tEn−1(x) + (1− t)En−1(y)− En−1(tx+ (1− t)y)|
≤ 1,
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and so AM is approximately convex. Note that x0 = (M/n)
∑n−1

i=1 ei ∈
Co(AM). We shall show that d(x0, AM) → log2 n as M → ∞. To see
this, fix ε > 0. By continuity of En−1 there exists α > 0 such that if
max1≤i≤n−1 |ti − 1/n| ≤ α then En−1(t1, . . . , tn) ≥ log2 n − ε, whence
by (11)∥∥∥∥∥x0 −

(
M

n−1∑
i=1

tiei + En−1(t1, . . . , tn)e0

)∥∥∥∥∥ ≥ En−1(t1, . . . , tn)

≥ log2 n− ε.
Now suppose, on the other hand, that max1≤i≤n−1 |ti − 1/n| ≥ α. By
(11)∥∥∥∥∥x0 −

(
M

n−1∑
i=1

tiei + En−1(t1, . . . , tn)e0

)∥∥∥∥∥ ≥M max
1≤i≤n−1

|ti − 1/n|

≥Mα→∞
as M → ∞. Thus, for all sufficiently large M , we have d(x0, AM) ≥
log2 n− ε. Since ε > 0 is arbitrary, this gives the lower bound C(X) ≥
log2 n.

For large n the lower bound C(X) ≥ log2 n is actually attained for
certain Euclidean spaces (e.g. for X = R16).

Theorem 3.2. Suppose that n = 2k, where k ≥ 4. Then C(Rn) =
log2 n.

Proof. For n = 2k, we have κ(n − 1) = log2 n. The argument used to
prove Theorem 3.7 of [6] (too lengthy to recall here) shows that the
result will follow provided n = 2k is large enough to ensure that

κ(n− 1) ≥
√

2n(
√

2n+
√
n− 1)

n+ 1
.

This holds for k ≥ 4.

Remark 3.3. The calculation of C(Rn) for small n seems problematic.
Clearly C(R) = 1, and examples show that C(R2) > 1.37. In [6] the
corresponding constants for approximately Jensen-convex sets in Rn

were computed in all dimensions.

Before turning to infinite-dimensional spaces, let us make the follow-
ing definition (the analogue of Definition 2.1).

Definition 3.4. Let ε > 0. A set A ⊆ X is ε-convex if

d(ta+ (1− t)b, A) ≤ ε

for all a, b ∈ A.
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Theorem 3.5. Let X be an infinite-dimensional normed space. There
exists an approximately convex set A ⊆ X such that H(A,Co(A)) =∞.

Proof. We shall use the following consequence of Theorem 3.1. Let
ε > 0 and M > 0. Then every normed space of sufficiently large
dimension contains a compact ε-convex set A such that H(A,Co(A)) >
M . Using this fact repeatedly, a routine argument (cf. [14, p. 4]) shows
that X contains a subspace Y with a finite-dimensional decomposition∑∞

n=1⊕Fn and sets An ⊆ Fn (n ≥ 1) such that An is a 2−n-convex set
containing zero and H(An,Co(An)) > n. Let A be the collection of all
vectors of the form

∑
n xn, where xn ∈ An and only finitely many of

the xn’s are nonzero.
First let us verify that A is approximately convex. Suppose that

x =
∑

n xn and y =
∑

n yn are in A and that 0 ≤ t ≤ 1. Since An is 2−n-
convex and compact, there exists zn ∈ An with ‖zn−(txn+(1−t)yn)‖ ≤
2−n. Moreover, we may choose the zn’s so that only finitely many
are nonzero, ensuring that z =

∑
n zn belongs to A. By the triangle

inequality

‖z − (tx+ (1− t)y)‖ ≤
∑
n

‖zn − (txn + (1− t)yn)‖ ≤
∑
n

2−n = 1.

Let us verify that H(A,Co(A)) = ∞. Since
∑∞

n=1⊕Fn is a finite-
dimensional decomposition, the natural projection maps from∑∞

n=1⊕Fn onto Fn are uniformly bounded in operator norm by K,
say. Since H(An,Co(An)) > n, there exists wn ∈ Co(An) such that
d(wn, An) ≥ n, and since An ⊆ Fn, we have

d(wn, A) ≥ (1/K)d(wn, An) ≥ n/K.

Thus, H(A,Co(A)) =∞.

As an application of the last result we show that the Hyers-Ulam sta-
bility theorem (Theorem A above) fails rather dramatically in every
infinite-dimensional normed space (cf. [3]).

Corollary 3.6. Let X be an infinite-dimensional normed space. There
exists a 1-Lipschitz approximately convex function f : X → R with the
following property. For all M > 0 there exists R > 0 such that for
every convex function g : BR(X)→ R, we have

sup
x∈BR(X)

|f(x)− g(x)| > M.

In particular, sup{|f(x)−g(x)| : x ∈ X} =∞ for every convex function
g : X → R.
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Proof. Using the notation of Theorem 3.5, we prove that f(x) = d(x,A)
has the required property. It was shown in Theorem 3.1 that f is
approximately convex and 1-Lipschitz. Choose R so that Co(An) ⊆
BR(X). Suppose that g : BR(X) → R is a convex function satisfying
|g(x) − f(x)| ≤ M . Since f(x) = 0 for all x ∈ An, it follows that
g(x) ≤M for all x ∈ An, and hence g(x) ≤M for all x ∈ Co(An). But
f(wn) > n, and so M > n/2.

Recall that a normed space X is B-convex if X does not ‘contain
`n1 ’s uniformly’, i.e., if there exist n ≥ 2 and α > 0 such that

min
±

∥∥∥∥∥
n∑
i=1

±xi

∥∥∥∥∥ ≤ n− α

for all xi ∈ B(X) (1 ≤ i ≤ n).
For general normed spaces, Corollary 3.6 is close to optimal in view

of the following positive result on the approximation of Lipschitz ε-
convex functions on bounded sets from [4]. (Here (a)⇒(c) is [4, Thm.
1] and (b)⇒(a) is implicit in [4, Props. 1,2]. The other implication
(c)⇒(b) is trivial.)

Theorem B. [4] Let X be a normed space. The following are equiva-
lent:

(a) X is B-convex;
(b) there exist k < 1/2 and α > 0 such that for every ε < α and for

every ε-convex 1-Lipschitz function f : B(X) → R there exists a
convex function g : B(X)→ R such that

|g(x)− f(x)| ≤ k (x ∈ B(X));

(c) there exist c > 0 and α > 0 such that for every ε < α and for
every ε-convex 1-Lipschitz function f : B(X) → R there exists a
convex function g : B(X)→ R such that

|g(x)− f(x)| ≤ cε log2(1/ε) (x ∈ B(X)).

Remark 3.7. Condition (b) of this result is very pertinent to Section 7
below, where we prove (Corollary 7.13) that for X = C(0, 1) there is
no constant k < 1 such that (b) holds. This is clearly an optimal result
since every 1-Lipschitz function f on B(X) satisfies |f(x) − c| ≤ 1,
where c = (inf f + sup f)/2, i.e. (b) holds for k = 1.

4. Diameter of approximately convex sets

Our next goal is to prove that every n-dimensional normed space
contains a “bad” approximately convex set (that is, H(A,Co(A)) ≥
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log2(n + 1) − ε) of diameter O(
√
n(log n)2). In the next section we

shall prove that for Euclidean spaces this estimate for the diameter is
fairly sharp.

For two isomorphic Banach spaces X and Y recall that their Banach-
Mazur distance d(X,Y ) is defined thus:

d(X, Y ) = inf{‖T‖‖T−1‖ : T : X → Y is an isomorphism}.

Theorem 4.1. Let ε ∈ (0, 3). For all sufficiently large n and all
normed spaces X of dimension n there exists an approximately con-
vex set A ⊆ X such that

H(A,Co(A)) ≥ log2 n− ε(12)

and

diam(A) ≤ 25

ε
(log2 n)2d(X, `n1 ).(13)

Proof. In order to simplify notation we shall prove the result for all
normed spaces X of dimension n+1 (with n+1 replacing n in (12) and
(13)). Note that X contains a subspace Z of codimension one such that
d(Z, `n1 ) ≤ d(X, `n+1

1 ) (since `n+1
1 contains subspaces isometric to `n1 ).

Let F be a linear functional in X∗ of unit norm such that Z = ker(F ).
Let e0 be an unit vector in X which is normed by F , i.e., such that
F (e0) = ‖e0‖ = 1. Note that by the triangle inequality

‖z + λe0‖ ≥ max(‖z‖ − |λ|, |λ|) ≥ max

(
‖z‖
2
, |λ|
)

(14)

for all z ∈ Z (= ker(F )) and λ ∈ R. Since d(Z, `n1 ) ≤ d(X, `n+1
1 ), Z has

a basis (ek)
n
k=1 satisfying

n∑
k=1

|ak| ≤

∥∥∥∥∥
n∑
k=1

akek

∥∥∥∥∥ ≤ d(X, `n+1
1 )

n∑
k=1

|ak|,(15)

for all choices of scalars (ak)
n
k=1. For each M > 0, define AM ⊆ X by

AM =

{
M

(
n∑
k=1

tkek

)
+ En−1(t1, . . . , tn)e0 : (t1, . . . , tn) ∈ ∆n−1

}
.

It was proved in Theorem 3.1 that AM is approximately convex for all
choices of M . Observe also that

x0 =
M

n

n∑
k=1

ek ∈ Co(AM).

In order to verify (12), it suffices to show that

d(x0, AM) ≥ log2(n+ 1)− ε
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for a suitable choice of M . To that end, fix α ∈ (0, 1) and fix y =
M(
∑n

k=1 tkek) + (
∑n

k=1 tk log2(1/tk)) e0 ∈ AM . Let

B1 = {k : tk ≥ (1 + α)/n}, B2 = {k : tk < (1 + α)/n},

and set µ(Bi) =
∑

k∈Bi tk (i = 1, 2). Then, by (14) for the first in-
equality and the left-hand side of (15) for the second, we have

‖y − x0‖ =

∥∥∥∥∥
n∑
1

M(tk − (1/n))ek +

(
n∑
k=1

tk log2(1/tk)

)
e0

∥∥∥∥∥
≥ max

(
1

2

∥∥∥∥∥
n∑
1

M(tk − (1/n))ek

∥∥∥∥∥ ,
n∑
k=1

tk log2(1/tk)

)

≥ max

(
M

2

n∑
1

|tk − (1/n)|,
n∑
k=1

tk log2(1/tk)

)

≥ max

(∑
k∈B1

M

2
|tk − (1/n)|,

∑
k∈B2

tk| log2(tk)|

)

≥ max

(
M

2

(
α

2

∑
k∈B1

tk

)
,

(∑
k∈B2

tk

)
(log2 n− log2(1 + α))

)

(since tk − (1/n) ≥ (α/(1 + α))tk ≥ (α/2)tk for k ∈ B1)

≥ max

(
Mα

4
µ(B1), (log2 n− (3α/2))µ(B2)

)
,

where at the last step we use the fact that log2(1 + α) ≤ 3α/2 for
α ∈ [0, 1]. Now set M = 4(log2 n)2/α. There are two cases to consider.
First, if µ(B2) ≥ 1− α/ log2 n, then

‖y − x0‖ ≥
(

log2 n−
3α

2

)
µ(B2)

≥
(

log2 n−
3α

2

)
(1− α

log2 n
) ≥ log2 n−

5α

2
.

Secondly, if µ(B1) ≥ α/ log2 n, then

‖y − x0‖ ≥
M

4

α

log2 n
= log2 n.

Hence ‖y − x0‖ ≥ log2 n − (5α/2). Setting α = ε/3 we see that (12)
is satisfied (with n replaced by n+ 1) by A = AM whenever n is large
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enough to ensure that log2(n+ 1)− log2(n) ≤ α/2. Finally, the right-
hand side of (15) yields

diam(A) ≤ 2d(X, `n+1
1 )M + log2 n

≤ d(X, `n+1
1 )(4(log2 n)2/α) + log2 n

≤ 25(log2 n)2d(X, `n+1
1 )/ε,

for all sufficiently large n, and so A satisfies condition (13).

Since d(`np , `
n
1 ) = n(p−1)/p for 1 ≤ p ≤ 2, we get the following corollary.

Corollary 4.2. Let 1 < p ≤ 2 and let ε ∈ (0, 3). For all sufficiently
large n there exists an approximately convex set A ⊆ `np such that

H(A,Co(A)) ≥ log2 n− ε

and

diam(A) ≤ 25

ε
n(p−1)/p(log2 n)2.

Remark 4.3. For p = 2, a much stronger result will be proved in the
next section.

For p = 1, we may reduce the exponent of log2 n.

Proposition 4.4. Let ε ∈ (0, 2). For all sufficiently large n there
exists an approximately convex set A ⊂ `n1 such that

H(A,Co(A)) ≥ log2 n− ε(16)

and

diam(A) ≤
(

8

ε
+ 1

)
log2 n.(17)

Proof. Setting X = `n+1
1 , we follow Theorem 4.1 taking advantage of

some simplifications in the proof which we now indicate. First, we may
choose (e0, . . . , en) to be the standard unit vector basis of `n+1

1 , so that
(14) becomes simply ‖z + λe0‖ = ‖z‖+ |λ|, for all z =

∑n
i=1 aiei ∈ Z.

The estimate for ‖y − x0‖ then becomes

‖y − x0‖ ≥
(
Mα

2
µ(B1) + (log2 n− (3α/2))µ(B2)

)
.

Setting M = 2(log2 n)/α, we obtain

‖y − x0‖ ≥
(

log2 n−
3α

2

)
(µ(B1) + µ(B2)) = log2 n−

3α

2
.
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Setting α = ε/2 we see that (16) is satisfied (with n replaced by n+ 1)
by A = AM whenever n is large enough to ensure that log2(n + 1) −
log2(n) ≤ α/2. Finally,

diam(A) ≤ 2M + log2 n ≤
(

4

α
+ 1

)
log2 n,

which yields (17).

Remark 4.5. In particular, `n1 contains “bad” approximately convex
sets of “small” diameter O(log n). Indeed, the trivial lower bound

diam(A) ≥ H(A,Co(A)) ≥ log2 n− ε

shows that the diameter must grow at least logarithmically with n.

Finally, we come to the main result of this section.

Theorem 4.6. Let ε ∈ (0, 6). For all sufficiently large n and all
normed spaces X of dimension n there exists an approximately con-
vex set A ⊆ X such that

H(A,Co(A)) ≥ log2 n− ε(18)

and

diam(A) ≤ K(log2 n)2
√
n

ε3
,(19)

where K is an absolute constant.

Proof. Fix θ ∈ (0, 1). Bourgain and Szarek [1] (cf. also [19]) proved
that every n-dimensional normed space X contains a subspace Y , with
dimY = k > [θn], satisfying

d(Y, `k1) ≤ C(1− θ)−2
√
n,(20)

where C is a constant. Set θ = 1− ε/6. Then, for ε < 1,

log2 k ≥ log2 n− log2(1/θ) ≥ log2 n− ε/2.(21)

Applying Theorem 4.1 to Y and to ε/2 yields an approximately convex
set A ⊆ Y satisfying (18) (from (21) and (12)) and (19) (from (20) and
(13)).
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5. Bounds in Euclidean spaces

In this section we prove that the “bad” approximately convex sets
constructed in Theorem 4.6 necessarily have diameter larger than
0.76
√
n in n-dimensional Euclidean spaces when n is large. The proof

uses only elementary geometry. Along the way we prove a result about
Hilbert space (Theorem 5.2) which may be of independent interest be-
cause of its sharp constants. We also improve the upper bound of
Corollary 4.2 by constructing a nearly extremal approximately convex
set in Rn of diameter O(

√
n log n).

Recall that a simplex Σ ⊆ Rn is regular if its edges all have the same
Euclidean length.

Lemma 5.1. Let Σ be an n-simplex which contains the origin in its
interior and whose vertices lie on the Euclidean unit sphere Sn−1. For
each 0 ≤ k ≤ n− 1 there exists a k-face Fk of Σ such that

d(0, Fk) ≤ αn,k =

√
n− k
n(k + 1)

,

with equality if Σ is a regular simplex.

Proof. First we prove the result for k = n−1. Let V be one of the ver-
tices for which the corresponding barycentric coordinate of the origin
is at most 1/(n + 1). Let the line segment through the origin joining
V to the opposite (n − 1)-face F intersect F in a point P , say. Then
the origin divides the line joining V to P into two segments bearing a
ratio of not less than n to 1. Since V lies on the unit sphere, it follows
that d(0, P ) ≤ 1/n. Thus, d(0, F ) ≤ 1/n = αn,n−1, which completes
the proof for the case k = n− 1.

The proof for 0 < k < n − 1 is by induction on n. Suppose that
the result holds for n − 1 and for 0 < k < n − 1. Let Fn−1 be an
(n − 1)-face of Σ nearest to the origin and let Q be the point in Fn−1

nearest to the origin. Then 0 ≤ d = d(0, Q) = d(0, Fn−1) ≤ 1/n. The
largest Euclidean ball inscribed in Σ with center the origin touches
Fn−1 at Q. Hence Q is in the interior of the (n−1)-simplex Fn−1 whose
vertices lie on the (n − 2)-sphere with center Q and radius

√
1− d2.

Fix 0 < k < n− 1. By the inductive hypothesis applied to Q and Fn−1

there exists a k-face Fk of Fn−1 such that

d(Q,Fk) ≤ αn−1,k

√
1− d2.

So

d(0, Fk)
2 = d(0, Q)2 + d(Q,Fk)

2 ≤ d2 + (1− d2)α2
n−1,k,
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where 0 ≤ d ≤ 1/n. The right-hand side is greatest when d = 1/n,
which gives

d(0, Fk)
2 ≤ 1

n2
+

(
1− 1

n2

)
α2
n−1,k = α2

n,k.

The following theorem is perhaps of independent interest because of
the sharp constants.

Theorem 5.2. Let (xi)
n+1
i=1 be elements from the unit ball of a Hilbert

space H and suppose that 0 ∈ Co({xi : 1 ≤ i ≤ n + 1}). For each
1 ≤ j ≤ n, there exists J ⊆ {i : 1 ≤ i ≤ n+ 1} such that |J | = j and

d(0,Co({xi : i ∈ J})) ≤

√
n+ 1− j

nj
.

Proof. By slightly perturbing the elements, if necessary, we may assume
that the set {xi : 1 ≤ i ≤ n + 1} is affinely independent and that the
origin lies in the interior of the simplex Co({xi : 1 ≤ i ≤ n + 1}). Let
yi = xi/‖xi‖. Clearly,

d(0,Co({xi : i ∈ A})) ≤ d(0,Co({yi : i ∈ A}))
for all A ⊆ {i : 1 ≤ i ≤ n+ 1}. Now Lemma 5.1 applied to the simplex
Σ with vertices {yi : 1 ≤ i ≤ n+ 1} yields the desired result.

Theorem 5.3. Suppose that A ⊆ Rn is approximately convex and sat-
isfies H(A,Co(A)) ≥ log2 n−1. Then, for any integer j with 1 ≤ j ≤ n
we have

diam(A) ≥
(

(log2 n− 1− dlog2 je)
√
j√

n− j + 1

)√
n(22)

In particular, A satisfies the (nontrivial) lower bounds diam(A) ≥
0.7525

√
n for all n ≥ 20, and diam(A) ≥ 0.768

√
n for all sufficiently

large n.

Proof. Assuming (as we may) that A is compact, there exists x0 ∈
Co(A) with d(x0, A) ≥ log2 n − 1. By translating A, we may as-
sume that x0 = 0. Thus, 0 ∈ Co(A) and d(0, A) ≥ log2 n − 1. The
fact that diam(A) = D now implies that ‖x‖ ≤ D for all x ∈ A.
By Carathéodory’s Theorem, there exist (xi)

n+1
i=1 in A such that 0 ∈

Co({xi : 1 ≤ i ≤ n + 1}). Let 1 ≤ j ≤ n, then by Theorem 5.2 there
exists J ⊆ {i : 1 ≤ i ≤ n+ 1} such that |J | = j and

d(0,Co({xi : i ∈ J})) ≤

(√
n− j + 1

nj

)
D =

(√
n− j + 1

j

)
D√
n
.



18 S. J. DILWORTH, RALPH HOWARD AND JAMES W. ROBERTS

Let y0 be the point in Co({xi : i ∈ J}) nearest the origin. Because A is
approximately convex, the function d(x,A) is an approximately convex
function which vanishes at each xi. So, by Lemma 2.4, d(y0, A) ≤
κ(j − 1) ≤ dlog2 je for 2 ≤ j ≤ n and if j = 1 then y0 ∈ A and
d(y0, A) = 0 = dlog2 1e. Thus d(y0, A) ≤ dlog2 je for 1 ≤ j ≤ n.
Therefore

log2 n−1 ≤ d(0, A) ≤ ‖y0‖+d(y0, A) ≤

(√
n− j + 1

j

)
D√
n

+dlog2 je

which yields

D ≥
(

log2 n− 1− dlog2 je
)√

j
√
n− j + 1

√
n = f(j, n)

√
n

where this defines f(j, n). If k is a non-negative integer with 2k ≤ n
then dlog2 2ke = k = log2(2k). Therefore

f(2k, n) =

(
log2 n− 1− log2 2k

)√
2k

√
n− 2k + 1

=
log2(n/2k)− 1√
(n/2k)− 1 + 2−k

= F (n/2k) + r(k, n)

where F (α) = (log2(α) − 1)/(
√
α− 1) and r(k, n) → 0 as n, k → ∞.

For each n and α > 0 there is an integer k so that α ≤ n/2k ≤ 2α, and
for α0 = 9.109883742

α0 ≤ α ≤ 2α0 implies F (α) ≥ 0.76811996 .

Therefore if n is sufficiently large and k is chosen so that α0 ≤ n/2k ≤
2α0 then

max
1≤j≤n

f(j, n) ≥ f(2k, n) ≥ 0.768

and thus D ≥ 0.768
√
n.

For any n and k ≥ 1

f(2k, n) ≥ log2(n/2k)− 1√
(n/2k)− 1 + 1/21

= G(n/2k)

where G(β) = (log2(β) − 1)/
√
β − 1/2. If β0 = 9.919205826, then

β0 ≤ β ≤ 2β0 implies G(β) ≥ 0.7525. Now assume that n ≥ 20, and
that β0 ≤ n/2k ≤ 2β0. Then 1.008 < 20/(2β0) ≤ n/(2β0) ≤ 2k, so
k ≥ 1. Therefore the argument above implies that for n ≥ 20 the
bound D ≥ 0.7525

√
n holds. For this lower bound to be nontrivial we

also require 0.7525
√
n ≥ log2 n − 1. However this holds for all n ≥ 1

and so the lower bound on D holds and is nontrivial for all n ≥ 20.



APPROXIMATELY CONVEX SETS IN NORMED SPACES 19

Remark 5.4. A similar argument shows that there exists ε > 0 such
that if A ⊆ Rn is approximately convex and satisfies H(A,Co(A)) ≥
log2 n− ε, then diam(A) ≥ 1.16

√
n for infinitely many n.

Finally, we improve the upper estimate for the diameter provided by
Corollary 4.2.

Theorem 5.5. Let (ei)
n
i=0 be the unit vector basis of `n+1

2 . Then, for

n ≥ 4 and M =
√

(2/ ln 2)n log2 n, the set

A =

{
M

n∑
t=1

tiei + En−1(t1, . . . , tn)e0 : (t1, . . . , tn) ∈ ∆n−1

}
is approximately convex and satisfies the following:

H(A,Co(A)) = log2 n and diam(A) ≤ 2√
ln 2

√
n log2 n+ log2 n.

Remark 5.6. Theorem 5.5 is a significant improvement on Corollary 4.2
as it eliminates the dependence on ε and reduces the exponent of log n
in the estimate for diam(A). When n+ 1 = 2k, the set A is very nearly
extremal, since in this case H(A,Co(A)) ≤ log2(n + 1) = C(Rn+1) by
Theorem 3.2.

The proof of this result is a consequence of the solution to a con-
strained optimization problem. Consider the following functional:

I(y) = M2

∫ n

0

y(x)2 dx+

(∫ n

0

φ(y(x)) dx

)2

,

where y(x) is a non-negative function defined on the open interval
(0, n). (Recall that φ(t) = t log2(1/t).) The problem is to minimize
I(y) subject to the following constraints on y:

0 ≤ y ≤ 1 and

∫ n

0

y(x) dx = 1.

We prove in Lemma 5.10 below that, for M2 = (2/ ln 2)n log2 n, I(y)
is minimized by y0 = (1/n)χ(0,n).

Assuming this result, let us complete the proof of Theorem 5.5.

Proof of Theorem 5.5. Clearly,

H(A,Co(A)) ≤ max
t∈∆n−1

En−1(t) = log2 n.

To establish the reverse inequality, we show that d(x0, A) = log2 n for
x0 = (M/n)

∑n
i=1 ei. Observe that

d(x0, A)2 = min

{
M2

n∑
i=1

(
ti −

1

n

)2

+ En−1(t1, . . . , tn)2 : (t1, . . . , tn) ∈ ∆n−1

}
,
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and also that

M2

n∑
i=1

(
ti −

1

n

)2

+ En−1(t1, . . . , tn)2 = g(t1, . . . , tn)− M2

n
,

where

g(t1, . . . , tn) = M2

n∑
i=1

t2i +

(
n∑
i=1

φ(ti)

)2

.

Hence

d(x0, A)2 = min{g(t1, . . . , tn) : (t1, . . . , tn) ∈ ∆n−1} −
M2

n
.

But g(t1, . . . , tn) = I(g̃), where g̃(x) =
∑n

k=1 tkχ[k−1,k). (Note that g̃(x)
satisfies the constraints for the optimization problem.) Since I(y) is
minimized by y0 = (1/n)χ(0,n) (see Lemma 5.10), we get

g(t1, . . . , tn) = I(g̃) ≥ I(y0) = g(1/n, . . . , 1/n).

Hence

d(x0, A)2 = g(1/n, . . . , 1/n)− M2

n
= (log2 n)2.

Thus, H(A,Co(A)) ≥ log2 n. The estimate for diam(A) is straightfor-
ward.

The next four lemmas solve the constrained optimization problem.

Lemma 5.7. Let M > 0 and n ≥ 1. There exists a right-continuous
non-increasing function y0 on (0, n) which solves the constrained opti-
mization problem.

Proof. Let m be the infimum of I(y) taken over all y which satisfy the
constraints. There exist yn (n ≥ 1) satisfying the constraints such that
I(yn) → m as n → ∞. By replacing each yn by its non-increasing
rearrangement, we may assume that each yn is right-continuous and
non-increasing. By Helly’s selection theorem (see e.g. [15, p. 221]),
we may also assume (by passing to a subsequence) that yn(x)→ ỹ0(x)
pointwise. Since 0 ≤ yn ≤ 1, it follows from the Bounded Convergence
Theorem that ỹ0 satisfies the constraints and that I(ỹ0) = limn I(yn) =
m. Finally, let y0 be the right-continuous modification of ỹ0.

Lemma 5.8. There exists α ∈ (0, 1) such that the set of values taken
by y0 is a subset of {0, 1, α}.

Proof. In the notation of Lemma 5.7, we may assume that yk is a step
function minimizing I(y) over all step functions of the form∑k

j=1 ajχ[(j−1)n/k,jn/k) satisfying the constraints. A value λ ∈ (0, 1)
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taken by yk must satisfy the following Lagrange multiplier equation for
a local minimum:

2M2λ+

(
2

∫ n

0

φ(yk) dx

)
φ′(λ) = 2A,(23)

where A is a constant. It is easily seen that this equation has at most
two roots in (0, 1). By the pointwise convergence of yk to ỹ0, it follows
that y0 takes at most two values in (0, 1). Therefore we may apply
the method of Lagrange multipliers again to deduce that these values
must also satisfy (23) (with yk replaced by y0). Equivalently, setting
B =

∫ n
0
φ(y0) dx > 0,

M2λ+B(log2(1/λ)− (1/ ln 2)) = A.(24)

Suppose that there are two distinct roots, α and β, with 0 < α < β <
1, and suppose that y0 takes one of these values, α say, on an interval J .
(The argument is similar if y0 takes the value β.) Let g take the value 0
on the complement of J , and the values 1 and −1 on the left-hand and
right-hand halves of J , respectively. Since α ∈ (0, 1), it follows that
y0 + εg satisfies the constraints, provided ε > 0 is sufficiently small.
Moreover,

I(y0 + εg) = I(y0) + |J |
(
M2 − B

(ln 2)α

)
ε2 + o(ε2).

Since y0 minimizes I,

M2 − B

(ln 2)α
≥ 0.(25)

To derive a contradiction, suppose that y0 also takes the value β on an
interval. Then, by the same argument,

M2 − B

(ln 2)β
≥ 0.

Since (24) is satisfied by λ = α and λ = β, the Mean Value Theorem
implies the existence of γ ∈ (α, β) such that

M2 − B

(ln 2)γ
= 0.

Thus,

M2 − B

(ln 2)α
< M2 − B

(ln 2)γ
= 0.

But this contradicts (25). Thus, y0 cannot take the value β, which
completes the proof.



22 S. J. DILWORTH, RALPH HOWARD AND JAMES W. ROBERTS

Lemma 5.9. Suppose that n ≥ 4 and that

5n < M2 ≤ 2

ln 2
n log2 n.

Then y0 does not take the value 1.

Proof. For n ≥ 4, we have

I(y0) ≤ I

(
1

n
χ[0,n]

)
=
M2

n
+ (log2 n)2 ≤ 2

ln 2
log2 n+ (log2 n)2 <

M2

2
.

(26)

Suppose that y0 takes the value 1 on [0, x] and the nonzero value k ∈
(0, 1) on an interval of length (1 − x)/k ≤ n − x. If k ≥ 1/2 then
I(y0) ≥ (1/2)M2, which contradicts (26). So we may assume that
k ∈ (0, 1/2). Now

I(y0) = M2(x+ k(1− x)) + ((1− x) log2(1/k))2.

So

∂I(y0)

∂x
= M2(1− k)− 2 log2(1/k)2(1− x)

≥ M2

2
− 2 log2(1/k)2k(n− x)

(since (1− x) ≤ k(n− x))

≥ M2

2
− 2

(
max

0≤k≤1/2
k log2(1/k)2

)
n

≥
(

5

2
− 8

e2(ln 2)2

)
n > 0.

Since I(y0) minimizes I(y), it follows that x = 0, as desired.

Lemma 5.10. Suppose that n ≥ 4 and that M2 = (2/ ln 2)n log2 n.
Then y0 = (1/n)χ(0,n) and I(y0) = 2 log2 n+ (log2 n)2.

Proof. By Lemma 5.9, y0 takes only one nonzero value k ∈ [1/n, 1) on
an interval of length 1/k. So I(y0) = M2k + (log2(1/k))2. Thus,

∂I(y0)

∂k
= M2 − 2(log2(1/k))

(ln 2)k

=
2

ln 2

(
n log2 n−

1

k
log2(1/k)

)
≥ 0,

with equality if and only if k = 1/n. Since y0 minimizes I(y), it follows
that k = 1/n, which gives the result.
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Remark 5.11. SettingM2 = 6n in Lemma 5.10 yields an approximately
convex set set A ⊂ Rn+1 with diam(A) = O(

√
n) and H(A,Co(A)) ≥

log2 n− c log2 log2 n for some constant c.

6. Lower bounds in spaces of type p

First we recall the notion of type. In the following definition (εi)
∞
i=1

is a sequence of independent Bernoulli random variables, with P (εi =
1) = P (εi = −1) = 1/2, defined on a probability space (Ω,Σ, P ). The
expected value of a random variable Y is denoted EY .

Definition 6.1. Let 1 ≤ p ≤ 2. A normed space X is of type p if
there exists a constant Tp(X) (the ‘type p constant’) such that(

E

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
p)1/p

≤ Tp(X)

(
n∑
i=1

‖xi‖p
)1/p

for all n ≥ 1 and for all choices of xi ∈ X (1 ≤ i ≤ n).

The following theorem can be deduced from (and in fact is essentially
equivalent to) [3, Thm. 3.6]. For completeness we give a short direct
proof. We show in Corollary 6.6 below that the exponent of (p− 1)/p
in this theorem is sharp.

Theorem 6.2. Let 1 < p ≤ 2 and let X be a normed space of type p.
Suppose that A ⊆ X is approximately convex. Let D = diam(A) and
let d = H(A,Co(A)). Then, provided d ≥ 2, we have

D ≥ 81/p

16Tp(X)
(2d)(p−1)/p(27)

Proof. We may assume (cf. Theorem 5.3) that 0 ∈ Co(A), that d =
d(0, A), and that ‖a‖ ≤ D for all a ∈ A. Since 0 ∈ Co(A) there
exist m ≥ 1, ai ∈ A and pi > 0 (1 ≤ i ≤ m), with

∑m
i=1 pi = 1 and∑m

i=1 piai = 0.
Let (Yj)

∞
j=1 be a sequence of independent identically distributed X-

valued random variables defined by

P (Yj = ai) = pi (1 ≤ i ≤ m).

Then ‖Yj(ω)‖ ≤ D (ω ∈ Ω) and E Yj =
∑m

i=1 piai = 0. Thus, [13,
Prop. 9.11] yields (for each n)(

E

∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥
p)1/p

≤ 2Tp(X)

(
n∑
i=1

E‖Yi‖p
)1/p

≤ 2Tp(X)n1/pD.
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So there exist bni ∈ A (1 ≤ i ≤ n) with∥∥∥∥∥1

n

n∑
i=1

bni

∥∥∥∥∥ ≤ 2Tp(X)n(1−p)/pD(28)

Since A is approximately convex,

d

(
1

n

n∑
i=1

bni , A

)
≤ κ(n− 1) ≤ log2 n+ 1.

So

d(0, A) ≤

∥∥∥∥∥ 1

n

n∑
i=1

bni

∥∥∥∥∥+ d

(
1

n

n∑
i=1

bni , A

)
≤ 2Tp(X)n(1−p)/pD + log2 n+ 1

Put n = 2[d]−2 (noting that n ≥ 1 since d ≥ 2 by assumption) so that
log2 n+ 1 ≤ d− 1. Then

d = d(0, A) ≤ 2Tp(X)D(2d−3)(1−p)/p + d− 1,

which yields (27).

Remark 6.3. (28) and its probabilistic proof are from [2]. It is proved
in [2] that X has the convex approximation property if and only if X
has type p for some p > 1. When X is a Hilbert space, Theorem 5.2
above gave a deterministic proof of (28) with the sharp constants.

Corollary 6.4. Let X be a Banach space. The following are equiva-
lent:

(a) X is B-convex;
(b) there exists c > 0 such that for every approximately convex set

A ⊆ X, we have

diam(A) ≥ c exp(cH(A,Co(A))).(29)

Proof. It is known that X is B-convex if and only if X has type p
for some p > 1 [17]. Thus, (a)⇒(b) follows from Theorem 6.2. Now
suppose that X is not B-convex. By definition (see Section 3), X
contains ‘almost isometric’ copies of `n1 for all n. So by Remark 4.5
X contains approximately convex sets An such that H(An,Co(An)) ≥
log2 n − 1 and diam(An) ≤ C log2 n, where C is an absolute constant.
Clearly, (29) cannot hold in X, and so (b)⇒(a).

Remark 6.5. The above result is essentially equivalent to [3, Thm. 3.7],
which was first obtained in [11].
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The following corollary is a partial converse to Corollary 4.2. When
combined with the latter it shows that the factor n(p−1)/p in Corol-
lary 4.2 and the exponent of (p− 1)/p in Theorem 6.2 are both sharp.

Corollary 6.6. Let 1 < p < ∞. There exists a constant cp > 0 such
that if A ⊆ Lp(0, 1) is approximately convex and satisfies
H(A,Co(A)) ≥ log2 n− 1, then

diam(A) ≥

{
cpn

(p−1)/p (1 < p ≤ 2),

cpn
1/2 (2 ≤ p <∞).

Proof. It is known that Lp(0, 1) has type min(p, 2). Setting d = log2 n−
1 in Theorem 6.2 gives the result.

7. Sets with diam(A) = H(A,Co(A))

In this section we show that there exists an infinite-dimensional Ba-
nach space Y such that for every prescribed diameter D there exists an
approximately convex set A ⊆ Y such that diam(A) = H(A,Co(A)) =
D. This is clearly “worst possible”. More precisely, we shall prove the
following theorem.

Theorem 7.1. Let M > 0. There exist a Banach space (X, ‖·‖) that is
linearly isomorphic to `1 and an approximately convex set A ⊆ BM(X)
such that H(A,Co(A)) = diam(A) = 2M .

First observe that Theorem 7.1 admits the following reformulation
in terms of ε-convex sets.

Theorem 7.2. Let ε > 0. There exist a Banach space (X, ‖ · ‖) that
is linearly isomorphic to `1 and an ε-convex set A′ ⊆ B(X) such that
H(A′,Co(A′)) = diam(A′) = 2.

Proof. Let M = 1/ε and let X and A satisfy the conclusion of Theo-
rem 7.1. Then A′ = εA has the required properties.

The following lemma is known [3], but for completeness we outline
the proof.

Lemma 7.3. Suppose that A ⊆ X is approximately Jensen-convex.
Then A is 2-convex. In particular, (1/2)A is approximately convex.

Proof. Let f(x) = d(x,A) (x ∈ X). Then f is a continuous approxi-
mately Jensen-convex function, i.e.

f

(
x+ y

2

)
≤ 1

2
(f(x) + f(y)) + 1.

By [16] f is a 2-convex function, which implies that A is a 2-convex
set.
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Lemma 7.3 shows that Theorem 7.1 is equivalent to the following
result.

Theorem 7.4. Let M ∈ N. There exist a Banach space (X, ‖ · ‖) that
is linearly isomorphic to `1 and an approximately Jensen-convex set
A ⊆ BM(X) such that H(A,Co(A)) = diam(A) = 2M .

Remark 7.5. The restriction M ∈ N is made only to simplify notation
in the proof. Clearly the result will hold for all M > 0 by scaling.

The rest of the paper is devoted to the lengthy proof of Theorem 7.4.
To construct the space X appearing in the conclusion of the theorem,
let us begin with the ‘tree-like’ combinatorial structure which will form
a Schauder basis for X. Fix M ∈ N. Let L1 = N, and for n > 1 define
Ln recursively as follows:

Ln = {(a, b) : a ∈ Li, b ∈ Lj, i+ j = n, 1 ≤ i, j < n}.
Let L = ∪∞n=1Ln, and, for a ∈ L, let ea denote the indicator function
of {a}. For R ⊆ L, let c00(R) denote the vector subspace of `∞(R)
spanned by the set {ea : a ∈ R}. For x =

∑
a∈L λaea ∈ c00, let

supp(a) = {a ∈ L : λa 6= 0}
We introduce two norms, ‖ · ‖1 and ‖ · ‖′1, on c00(L):∥∥∥∥∥∑

a∈L

λaea

∥∥∥∥∥
1

=
∑
a∈L

|λa|

and ∥∥∥∥∥∑
a∈L

λaea

∥∥∥∥∥
′

1

= M
∑
a∈L1

|λa|+
∑

a∈L\L1

|λa|.

Note that ‖ · ‖1 is the usual `1 norm and that ‖ · ‖′1 is a weighted
`1 norm with respect to the basis {ea : a ∈ L}. A linear mapping
T : c00(L)→ c00(L) is defined (extending linearly) thus:

T (ea) =

0 if a ∈ L1,
eb + ec

2
if a ∈ ∪∞n=2Ln and a = (b, c).

Note that T (c00(Ln)) ⊆ c00(∪n−1
k=1Lk) and that T n(x) = 0 for all x ∈

c00(Ln). Hence S = I − T is an invertible operator on c00(L) with
inverse S−1 =

∑∞
k=0 T

k. Note also that∑
a∈L

T (x)(a) ≤
∑
a∈L

x(a)

if x(a) ≥ 0 for all a ∈ A, with equality if supp(x) ⊂ ∪∞n=2Ln.
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Define a norm ‖ · ‖ on c00(L) thus:

‖x‖ = inf{M‖y‖1 + ‖S−1(z)‖′1 : x = y + z} (x ∈ c00(L)).

Let (X, ‖ · ‖) be the completion of (c00(L), ‖ · ‖) and let A = {ea : a ∈
L} ⊆ X.

The verification that X and A satisfy the conclusion of Theorem 7.4
will be broken down into four lemmas.

Lemma 7.6. Suppose that F ∈ B(X∗). Then the mapping φ : L→ R

defined by φ(a) = F (ea) satisfies the following:

(a) |φ(a)| ≤M for all a ∈ L;
(b) ∣∣∣∣φ(a)− φ(b) + φ(c)

2

∣∣∣∣ ≤ 1

for all a = (b, c) ∈ ∪∞n=2Ln.

Conversely, every φ which satisfies (a) and (b) corresponds to a unique
F ∈ B(X∗).

Proof. ¿From the definition of ‖ · ‖ we see that F ∈ B(X∗) if and only
if

|F (x)| ≤ min(M‖x‖1, ‖S−1(x)‖′1) (x ∈ c00(L)).(30)

Indeed, if F satisfies (30), then for every x ∈ c00(L), we have

‖x‖ = inf{M‖y‖1 + ‖S−1(z)‖′1 : x = y + z}
≥ inf{F (y) + F (z) : x = y + z} = F (x),

and so ‖F‖ ≤ 1. Conversely, if ‖F‖ ≤ 1, then

F (x) ≤ ‖x‖ ≤ min(M‖x‖1, ‖S−1(x)‖′1),

and (30) is satisfied.
The condition |F (x)| ≤M‖x‖1 is clearly equivalent to (a). Since ‖·‖1

is a weighted `1 norm, the condition |F (x)| ≤ ‖S−1(x)‖′1 is equivalent
to the condition

|F (S(ea))| ≤ ‖ea‖′1 (a ∈ L).(31)

Suppose that a ∈ L1. Then S(ea) = ea and ‖ea‖′1 = M , and so (31)
becomes |φ(a)| ≤ M . Now suppose that a = (b, c) ∈ ∪∞n=2Ln. Then
S(ea) = ea − (1/2)(eb + ec) and ‖ea‖′1 = 1, and so (31) becomes∣∣∣∣φ(a)− φ(b) + φ(c)

2

∣∣∣∣ ≤ 1,

and so (b) is satisfied. Conversely, if φ satisfies (a) and (b), then the
mapping F (ea) = φ(a) will extend linearly to an element of B(X∗).
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Remark 7.7. From the description of X∗ it follows that

1

2
‖x‖1 ≤ ‖x‖ ≤M‖x‖1.

So (X, ‖ · ‖) is isomorphic to `1 (and the Banach-Mazur distance from
X to `1 is at most 2M).

Lemma 7.8. Suppose that E ⊆ L has the property that whenever a =
(b, c) ∈ E, then b, c ∈ E. If φ0 : E → [−M,M ] satisfies∣∣∣∣φ0(a)− φ0(b) + φ0(c)

2

∣∣∣∣ ≤ 1(32)

for all a = (b, c) ∈ E, then φ0 admits an extension φ : L → [−M,M ]
satisfying ∣∣∣∣φ(a)− φ(b) + φ(c)

2

∣∣∣∣ ≤ 1(33)

for all a = (b, c) ∈ ∪∞n=2Ln.

Proof. We define φ recursively. First define φ from L1 into [−M,M ] to
be an arbitrary extension of the restriction of φ0 to L1. Suppose that
n > 1 and that φ has been defined on ∪n−1

k=1Lk to extend the restriction
of φ0 to ∪n−1

k=1Lk. Let a = (b, c) ∈ Ln. Then b, c ∈ ∪n−1
k=1Lk, and so φ(b)

and φ(c) have already been defined. If a ∈ E, then b, c ∈ E, and so
φ(b) = φ0(b) and φ(c) = φ0(c). It follows from (32) that (33) will be
satisfied with φ(a) = φ0(a). If a /∈ E, define φ(a) = (1/2)(φ(b) + φ(c)),
so that (33) is trivially satisfied. This completes the definition of φ on
Ln.

Now fix a ∈ L and let Ea = ∪∞n=0 supp(T n(ea)) (= ∪N−1
n=0 supp(T n(ea))

for a ∈ LN). For d ∈ Ea, we define the a-order of d, denoted oa(d),
thus:

oa(d) = min{n ≥ 0 : d ∈ supp(T n(ea))}.

Lemma 7.9. Given a ∈ L, there exists φ : L → [−M,M ] satisfying
(33) such that

φ(d) = −M (d ∈ L1 \ Ea),(34)

φ(d) = max(M − oa(d),−M) (d ∈ L1 ∩ Ea),(35)

and

φ(d) ≥ max(M − oa(d),−M) (d ∈ Ea).(36)
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Proof. First we define a mapping φ0 : Ea ∪ L1 → [−M,M ]. If d ∈
L1 \ Ea, let φ0(d) = −M , and if d ∈ Ea ∩ L1, let

φ0(d) = max(M − oa(d),−M),

so that (34) and (35) are satisfied. Now extend to the rest of Ea
recursively as follows. Suppose that n > 1 and that φ0 has been defined
on Ea ∩ (∪n−1

k=0Lk) to satisfy (33) and (36). Let d ∈ Ea ∩ Ln. Then
d = (b, c) for some b, c ∈ Ea ∩ (∪n−1

k=0Lk). Define

φ0(d) = min

(
M,

φ0(b) + φ0(c)

2
+ 1

)
.

If φ0(d) = M , then, as φ0(b) ≤M and φ0(c) ≤M , we have

φ0(d) = M ≤ φ0(b) + φ0(c)

2
+ 1 ≤ M +M

2
+ 1 = M + 1,

so that ∣∣∣∣φ0(d)− φ0(b) + φ0(c)

2

∣∣∣∣ ≤ 1,

i.e., (33) is satisfied by d = (b, c). Also, if φ0(d) = M , then (36) is
trivially satisfied.

On the other hand, if φ0(d) = (φ0(b) + φ0(c))/2 + 1, then (33) is
trivially satisfied by d = (b, c). In order to verify (36), suppose that
oa(d) = k. Then both oa(b) ≤ k+1 and oa(c) ≤ k+1. Moreover, both
b and c satisfy (36) by the recursive hypothesis. Thus,

φ0(d) =
φ0(b) + φ0(c)

2
+ 1

≥ max(M − oa(b),−M) + max(M − oa(c),−M)

2
+ 1

≥ max(M − (k + 1),−M) + max(M − (k + 1),−M)

2
+ 1

≥ max(M − k,−M)

= max(M − oa(d),−M).

Thus, (36) is satisfied by d, which completes the recursive definition
of φ0. Now φ0 and Ea ∪ L1 (replacing E) satisfy the hypotheses of
Lemma 7.8. Let φ be the extension of φ0 given by Lemma 7.8.

The following lemma completes the proof of Theorem 7.4.

Lemma 7.10. Let A = {ea : a ∈ L}. Then A satisfies the following:

(i) A ⊆ BM(X);
(ii) A is approximately Jensen-convex;

(iii) H(A,Co(A)) = 2M .
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Proof. Suppose that F ∈ B(X∗). By Lemma 7.6, |F (ea)| ≤ M for all
a ∈ A, and so (i) follows from the Hahn-Banach Theorem. Suppose
that b, c ∈ A. Then a = (b, c) ∈ A, and by Lemma 7.6

|F (ea)− F ((1/2)(eb + ec))| ≤ 1,

which gives (ii). To prove (iii), note that (i) implies that Co(A) ⊆
BM(X) (since BM(X) is convex), and hence

H(A,Co(A)) ≤ diam(BM(X)) = 2M.

So it suffices to prove that H(A,Co(A)) ≥ 2M . Fix N ≥ 1 and choose
distinct elements a1, . . . , aN ∈ L1. We shall prove that

d

(
1

N

N∑
k=1

eak , A

)
≥ 2M − εN ,

where εN → 0 as N → ∞. Let a ∈ L. If d ∈ Ea and oa(d) = k, then
T k(ea)(d) ≥ 2−k. Since

∑
b∈L T

k(ea)(b) ≤ 1, it follows that Ek = {d ∈
L : oa(d) = k} has cardinality at most 2k. Thus∣∣∣∣∣

2M−1⋃
k=0

Ek

∣∣∣∣∣ ≤
2M−1∑
k=0

2k = 22M − 1.

Let φ : L → [−M,M ] be the function associated to a defined in
Lemma 7.9, and let F ∈ B(X∗) be the linear functional corresponding
to φ. If ai ∈ L1 \ Ea, then φ(ai) = −M by (34). If ai ∈ Ea and
oa(ai) ≥ 2M , then φ(ai) = −M by (35). Hence if ai /∈ G = ∪2M−1

k=0 Ek,
then φ(ai) = −M . Moreover, φ(a) = M by (36), since oa(a) = 0. So

F

(
ea −

1

N

(
N∑
k=1

eak

))
= φ(a)− 1

N

N∑
k=1

φ(ai)

≥M − 1

N
((N − |G|)(−M) + |G|M)

= 2M − 2

N
|G|M

≥ 2M − 22M+1M

N
,

and so ∥∥∥∥∥ 1

N

N∑
k=1

eak − ea

∥∥∥∥∥ ≥ 2M − εN ,

where εN = 22M+1M/N → 0 as N →∞ as desired.

Theorem 7.11. There exists a Banach space Y such that for every
ε > 0 there exists an ε-convex set A ⊆ B(Y ) with H(A,Co(A)) = 2.
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Proof. Let Xn denote the space constructed above for M = n. Then
the `2-sum Y = (

∑∞
n=1⊕Xn)2 has the required property.

Remark 7.12. Since Xn is isomorphic to `1 (Remark 7.7), it has both
the Radon-Nikodým property (see e.g. [7]) and the approximation prop-
erty (see e.g. [14, p. 29]). Hence Y = (

∑∞
n=1⊕Xn)2 has the Radon-

Nikodým property [7, p. 219] and (as is easily verified) the approxima-
tion property.

Since C(0, 1) is a universal space for separable Banach spaces
(Mazur’s theorem), it satisfies the conclusion of Theorem 7.11. So,
finally, let us reformulate Theorem 7.2 to make good the claim made
in Remark 3.7.

Corollary 7.13. Let ε > 0. There exists a (non-negative) ε-convex
1-Lipschitz function on B(C(0, 1)) such that

sup{|f(x)− g(x)| : x ∈ B(C(0, 1))} ≥ 1

for every convex function g.

Proof. By Theorem 7.2 there exists A ⊆ B(C(0, 1)) such that A is ε-
convex and H(A,Co(A)) = 2. Then f(x) = d(x,A) has the required
properties.
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