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Abstract. We characterize C1 embedded hypersurfaces of Rn as the only lo-
cally closed sets with continuously varying flat tangent cones whose measure-
theoretic-multiplicity is at most m < 3/2. It follows then that any (topological)
hypersurface which has flat tangent cones and is supported everywhere by balls
of uniform radius is C1. In the real analytic case the same conclusion holds under
the weakened hypothesis that each tangent cone be a hypersurface. In particu-
lar, any convex real analytic hypersurface X ⊂ Rn is C1. Furthermore, if X is
real algebraic, strictly convex, and unbounded, then its projective closure is a C1
hypersurface as well, which shows that X is the graph of a function defined over
an entire hyperplane.

1. Introduction

The tangent cone TpX of a set X ⊂ Rn at a point p ∈ X consists of the limits
of all (secant) rays which originate from p and pass through a sequence of points
pi ∈ X r {p} which converges to p. These objects, which are generalizations of
tangent spaces to smooth submanifolds, were first used by Whitney [38, 39] to
study the singularities of real analytic varieties, and also play a fundamental role
in geometric measure theory [14, 24]. Here we employ tangent cones to study the
differential regularity of (topological) hypersurfaces, i.e., subsets of Rn which are
locally homeomorphic to Rn−1. Our first result is the following characterization for
C1 hypersurfaces, i.e, hypersurfaces which may be represented locally as the graph
of continuously differentiable functions. Here a locally closed set is the intersection
of a closed set with an open set; further, TpX is flat when it is a hyperplane, and the
(lower measure-theoretic) multiplicity of TpX is then just the (n − 1)-dimensional
lower density of X at p (see Section 2.2).

Theorem 1.1. Let X ⊂ Rn be a locally closed set. Suppose that TpX is flat for
each p ∈ X, and depends continuously on p. Then X is a union of C1 hypersurfaces.
Further, if the multiplicity of each TpX is at most m < 3/2, then X is a hypersurface.

Next we develop some applications of this result by looking for natural settings
where the continuity of p 7→ TpX follows automatically as soon as TpX is flat.
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This is the case for instance when X is a convex hypersurface, i.e., the boundary
of a convex set with interior points. More generally, the flatness of TpX imply
their continuity whenever X has positive support (Lemma 4.1), which means that
through each point of X there passes a ball B of radius r, for some uniform constant
r > 0, such that the interior of B is disjoint from X. If there pass two such balls
with disjoint interiors through each point of X, then we say X has double positive
support. The above theorem together with an observation of Hörmander (Lemma
4.2) yield:

Theorem 1.2. Let X ⊂ Rn be a locally closed set with flat tangent cones and
positive support. Suppose that either X is a hypersurface, or the multiplicity of each
TpX is at most m < 3/2. Then X is a C1 hypersurface; furthermore, if X has
double positive support, then it is C1,1.

Here C1,1 means that X may be represented locally as the graph of a function with
Lipschitz continuous derivative [20, p. 97]. Examples of sets with positive support
include the boundary of sets of positive reach introduced by Federer [13, 36]: A closed
set X ⊂ Rn has positive reach if there exists a neighborhood of it in Rn of radius
r > 0 such that every point in that neighborhood is closest to a unique point in X.
For instance all convex sets have positive reach. Thus the above theorem generalizes
the well-known fact that convex hypersurfaces with unique support hyperplanes; or,
equivalently, convex functions with unique subdifferentials, are C1 (Lemma 4.5);
later we will offer another generalization as well (Theorem 4.4). Also note that any
hypersurface with positive reach automatically has double positive support, which
we may think of as having a ball “roll freely” on both sides of X. This is important
for C1,1 regularity as there are hypersurfaces with flat tangent cones and positive
support which are not C1,1 (Example 7.2). Next we show that there are settings
where the assumption in the above results that TpX be flat may be weakened. A
set X ⊂ Rn is real analytic if locally it coincides with the zero set of an analytic
function. Using a version of the real nullstellensatz, we will show (Corollary 5.6)
that if any tangent cone TpX of a real analytic hypersurface is itself a hypersurface,
then it is symmetric with respect to p. Consequently Theorem 1.2 yields:

Theorem 1.3. Let X ⊂ Rn be a real analytic hypersurface with positive support.
If TpX is a hypersurface for all p in X, then X is C1. In particular, convex real
analytic hypersurfaces are C1.

Note that by a hypersurface in this paper we always mean a set which is locally
homeomorphic to Rn−1. The last result is optimal in several respects. First, the
assumption that each TpX be a hypersurface is necessary due to the existence of
cusp type singularities which arise for instance in the planar curve y2 = x3. Further,
there are real analytic hypersurfaces with flat tangent cones which are supported
at each point by a ball of (nonuniform) positive radius, but are not C1 (Example
7.3). In particular, the assumption on the existence of positive support is necessary;
although the case n = 2 is an exception (Section 5.4). Furthermore, there are real
analytic convex hypersurfaces which are not C1,1, or even C1,α, and thus the C1

conclusion in the above theorem is sharp (Example 7.2). Finally there are convex
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semi -analytic hypersurfaces which are not C1 (Example 7.5). Next we show that
the conclusions in the above theorem may be strengthened when X is real algebraic,
i.e., it is the zero set of a polynomial function. We say that X ⊂ Rn is an entire
graph if there exists a line ` ⊂ Rn such that X intersects every line parallel to ` at
exactly one point. In other words, after a rigid motion, X coincides with the graph
of a function f : Rn−1 → R. The projective closure of X is its closure as a subset
of RPn via the standard embedding of Rn into RPn (see Section 6.2). Also recall
that a convex hypersurface is strictly convex provided that it does not contain any
line segments.

Theorem 1.4. Let X ⊂ Rn be a real algebraic convex hypersurface homeomorphic
to Rn−1. Then X is an entire graph. Furthermore, if X is strictly convex, then its
projective closure is a C1 hypersurface.

Thus, a real algebraic strictly convex hypersurface is not only C1 in Rn but also
at “infinity”. Interestingly, this phenomenon does not in general hold when X is
the zero set of an analytic function (Example 7.6). So Theorem 1.4 demonstrates
that there are genuine geometric differences between the categories of real analytic
and real algebraic convex hypersurfaces. Further, the above theorem does not hold
when X is semi -algebraic (Example 7.5), and the convexity assumption here is nec-
essary, as far as the entire-graph-property is concerned (Example 7.7). Finally, the
regularity of the projective closure does not hold without the strictness of convexity
(Example 7.8). See [26, 31, 35] for some examples of convex hypersurfaces arising in
algebraic geometry. Negatively curved real algebraic hypersurfaces have also been
studied in [9]. Finally, some recent results on geometry and regularity of locally
convex hypersurfaces may be found in [1, 2, 3, 16].

2. Preliminaries: Basics of Tangent Cones and Their
Measure Theoretic Multiplicity

2.1. Throughout this paper Rn denotes the n-dimensional Euclidean space with
origin o, standard inner product 〈 , 〉 and norm ‖ · ‖ := 〈·, ·〉1/2. The unit ball Bn

and sphere Sn−1 consist respectively of points x in Rn with ‖x‖ ≤ 1 and ‖x‖ = 1.
For any sets X, Y ⊂ Rn, X + Y denotes their Minkowski sum or the collection
of all x + y where x ∈ X and y ∈ Y . Further for any constant λ ∈ R, λX is
the set of all λx where x ∈ X, and we set −X := (−1)X. For any point p ∈ R,
and r > 0, Bn(p, r) := p + rBn denotes the (closed) ball of radius r centered at p.
By a ray ` with origin p in Rn we mean the set of points given by p + tu, where
u ∈ Sn−1 and t ≥ 0. We call u the direction of `, or dir(`). The set of all rays in
Rn originating from p is denoted by Rays(p). This space may be topologized by
defining the distance between a pair of rays `, `′ ∈ Rays(p) as

dist(`, `′) := ‖ dir(`)− dir(`′)‖.

Now for any set X ⊂ Rn, and p ∈ X, we may define the tangent cone TpX as
the union of all rays ` ∈ Rays(p) which meet the following criterion: there exists
a sequence of points pi ∈ X r {p} converging to p such that the corresponding
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sequence of rays `i ∈ Rays(p) which pass through pi converges to `. In particular
note that TpX = ∅ if and only if p is an isolated point of X.

We should point out that our definition of tangent cones coincides with Whitney’s
[38, p. 211], and is consistent with the usage of the term in geometric measure theory
[14, p. 233]; however, in algebraic geometry, the tangent cones are usually defined
as the limits of secant lines as opposed to rays [33, 25]. We refer to the latter notion
as the symmetric tangent cone. More explicitly, let (TpX)∗ denote the reflection of
TpX with respect to p, i.e., the set of all rays ` ∈ Rays(p) with dir(`) = −u where
u is the direction of a ray in TpX; then the symmetric tangent cone of X at p is
defined as:

T̃pX := TpX ∪ (TpX)∗.
Still a third usage of the term tangent cone in the literature, which should not be
confused with the two notions we have already mentioned, corresponds to the zero set
of the leading terms of the Taylor series of analytic functions f when X = f−1(0),
and may be called the algebraic tangent cone. The relation between these three
notions of tangent cones, which will be studied in Section 5, is the key to proving
Theorem 1.3.

Next we will record a pair of basic properties of tangent cones. For any ` ∈ Rays(p)
and δ > 0, let C(`, δ) be a neighborhood of ` of radius δ in Rays(p), i.e., the cone
given by

C(`, δ) :=
{
`′ ∈ Rays(p) | ‖dir(`)− dir(`′)‖ ≤ δ

}
The following observation is a quick consequence of the definitions which will be
used frequently throughout this work:

Lemma 2.1. Let X ⊂ Rn, p ∈ X, and ` ∈ Rays(p). Then ` ⊂ TpX, if, and only
if, for every δ, r > 0, (

X r {p}
)
∩ C(`, δ) ∩Bn(p, r) 6= ∅.

In particular, if every open neighborhood of p in X intersects `r{p}, then ` ⊂ TpX.
Furthermore, TpX is always a closed set. �

Another useful way to think of TpX is as a certain limit of homotheties of X,
which we describe next. For any λ > 0, let

Xp,λ := λ(X − p) + p

be the homothetic expansion of X by the factor λ centered at p. Then we have

Lemma 2.2. Let X ⊂ Rn, p ∈ X, and r > 0. Then for any ε > 0 there exists
λ > 0 such that for every λ′ ≥ λ,

(1) Xp,λ′ ∩Bn(p, r) ⊂ (TpX + εBn) ∩Bn(p, r).

Proof. We may assume, for convenience, that p = o and r = 1. Set B(ToX, ε) :=
ToX + εBn, and Xλ := Xo,λ. Let ε < 1 be given and suppose, towards a contra-
diction, that there is a sequence λi → ∞ such that for each λi, there is a point
λixi ∈ Xλi

∩Bn which does not belong to B(ToX, ε). Since Bn is compact, λixi has
a limit point x in Bn, which will be disjoint from the interior of B(ToX, ε). Thus
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the ray ` ∈ Rays(o) which passes through x does not belong to ToX. On the other
hand ` is a limit of rays `i which originate from o and pass through xi. Further note
that since ‖λixi‖ ≤ 1 and λi → ∞, we have xi → o. Thus ` must belong to ToX
and we have a contradiction. �

It is now natural to wonder whether λ in Lemma 2.2 may be found so that the
following inclusion, also holds for all λ′ ≥ λ:

(2) (Xp,λ′ + εBn) ∩Bn(p, r) ⊂ TpX ∩Bn(p, r).

For if (1) and (2) were both true, then it would mean that Xp,λ′ converges to TpX
with respect to the Hausdorff distance [29] inside any ball centered at p. In fact when
X is real analytic, this is precisely the case [38, p. 220]. This phenomenon, however,
does not in general hold: consider for instance the set X ⊂ R which consists of the
origin o and points ±1/2n, n = 1, 2, 3, . . . (then ToX = R, while Xo,2n ∩B1 = X).
Still, there does exist a natural notion of convergence with respect to which TpX is
the limit of the homothetic expansions Xp,λ: A set X ⊂ Rn is said to be the outer
limit [29] of a sequence of sets Xi ⊂ Rn, and we write lim supi→∞Xi = X, provided
that for every x ∈ X there exists a subsequence Xij which eventually intersects
every open neighborhood of x.

Corollary 2.3. For any set X ⊂ Rn and point p ∈ X, the tangent cone TpX is the
outer limit of the homothetic expansions of X centered at p:

TpX = lim sup
λ→∞

Xp,λ.

Proof. Lemma 2.2 quickly yields that lim supλ→∞Xp,λ ⊂ TpX, and the reverse
inclusion follows from Lemma 2.1, due to the invariance of TpX under homotheties.

�

2.2. Now we describe how one may assign a multiplicity to each tangent cone of a
set X ⊂ Rn. Let µ be a measure on Rn. Then the (lower) multiplicity of TpX with
respect to µ will be defined as

mµ(TpX) := lim inf
λ→∞

µ
(
Xp,λ ∩Bn(p, r)

)
µ
(
TpX ∩Bn(p, r)

) ,
for some r > 0. Since TpX is invariant under homotheties of Rn centered at p, it
follows that mµ(TpX) does not depend on r. If the Hausdorff dimension of TpX is
an integer d, then we define the multiplicity of TpX with respect to the Hausdorff
measure Hd as

m(TpX) := mHd(TpX).
One may also note that m(TpX) is simply the ratio of the d-dimensional lower
densities Dd of X and TpX at p. More explicitly, let us recall that for any set
X ⊂ Rn at a point p

Dd(X, p) := lim inf
r→0

Hd
(
X ∩Bn(p, r)

)
Hd
(
rBd

) .
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Now it is not difficult to check that

m(TpX) =
Dd(X, p)
Dd(TpX, p)

.

Note in particular that when TpX is an affine d-dimensional space, thenDd(TpX, p) =
1 and therefore m(TpX) = Dd(X, p). Figure 1 illustrates some examples of multi-

m = 2 m = 3/2 m = 2
D = 2 D = 3/2 D = 1

Figure 1:

plicity and density of sets X ⊂ R2 at the indicated points.

3. Sets with Continuously Varying Flat Tangent Cones:
Proof of Theorem 1.1

The main idea for proving Theorem 1.1 is to show that X can be represented
locally as a multivalued graph with regular sheets. To this end, we first need to
record a pair of basic facts concerning graphs with flat tangent cones. The first
observation is an elementary characterization of the graphs of C1 functions in terms
of the continuity and flatness of their tangent cones:

Lemma 3.1. Let U ⊂ Rn−1 be an open set, f : U → R be a function, and set
a := (a, f(a)) for all a ∈ U . Then f is C1 on U , if Ta graph(f) is a hyperplane
which depends continuously on a and is never orthogonal to Rn−1.

Proof. First suppose that n = 2, and for any a ∈ U let m(a) be the slope of
Ta graph(f). Then for any sequence of points xi ∈ U converging to a, the slope of
the (secant) lines through a and xi must converge to m(a). So f ′(a) = m(a), which
shows that f is differentiable at a. Further, since Ta graph(f) depends continuously
on a, m is continuous. So f is C1. Now for the general case where U ⊂ Rn−1, let ei,
i = 1, . . . n− 1, be the standard basis for Rn−1. Then applying the same argument
to the functions fi(t) := f(a + (t − a)ei), shows that ∂f/∂xi(a) = f ′i(a) = mi(a)
where mi(a) is the slope of the line in Ta graph(f) which projects onto a+ tei. Thus
all partial derivatives ∂f/∂xi exist and are continuous on U ; therefore, it follows
that f is C1. �

Our next observation yields a simple criterion for checking that the tangent cone
of a graph is flat:

Lemma 3.2. Let U ⊂ Rn−1 be an open set, and f : U → R be a continuous
function. Suppose that, for some a ∈ U , Ta graph(f) lies in a hyperplane H which
is not orthogonal to Rn−1. Then Ta graph(f) = H.
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Proof. Suppose, towards a contradiction, that there exists a point x ∈ H, which
does not belong to Ta graph(f), and let ` be the ray which originates from a and
passes through x (` is well-defined since x must necessarily be different from a).
Then, since Ta graph(f) is invariant under homothetic expansions of Rn centered
at a, the open ray ` r {a} must be disjoint from Ta graph(f). So, by Lemma 2.1,
there exists δ, r > 0 such that C(`, δ) ∩ Bn(a, r) is disjoint from graph(f) r {a}.
Now let π : Rn → Rn−1 be projection into the first n − 1 coordinates. Then π(`)
is a ray in Rn−1, since H is not orthogonal to Rn−1. Let xi ∈ π(`) be a sequence
of points converging to π(a), then xi := (xi, f(xi)) converges to a by continuity of
f . Consequently any ray `′ which is a limit of rays `i which pass through xi and a
must belong to Ta graph(f). Then `′ 6= ` and `′ ⊂ H. So π(`′) 6= π(`), since H is
not orthogonal to Rn−1. But, since π(xi) = xi, we must have π(`i) = π(`), which
yields π(`′) = π(`), and we have a contradiction. �

Next recall that a set X ⊂ Rn is locally closed if it is the intersection of an open
set with a closed set. An equivalent formulation is that for every point p of X there
exists r > 0 such that V := Bn(p, r)∩X is closed in X. Note that then the boundary
∂V of V as a subset of X lies on ∂Bn(p, r) and therefore is disjoint from p.

Lemma 3.3. Let X ⊂ Rn be a locally closed set. Suppose that for all p ∈ X, TpX is
flat and depends continuously on p. Let H be a hyperplane which is not orthogonal
to TpX, for some p ∈ X, and π : Rn → H be the orthogonal projection. Then there
exists an open neighborhood U of p in X such that π|U is an open mapping.

Proof. By continuity of p 7→ TpX, we may choose an open neighborhood U of p so
small that no tangent cone of U is orthogonal to H. We claim that π is then an
open mapping on U . To see this, let q ∈ U , and set

V := Bn(q, r) ∩X.

Choosing r > 0 sufficiently small, we may assume that V ⊂ U . Further, since X is
locally closed, we may assume that V is compact, and it also has the following two
properties: first, the boundary ∂V of V in X lies on ∂Bn(q, r), which implies that

q 6∈ ∂V ;

second, by Lemma 2.1, V intersects the line Lq := π−1(π(q)) which passes through
q and is orthogonal to H only at q, for otherwise Lq would have to belong to TqX,
which would imply that TqX is orthogonal to H. So we conclude that

π(q) 6∈ π(∂V ).

But recall that V is compact, and so ∂V is compact as well. Thus there exists, for
some s > 0, a closed ball B(π(q), s) ⊂ H such that

(3) B
(
π(q), s

)
∩ π(∂V ) = ∅.

Now suppose towards a contradiction that π(q) is not an interior point of π(V ).
Then B(π(q), δ) 6⊂ π(V ), for any δ > 0. In particular there is a point

x ∈ B
(
π(q), s/2

)
r π(V ).
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Since x 6∈ π(V ), and π(V ) is compact, there exists a ballB(x, t) ⊂ H which intersects
π(V ) while the interior of B(x, t) is disjoint from π(V ). Note that, since q ∈ V , we
have t ≤ ‖x− π(q)‖ ≤ s/2, and so for any y ∈ B(x, t),

‖y − π(q)‖ ≤ ‖y − x‖+ ‖x− π(q)‖ ≤ t+ s/2 ≤ s,

which yields
B(x, t) ⊂ B(π(q), s).

Thus B(x, t) ∩ π(∂V ) = ∅ by (3). So the cylinder C := π−1(B(x, t)) supports V
at some point y in the interior of V . Then the tangent cone TyX = TyV must be
tangent to C, and hence be orthogonal to H, which is a contradiction, since V ⊂ U ,
and U was assumed to have no tangent cones orthogonal to H. �

Now we are ready to prove the main result of this section:

Proof of Theorem 1.1. We will divide the argument into two parts. First, we show
that X is a union of C1 hypersurfaces, and then we show that it is a hypersurface
with the assumption on multiplicity.

Part I. Assume that o ∈ X and ToX coincides with the hyperplane xn = 0,
which we refer to as Rn−1. Let π : Rn → Rn−1 be the projection into the first n− 1
coordinates. Then, since the xn-axis does not belong to ToX, it follows from Lemma
2.1 that there exists an open neighborhood U of o in X which intersects the xn-axis
only at o. Further, by Lemma 3.3, we may choose U so small that π(U) is open.
So Ω := Bn−1(o, r) ⊂ π(U) for some r > 0. Now let U ′ := π−1(Ω) ∩ U . Since X
is locally closed, we may assume that U ′ is compact. Further, since π(U ′) = Ω, we
may define a function f : Ω→ R by letting f(x) be the supremum of the height (i.e.,
the nth-coordinate) of π−1(x) ∩ U ′ for any x ∈ Ω. Then f(o) = 0, so o ∈ graph(f).
Further we claim that f is continuous. Then Lemma 3.2 yields that the tangent
cones of graph(f) are hyperplanes. Of course the tangent hyperplanes of graph(f)
must also vary continuously since graph(f) ⊂ X. So f must be C1 by Lemma 3.1.
Consequently, the graph of f is a C1 embedded disk in X containing o. This shows
that each point p of X lies in a C1 hypersurface, since after a rigid motion we can
always assume that p = o and TpX = Rn−1.

So to complete the first half of the proof, i.e., to show that X is composed of
C1 hypersurfaces, it remains only to verify that the function f defined above is
continuous. To see this, first note that for every x ∈ π(U ′), the set π−1(x) ∩ U ′ is
discreet, since none of the the tangent hyperplanes of U contain the line π−1(x), and
thus we may apply Lemma 2.1. In particular, since U ′ is bounded, it follows that
π−1(x) ∩ U ′ is finite. So we may let x be the “highest” point of π−1(x) ∩ U ′, i.e.,
the point in π−1(x) with the largest nth coordinate. Now to establish the continuity
of f , we just have to check that if xi ∈ Ω form a sequence of points converging to
x ∈ Ω, then the corresponding points xi converge to x. To see this, first recall that
xi must have a limit point x′ ∈ U ′, since U ′ is compact. So x′ cannot lie above
x, by definition of x. Suppose, towards a contradiction, that x′ lies strictly below
x. By Lemma 3.3 there are then open neighborhoods V and V ′ of x and x′ in U
respectively such that π(V ) and π(V ′) are open in Rn−1. Further, we may suppose
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that V ′ lies strictly below V . Note that the sequence xi must eventually lie in V ′,
and xi must eventually lie in π(V ) ∩ π(V ′). Thus, eventually π−1(xi) ∩ V will be
higher than π−1(xi) ∩ V ′ = xi, which is a contradiction.

Part II. Now we show that if the multiplicity of each tangent cone TpX is at most
m < 3/2, then X is a hypersurface, which will complete the proof. To this end let
f and Ω be as in Part I, and define g : Ω → R by letting g(x) be the infimum of
the height of π−1(x) ∩ U ′ for any x ∈ Ω. Then it follows that g is also continuous
by essentially repeating the argument in Part I given for f . Now it suffices to show
that f ≡ g on an open neighborhood of o. To see this first recall that we chose
U ′ so that it intersects the xn-axis, or π−1(o) only at o. Thus f(o) = g(o). Now
suppose, towards a contradiction, that there exists a sequence of points xi ∈ Ωr{o}
converging to o such that f(xi) 6= g(xi), and let Wi := Bn−1(xi, ri) be the balls of
largest radii centered at xi such that f 6= g everywhere on the interior of Wi, i.e.,
set ri equal to the distance of xi from the set of points where f = g. Then each Wi

will have a boundary point oi such that f(oi) = g(oi). Note that since o is not in
the interior of Wi, ri ≤ ‖o− xi‖, so by the triangle inequality:

‖o− oi‖ ≤ ‖o− xi‖+ ‖xi − oi‖ = ‖o− xi‖+ ri ≤ 2‖o− xi‖.

Thus, since xi converges to o, it follows that oi converges to o. Now if we set oi :=
(oi, f(oi)), then it follows that ToiX converges to ToX = Rn−1, by the continuity of
f and p 7→ TpX. Further note that, if θi is the angle between ToiX and Rn−1, then,
for any A ⊂ Rn−1,

Hn−1
(
ToiX ∩ π−1(A)

)
=

1
cos(θi)

Hn−1(A).

In particular, since θi → 0, we may choose for any ε > 0, an index k large enough
so that

Hn−1
(
Tok

X ∩ π−1
(
Bn−1(ok, 1)

))
< (1 + ε)Hn−1

(
Bn−1(ok, 1)

)
.

In addition, since Tok
X converges to Rn−1, for any δ > 0 we may assume that k is

so large that

Tok
X ∩ π−1

(
Bn−1(ok, 1)

)
⊂ Bn(ok, 1 + δ).

See Figure 2.
Now fix k and let us assume, after a translation, that o := ok. Then Bn−1(ok, 1) =

Bn−1 and Bn(ok, 1 + δ) = (1 + δ)Bn. So we may rewrite the last two displayed
expressions as:

Hn−1
(
ToX ∩ π−1

(
Bn−1

))
< (1 + ε)Hn−1(Bn−1),(4)

ToX ∩ π−1(Bn−1) ⊂ (1 + δ)Bn.(5)

Further, if we set W := Wk, then o ∈ ∂W , and f 6= g everywhere in the interior of
W ; therefore, the projection π : X → Rn−1 is at least 2 to 1 over the interior of W .
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π−1
(
Bn−1(ok, 1)

)
π−1(Bn−1)

ok

ok

Rn−1

Tok
X

Bn(ok, 1 + δ)
Bn−1(ok, 1)

o

(1 + δ)Bn

Figure 2:

So the projections π : Xo,λ →Wo,λ are at least 2 to 1 as well for all λ ≥ 1. But note
that Wo,λ eventually fills half of Bn−1 (since o ∈ ∂W ). Consequently,

(6) lim inf
λ→∞

Hn−1
(
Xo,λ ∩ π−1(Bn−1)

)
≥ 3

2
Hn−1(Bn−1),

due to the basic fact that orthogonal projections, since they are uniformly Lipschitz,
do not increase the Hausdorff measure of a set, e.g., see [12, Lemma 6.1]. Also, here
we have used the fact that, by Lemma 3.3, π(X) contains an open neighborhood of o
and thus π(Xo,λ) = (π(X))o,λ eventually covers Bn−1 as λ grows large. Combining
(6) with (4), now yields that

lim inf
λ→∞

Hn−1
(
Xo,λ ∩ π−1(Bn−1)

)
≥ 3

2(1 + ε)
Hn−1

(
ToX ∩ π−1(Bn−1)

)
(7)

≥ 3
2(1 + ε)

Hn−1
(
ToX ∩Bn

)
,

since Bn ⊂ π−1(Bn−1). Next note that by (5)

ToX ∩ π−1(Bn−1) + δBn ⊂ (1 + 2δ)Bn.

Further, by Lemma 2.2, for sufficiently large λ,

Xo,λ ∩ π−1(Bn−1) ⊂ (ToX + δBn) ∩ π−1(Bn−1) ⊂ ToX ∩ π−1(Bn−1) + δBn.

Thus it follows that, for sufficiently large λ, Xo,λ ∩ π−1(Bn−1) lies in (1 + 2δ)Bn,
and so we may write

Xo,λ ∩ π−1(Bn−1) ⊂ Xo,λ ∩ (1 + 2δ)Bn.

This in turn yields that

lim inf
λ→∞

Hn−1
(
Xo,λ ∩ (1 + 2δ)Bn

)
≥ lim inf

λ→∞
Hn−1

(
Xo,λ ∩ π−1(Bn−1)

)
.

The last inequality together with (7) now shows

lim inf
λ→∞

Hn−1
(
Xo,λ ∩Bn

)
≥ 3

2(1 + ε)(1 + 2δ)n−1
Hn−1

(
ToX ∩Bn

)
.
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So, recalling that ε and δ may be chosen as small as desired, we conclude that the
multiplicity of Tok

X becomes arbitrarily close to 3/2 as k grows large. In particular
it eventually exceeds any given constant m < 3/2, which is a contradiction, as we
had desired. �

4. Regularity of Sets with Positive Support and Reach:
Proof of Theorem 1.2 and Another Result

4.1. The proof of the first half of Theorem 1.2, i.e., the C1 regularity of X, quickly
follows from Theorem 1.1 via the next observation:

Lemma 4.1. Let X ⊂ Rn be a set with flat tangent cones and positive support.
Then the tangent cones of X vary continuously.

Proof. First note that the support ball Bp of X of radius r at p must also support
TpX by Lemma 2.1. Thus, since TpX is a hyperplane, Bp must be the unique
support ball of radius r for X at p, up to a reflection through TpX. Next note that
if pi are a sequence of points of X which converge to a point p of X, then Bpi must
converge to a support ball of X at p of radius r. Thus the limit of Bpi must coincide
with Bp or its reflection. Since TpiX are tangent to Bpi , it then follows that TpiX
must converge to the tangent hyperplane of Bp at p, which is just TpX. Thus TpX
varies continuously. �

4.2. To prove the second half of Theorem 1.2 which is concerned with the C1,1

regularity of X, we need the following lemma. A ball slides freely in a convex set
K ⊂ Rn, if for some uniform constant r > 0, there passes through each point of ∂K
a ball of radius r which is contained in K. The proof of the following observation
may be found in [20, p. 97]:

Lemma 4.2 (Hörmander). Let K ⊂ Rn be a convex set. If a ball slides freely inside
K, then ∂K is a C1,1 hypersurface. �

Now the C1,1 regularity of X in Theorem 1.2 follows by means of a Möbius trans-
formation which locally sends hypersurfaces with double positive support to convex
hypersurfaces in which a ball slides freely:

Lemma 4.3. Let X ⊂ Rn be a hypersurface with flat tangent cones and double
positive support by balls of uniform radius r. Let B be any of these balls, p be the
point of contact between B and X, and i(X) be the inversion of X with respect to
∂B. Then an open neighborhood of p in i(X) lies on the boundary of a convex set
in which a ball slides freely.

Proof. By Lemma 4.1, tangent hyperplanes of X vary continuously. So by Theorem
1.1, X is C1. Consequently, after replacing r with a smaller value, and X with a
smaller neighborhood of p, we may assume that the interiors of the balls which lie
on one side of X never intersect the interiors of the balls which lie on the other side
(e.g., this follows from the tubular neighborhood theorem [34]). Furthermore, since
X is C1, there exists a continuous unit normal vector field n : X → Sn−1. After a
translation, rescaling, and possibly replacing n by −n, we may assume that r = 1,
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B = Bn, and c(p) := p+ n(p) = o. Now for each x ∈ X let Bx be the support ball
of X at x with center at c(x) and B′x be the other support ball of X through x.
Since c is continuous, and o is in the interior of Bp, there is an open neighborhood
U of p in X so that o is in the interior of Bx for all x ∈ U ; see the diagram on the
left hand side of Figure 3.

Sn−1

o

p
x

∂Bx

∂B′x

i(∂Bx)

i(∂B′x)

i(x)
U

Figure 3:

Now consider i(U) where i : Rnr{o} → Rn is inversion through ∂B = Sn−1, i.e.,
i(x) := x/‖x‖. Note that if S is any topological sphere which contains o inside it,
then i maps the outside of S to the inside of i(S) (the “inside” of S is the closure
of the bounded component of Rn r S, and the “outside” of S is the closure of the
other component). Thus, since U lies outside ∂Bx, and o is inside ∂Bx, it follows
that i(U) lies inside i(∂Bx); see the diagram on the right hand side of Figure 3.
So through each point i(x) of i(U) there passes a ball bounded by i(∂Bx) which
contains i(U). Let K be the intersection of all these balls. Then K is a convex set
and i(U) ⊂ ∂K.

Next recall that, by assumption, B′x lies outside ∂By for all x, y ∈ X. Thus i(B′x)
lies inside i(∂By), which in turn yields that i(B′x) ⊂ K. Then since the radii of
i(B′x) depend continuously on x, we may assume, after replacing U by a possibly
smaller open neighborhood of p, that the radii of i(B′x) are all greater than a uniform
constant r′ > 0. Let K ′ be the union of all balls of radius r′ in K. Then it is easy
to check that K ′ is a convex set with i(U) ⊂ ∂K ′, and a ball (of radius r′) slides
freely inside K ′. So, by Lemma 4.2, partial K ′, and in particular i(U) must be C1,1,
which in turn yields that U is C1,1, since i is a local diffeomorphism, and finishes
the proof. �

4.3. We close this section with one more regularity result for sets of positive reach
which does not a priori assume that the boundary of the set is a hypersurface:

Theorem 4.4. Let K ⊂ Rn be a set of positive reach. Suppose that the tangent
cone of K at each boundary point p ∈ ∂K is a half-space. Then ∂K is C1.
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This result may be regarded as another generalization of the fact that the bound-
ary of a convex set with unique support hyperplanes is a C1 hypersurface. Indeed
we use the inversion trick used in Lemma 4.3 to reduce the proof to the convex case:

Lemma 4.5. Let K ⊂ Rn be a convex set with interior points, p ∈ ∂K, and suppose
that there exists an open neighborhood U of p in ∂K such that through each point q
of U there passes a unique support hyperplane of K. Then U is C1.

The above fact follows from Theorem 1.2, since for any convex set K ⊂ Rn with
interior points, ∂K is a hypersurface (e.g. see [7, p. 3]), and has positive support;
further, by Lemma 5.7 below, Tp(∂K) = ∂(TpK) which shows that Tp(∂K) is flat.
We also include here a more analytic proof using basic properties of convex functions:

Proof. After a translation we may assume that p = o and the support hyperplane
of K at p coincides with the hyperplane of the first (n − 1) coordinates. Then,
assuming it is sufficiently small, U coincides with the graph of a convex function
f : Ω→ R for some convex neighborhood Ω of o in Rn−1. To show that f is C1, it
suffices to check that it is differentiable at each point of Ω [32, Thm 1.5.2]. Further,
f is differentiable at a point if and only if it has only one subgradient at that point
[32, Thm 1.5.12]. But the subgradient is unique at a point of Ω if and only if the
epigraph of f has a unique normal at the corresponding point [32, Thm 1.5.11],
which is the case due to uniqueness of the support hyperplanes. �

Now we are ready to prove the last result of this section:

Proof of Theorem 4.4. First recall that through each point p ∈ ∂K there passes a
support ball Bp of radius r for some uniform constant r > 0. Since TpK is a half-
space, it follows that Bp is the unique support ball of K of radius r passing through
p, since the interior of Bp must be disjoint from TpK by Lemma 2.1. Further note
that if pi ∈ ∂K are any sequence of points converging to p, then any limit point of
the sequence of balls Bpi will be a support ball of K at p of radius r, which must
be Bp due to the uniqueness of Bp; therefore, Bpi converges to the support ball at
p. So p 7→ Bp is continuous.

Now fix a point p ∈ ∂K. After a translation and rescaling we may assume that
Bp = Bn. In particular, the center of Bp is o. By continuity of the support balls
there exists an open ball V centered at p in Rn such if we set

U := V ∩ ∂K,
then Bx contains o for every x ∈ U . Next consider the inversion i with respect to
∂Bp = Sn−1. We claim that if

K ′ := K ∩ V ,
where V denotes the closure of V , then i(K ′) is convex. Indeed we show that through
each point of ∂(i(K ′)) = i(∂K ′) there passes a sphere which contains i(K ′). To see
this note that if x ∈ i(∂K ′), then either x ∈ i(∂V ) or x ∈ i(V ). If x ∈ i(∂V ), then
note that i(∂V ) bounds the ball i(V ) which contains i(K ′), since V contains K ′. If,
on the other hand, x ∈ i(V ), note that

i(∂K ′) ∩ i(V ) = i(∂K ′ ∩ V ) = i(∂K ∩ V ) = i(U),
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and recall that, as we already showed in the proof of Lemma 4.3, through each point
i(x) of i(U) there passes a sphere i(∂Bx) which contains i(K) and therefore i(K ′)
inside it. So we conclude that i(K ′) is convex. Next note that for all x ∈ ∂K ′

(8) Ti(x)i(K
′) = dix(TxK ′),

where dix is the differential map or the jacobian of i at x, which has full rank for all
x ∈ Rnr{o} which includes U . Furthermore, if x ∈ U , then TxK ′ = TxK which is a
half space, and so dix(TxK ′) is a half-space as well, since ix has full rank. Thus (8)
shows that Ti(x)i(K ′) is a half-space for all x ∈ U . So i(K ′) has a unique support
hyperplane at all points of i(U). But note that i(U) is open in i(∂K ′); because,
i : ∂K ′ → ∂K is a homeomorphism (and therefore must preserve open sets by the
theorem on the invariance of domain). Now it follows from Lemma 4.5 that i(U) is
C1, which in turn yields that so is U , since i is a local diffeomorphism. �

5. Tangent Cones of Real Analytic Hypersurfaces:
Proof of Theorem 1.3

Theorem 1.3 follows quickly from Theorem 5.5 proved in Section 5.2 below which
relates the three notions of tangent cones we discussed earlier in Section 2. To prove
Theorem 5.5, we first need to study in Section 5.1 the sign of real analytic functions
in the neighborhood of their zero sets.

5.1. We say that a function f : Rn → R changes sign at a point p ∈ Rn provided
that in every open neighborhood of p in Rn there are points where f > 0 and f < 0.
If f changes sign at every point of a set X ⊂ Rn, then we say that f changes sign
on X. The following observation shows that in certain cases we may assume that
the function defining an analytic set changes sign on that set:

Proposition 5.1. Let X ⊂ Rn be a hypersurface which coincides with the zero set
Z(f) := f−1(0) of an analytic function f : Rn → R. Then for every point p ∈ X
there exists an open neighborhood U of p in Rn, and an analytic function g : U → R
such that Z(g) = X ∩ U , and g changes sign on X ∩ U .

To prove this result, let us suppose that p = o, and let Cωo denote the ring of
germs of analytic functions at o. It is well-known that Cωo is Noetherian and is a
unique factorization domain, e.g., see [41, p. 148]. So f is the product of finitely
may irreducible factors fi in Cωo (abusing notation, we denote here the functions and
their germs by the same symbols). Further, note that Z(f) is the union of Z(fi),
and dim(Z(f)) = n − 1 by assumption. Thus, by  Lojasiewicz’s structure theorem
for real analytic varieties [22, Thm. 6.3.3 (c)], we may assume that there exists a
factor g of f such that

(9) dim
(
Z(g)

)
= n− 1.

Indeed, each Z(fi) is an analytic set which admits a stratification into disjoint
union of finitely many smooth manifolds or strata by  Lojasiewicz’s theorem. The
maximum dimension of these strata then defines dim(Z(fi)). So, since Z(fi) ⊂ Z(f),
dim(Z(fi)) ≤ n − 1. Suppose towards a contradiction that dim(Z(fi)) < n − 1 for
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all i. Then since each strata of Z(fi) is smooth, Hn−1(Z(fi)) = 0. This in turn
yields that Hn−1(Z(f)) = 0 which is not possible.

Now (9) implies that g satisfies the equation (10) below which is a type of real
nullstellensatz [5, 27, 30]. Here (g) ⊂ Cωo is the ideal generated by g, i.e., the
collection of all germs φg where φ ∈ Cωo . Further I(Z(g)) ⊂ Cωo is the ideal of germs
in Cωo which vanish on Z(g).

Lemma 5.2. Let g ∈ Cωo be irreducible, and suppose that dim(Z(g)) = n− 1. Then

(10) (g) = I
(
Z(g)

)
.

Proof. See the proof of Theorem 4.5.1 in [5, p. 95]. Although that theorem is stated
in the ring of polynomials, as opposed to our present setting of Cωo , the proof of the
implication (v)⇒ (ii) in that result depends only on general algebraic properties of
ideals in Noetherian rings and thus applies almost verbatim to the present setting.
In particular, irreducibility of (g) implies that (g) is a prime ideal of height one. On
the other hand (g) ⊂ I(Z(g)), and (9) implies that I(Z(g)) also has height one in
Cωo . Thus it follows that (g) = I(Z(g)). �

Now it follows that the gradient of g cannot vanish identically on Z(g); because
otherwise, ∂g/∂xi ∈ I(Z(g)) = (g) which yields that

∂g

∂xi
= φig

for some φi ∈ Cωo . Consequently, by the product rule, all partial derivatives of g of
any order must vanish at o. But then, since g is analytic, it must vanish identically
on U which is not possible by (9). So we may assume that g has a regular point in
Z(g) ⊂ X ∩ U . Then g must assume different signs on U , and therefore U r Z(g)
must be disconnected. This, we claim, implies that Z(g) = X ∩ U which would
complete the proof. To establish this claim, first note that since g is a factor of f ,
we already have

Z(g) ⊂ X ∩ U.
Further, by the generalized Jordan-Brouwer separation theorem for closed sets in
Rn which are locally homeomorphic to Rn−1, or more specifically Alexander duality,
we may choose U so that U r X has exactly two components, e.g., see [11, 8.15].
Using some elementary topology, one can then show that if Z(g) is a proper subset
of X ∩ U , then it cannot separate U which is a contradiction. It would then follow
that

Z(g) = X ∩ U
which would complete the proof of Proposition 5.1. So all that remains is to check
that if X separates U into a pair of components, and A is any proper subset of
X ∩ U , then A cannot separate U . To see this let U1, U2 be the two components
of U r X, and set V := U1 ∪ U2 ∪ A′, where A′ := (X ∩ U) r A. We show that
V is connected which is all we need. To see this let W ⊂ V be a nonempty set
which is both open and closed in V . Then W 6⊂ A′, for otherwise there would be
an open set O ⊂ Rn with O ∩ V = W ⊂ A′. This would imply that O is disjoint
from both U1 and U2, which is impossible since U1 ∪U2 = U rX is dense in U . We
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may assume then that W meets U1. Then, since U1 is connected, U1 ⊂W . Further,
since W is closed, it will contain the closure of U1 in V which is U1∪A′. But U1∪A′
is not open in V (for any neighborhood of a point of A′ meets both U1 and U2).
Thus W 6= U1 ∪ A′, and therefore it must contain a point of U2. Then, since U2 is
connected, U2 ⊂W , which implies that W = U1 ∪ U2 ∪A = V . So V is connected.

5.2. Now we proceed towards proving Theorem 5.5 below which shows, via Proposi-
tion 5.1 above, that if the tangent cone of an analytic hypersurface is a hypersurface,
then it is symmetric. Let U ⊂ Rn be an open neighborhood of o, f : U → R be a
Ck≥1 function with f(o) = 0, and suppose that f does not vanish to order k at o.
Then by Taylor’s theorem

f(x) = hf (x) + rf (x)
where hf (x) is a nonzero homogenous polynomial of degree m, i.e.,

hf (λx) = λmhf (x),

for every λ ∈ R, and rf : Rn → R is a continuous function which satisfies

lim
x→0
|x|−mrf (x) = 0.

Now recall that Z(f) := f−1(0), and T̃oZ(f) denotes the symmetric tangent cone,
i.e., the limit of all sequences of secant lines through o and xi ∈ Z(f)r{o} as xi → o.
Also let Z(hf ) := h−1

f (0) be the zero set of hf . Then we have:

Lemma 5.3. T̃oZ(f) ⊂ Z(hf ).

Proof. Suppose v ∈ T̃oZ(f). Then, it follows from Lemma 2.1 that there are points
xi ∈ Z(f) r {o}, and numbers λi ∈ R such that λixi → v. Since xi ∈ Z(f),

0 = f(xi) = hf (xi) + rf (xi)

which yields that

0 = |xi|−m
(
hf (xi) + rf (xi)

)
= hf

(
|xi|−1xi

)
+ |xi|−mrf (xi).

Consequently

0 = lim
xi→o

hf
(
|xi|−1xi

)
+ 0 = hf

(
lim
xi→o

|xi|−1xi

)
.

But,
lim
xi→o

|xi|−1xi = lim
xi→o

|λixi|−1|λi|xi = ±|v|−1v.

So we conclude
0 = hf

(
|v|−1v

)
= |v|−mhf (v),

which shows that hf (v) = 0, or v ∈ Z(hf ). �

In contrast to the above lemma, in general Z(hf ) 6⊂ T̃oZ(f). Consider for instance
the case where f(x, y) = x(y2 + x4). Then Z(f) is just the y-axis, while hf (x, y) =
xy2, and therefore Z(hf ) is both the x-axis and the y-axis. So in order to have
Z(hf ) ⊂ T̃oZ(f), we need additional conditions, as given for instance by the next
lemma. Recall that a function f : Rn → R changes sign on a set X ⊂ Rn, provided
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that for every point x ∈ X, and open neighborhood U of x in Rn there are points
in U where f > 0 and f < 0. Let Z̃(hf ) ⊂ Z(hf ) be the set of points p where hf
changes sign at p. Then we show that:

Lemma 5.4. Z̃(hf ) ⊂ T̃oZ(f).

Proof. Suppose, towards a contradiction, that there is v ∈ Z̃(hf ) such that v 6∈
T̃oZ(f). Then it follows from Lemma 2.1 that there exists an open neighborhood U
of v in Rn and an open ball B centered at o such that cone(U) ∩ B ∩ Z(f) = {o},
where cone(U) is the set of all lines which pass through o and points of U . So we
have f 6= 0 on cone(U) ∩B r {o}. Consequently if we set

(11) fλ(x) := λmf(λ−1x),

then it follows that fλ 6= 0 on cone(U) ∩ B r {o} for λ ≥ 1. But note that, by
homogeneity of hf ,

fλ(x) = λmhf (λ−1x) + λmrf (λ−1x) = hf (x) + λmrf (λ−1x),

which yields that

(12) lim
λ→∞

fλ(x) = hf (x).

Furthermore, by assumption, there are points in U where hf > 0 and hf < 0.
Consequently, for large λ, fλ must change sign on U as well, which in turn implies
that fλ = 0 at some point of U , and we have a contradiction. �

Now let ToZ(f) ⊂ T̃oZ(f) denote as usual the tangent cone of Z(f), i.e., the limit
of all sequences of secant rays (as opposed to lines) which emanate from o and pass
through xi ∈ Z(f) r {o} as xi → o.

Theorem 5.5. Let U ⊂ Rn be an open neighborhood of o and f : U → Rn be a Ck≥1

function with f(o) = 0 which does not vanish to order k at o. Suppose that Z(f) is
homeomorphic to Rn−1, f changes sign on Z(f), and ToZ(f) is also a hypersurface.
Then

T̃oZ(f) = Z̃(hf ) = ToZ(f).

In particular, ToZ(f) is symmetric with respect to o, i.e., ToZ(f) = −ToZ(f).

Proof. For convenience we may assume that U = Rn. Further note that, since
(ToZ(f))∗ = −ToZ(f), we have

T̃oZ(f) = ToZ(f) ∪ −ToZ(f).

So it is enough to show that ToZ(f) = Z̃(hf ); because then −ToZ(f) = −Z̃(hf ) =
Z̃(hf ) by homogeneity of hf ; consequently, T̃oZ(f) ⊂ Z̃(hf ), which in turn yields
that T̃oZ(f) = Z̃(hf ) by Lemma 5.4.

By Lemma 5.4, Z̃(hf ) ⊂ ToZ(f). So it remains to show that ToZ(f) ⊂ Z̃(hf ),
i.e., we have to check that hf changes sign on ToZ(f). To see this, for λ ∈ R+, let
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Z(f)λ := Z(f)o,λ be the set of points λx where x ∈ Z(f). Recall that by Lemma
2.2, for large λ we have

(13) Z(f)λ ∩Bn(o, r) ⊂
(
ToZ(f) + εBn

)
∩Bn(o, r).

Next note that, if fλ is given by (11), then

f−1
λ (0) = {x | λmf(λ−1x) = 0} = {x | f(λ−1x) = 0} = {λy | f(y) = 0} = Z(f)λ.

By the generalized Jordan-Brouwer separation theorem [11, Sec. 8.5], Rn r Z(f)λ
has precisely two components: (Rn r Z(f)λ)±. We may suppose that fλ > 0 on
(Rn r Z(f)λ)+ and fλ < 0 on (Rn r Z(f)λ)−. It follows from (13) that inside
any ball Bn(o, r) we have (Rn rZ(f)λ)± converging, with respect to the Hausdorff
topology, to the components of Rn r ToZ(f) which we denote by (Rn r ToZ(f))±

respectively:(
Rn r Z(f)λ

)±
∩Bn(o, r) −→

(
Rn r ToZ(f)

)±
∩Bn(o, r).

In particular, if x ∈ (Rn r ToZ(f))+, then eventually (as λ grows large) x ∈ (Rn r
Z(f)λ)+, and thus fλ(x) > 0. Consequently, hf (x) ≥ 0 by (12), and we conclude
that hf ≥ 0 on (Rn rToZ(f))+. Similarly, we have hf ≤ 0 on (Rn rToZ(f))−. So,
since hf cannot vanish identically on any open set, it follows that hf changes sign
on ToZ(f) as desired. �

5.3. Theorem 5.5 together with Proposition 5.1 immediately yield:

Corollary 5.6. Let X ⊂ Rn be a real analytic hypersurface, and suppose that TpX
is also a hypersurface for all p ∈ X, then each TpX is symmetric with respect to p,
i.e., TpX = (TpX)∗. �

Equipped with the last observation, we are now ready to prove the main result
of this section:

Proof of Theorem 1.3. Since through each point p of X there passes a support ball
B, it follows from Lemma 2.1 that each TpX must lie in a half-space whose boundary
Hp is tangent to B at p. Then Corollary 5.6 implies that TpX ⊂ Hp. But TpX is
open in H, by the theorem on the invariance of domain, and TpX is closed in H
since it is closed in Rn by Lemma 2.1. Thus TpX = Hp. So we conclude that each
TpX is flat. Then, by Lemma 4.1, TpX depends continuously on p, and we may
apply Theorem 1.1 to conclude that X is C1.

Next note that if X is any convex hypersurface, then it has positive support;
further, its tangent cones are automatically hypersurfaces, by Lemma 5.7 below. So
by the above paragraph X is C1. �

Lemma 5.7. Let K ⊂ Rn be a closed convex set with interior points, and p ∈ ∂K.
Then TpK is a convex set with interior points, and

∂(TpK) = Tp(∂K).

In particular Tp(∂K) is a hypersurface.



TANGENT CONES AND REGULARITY 19

Proof. We may suppose that p = o. Then it follows from Lemma 2.2 that

TpK =
⋃
λ≥0

λK,

once we note that, since K is convex, λ1K ⊂ λ2K whenever λ1 ≤ λ1. Thus TpK is
convex, and obviously has interior points since K ⊂ TpK. This inclusion also shows
that ∂K ⊂ TpK, since tangent cones are always closed, by Lemma 2.1, and so

Tp(∂K) ⊂ Tp(TpK) = TpK.

Now suppose towards a contradiction that Tp(∂K) contains a ray ` which lies in the
interior of TpK. Then, since TpK is convex, there exists a cone C about ` which lies
in TpK. Now since λC = C, it follows that C ∩B ⊂ K for some ball B centered at
p. In particular, after making C smaller, we may assume that C ∩B intersects ∂K
only at p. Hence ` cannot belong to Tp(∂K) by Lemma 2.1. So we conclude that
Tp(∂K) = ∂(TpK). �

5.4. Here we show that when n = 2 in Theorem 1.3, it is not necessary to assume
that the hypersurface X have positive support. To see this let Γ := X ⊂ R2 be a real
analytic hypersurface or simple curve, i.e., suppose that each point p ∈ Γ has an open
neighborhood U homeomorphic to R. Then we call the closure of each component
of U r {p} in U , which we denote by b1 and b2, a half-branch of Γ at p. By the
“curve selection lemma” [23], which also holds for semianalytic sets [6, Prop. 2.2],
there exist C1 curves γi : [0, 1)→ bi with γi(0) = p such that γ′i 6= 0; see [25, p. 956].
Thus each half-branch bi has a well-defined tangent ray `i := {p+ t(γi)′+(0) | t ≥ 0}
emanating from p, where (γi)′+ denotes the right hand derivative. It follows then
from Corollary 2.3 that TpΓ = `1 ∪ `2. If TpΓ consists of only one ray, i.e., `1 = `2,
then we say that Γ has a cusp at p. Otherwise, TpΓ is a simple curve. Consequently,
by Corollary 5.6, TpΓ must be flat, i.e, dir(`1) = −dir(`2) which in turn yields that
U = b1 ∪ b2 is C1. So we obtain the following special case of Theorem 1.3 for n = 2:

Corollary 5.8. Let Γ ⊂ R2 be a real analytic simple curve. Then either Γ has a
cusp, or else it is C1. �

When, on the other hand, n ≥ 3 in Theorem 1.3, the positive support assumption
cannot in general be abandoned (Example 7.3). Further, note that the above corol-
lary implies that if the tangent cones of a simple curve are simple curves, then they
must be flat. This again does not generalize to higher dimensions (Example 7.4).
Finally we should mention that Corollary 5.8 also follows from classical resolution
of singularities; see Appendix A, specifically Corollary A.3.

6. Regularity of Real Algebraic Convex Hypersurfaces:
Proof of Theorem 1.4

6.1. First we show that X in Theorem 1.4 is an entire graph. To this end we need
to employ the notion of the recession cone [28] of a closed convex set K ⊂ Rn which
is defined as

rc(K) := {x ∈ Rn | K + x ⊂ K}.
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Further, let nc(K) be the normal cone [28] of K which is defined as the set of all
outward normals to support hyperplane of K. The following observation is implicit
in [40, Thm. 2], see also [15, Prop. 3.1].

Lemma 6.1 (Wu [40]). If K ⊂ Rn is a closed convex set with interior points and
boundary ∂K homeomorphic to Rn−1, then rc(K) ∩ Sn−1 ∩ (−nc(K)) 6= ∅. �

By assumption, the hypersurface X in Theorem 1.4 coincides with ∂K for some
convex set K satisfying the hypothesis of the above lemma. We show that for any
unit vector u ∈ rc(K) ∩ (−nc(K)), ∂K is an entire graph in the direction u, i.e., it
intersects every line parallel to u.

We may suppose for convenience that u = (0, . . . , 0, 1), and K lies in the half-
space xn ≥ 1. Let Hn be the open half-space xn > 0 and consider the projective
transformation P : Hn → Rn given by

P (x1, . . . , xn) :=
(
x1

xn
, . . . ,

xn−1

xn
,

1
xn

)
.

Note that P preserves line segments, and so maps convex sets to convex sets. In
particular, the closure P (K) will be a closed convex set. Next let f : Rn → R be
the algebraic function with ∂K = f−1(0) and suppose that f has degree d. Then

f(x) := (xn)df(P (x)),

is an algebraic function on Rn, and it is not hard to check that

(14) ∂P (K) = f
−1(0).

So by Theorem 1.3, ∂P (K) is C1, since it is a real analytic convex hypersurface.
Next note that o ∈ ∂P (K), since by assumption K contains the ray (0, . . . , 0, t)

where t ≥ 1. Since ∂P (K) is a C1 convex hypersurface supported by {xn = 0}, it
follows that each ray ` given by tv where v is a unit vector with 〈v, u〉 > 0 and t ≥ 0,
intersects ∂P (K) ∩Hn = ∂P (K) = P (∂K) in exactly one point, see Figure 4. In
particular,

P (∂K) ∩ ` 6= ∅.
Now note that P 2 is the identity map on Hn. Thus the last expression yields that

∂K ∩ P (`) = P 2(∂K) ∩ P (`) = P
(
P (∂K) ∩ `

)
6= ∅.

It remains only to note that P (`) is parallel to (0, . . . , 0, 1), and intersects {xn = 1}
at the same point as does `, which completes the proof that ∂K is an entire graph.

6.2. Now we show that if X = ∂K is strictly convex, then its projective closure
is a C1 hypersurface in RPn. First, let us recall that the standard embedding
i : Rn → RPn is given by

(x1, . . . , xn) i7−→ [x1 : · · · : xn : 1],

where [x1 : · · · : xn+1] are the homogeneous coordinates of RPn. Then the projective
closure of X is defined as i(X), i.e., the closure of i(X) in RPn. To show that i(X)
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xn = 1

∂K
P (`)

P (∂K)

`

Figure 4:

is C1, we need to establish that the closure P (K) is compact, which in turn is due
to the following basic fact:

Lemma 6.2. Let K ⊂ Rn be a convex set. Suppose that K is contained between a
pair of hyperplanes H0 and H1, and H0 ∩K is compact and nonempty. Then K is
compact.

Proof. First note that K is compact if and only if it does not contain any rays, or
equivalently rc(K) = ∅. So, if K is not compact, then there exists a ray ` in K
which emanates from a point p of K. Let H be the hyperplane passing through p
which is parallel to H0. Then ` ∈ rc(K ∩H). Further note that since H and H0 are
parallel, rc(H) = rc(H0). So

rc(K ∩H) = rc(K) ∩ rc(H) = rc(K) ∩ rc(H0) = rc(K ∩H0) 6= ∅,

which is a contradiction since K ∩H is compact. �

Now note that if ∂K is strictly convex, and as in the previous subsection we
assume that ∂K is supported below by the hyperplane xn = 1, then this hyperplane
intersects ∂K and therefore K at only one point (which is compact). Consequently
P (K) will intersect {xn = 1} only at one point as well, since P is the identity on
{xn = 1}. Thus, since P (K) is contained between {xn = 0} and {xn = 1}, it follows
from Lemma 6.2 that P (K) is compact. So P (K)∩{xn = 0} is compact. But recall
that ∂P (K) is algebraic, which yields that so is P (K) ∩ {xn = 0}. Consequently,
P (K) ∩ {xn = 0} may not contain any line segments, so it must consist of only a
single point since P (K) ∩ {xn = 0} is convex. This implies that

∂P (K) = P (∂K).

So P (∂K) is a C1 hypersurface by (14). Further, since P (∂K) is compact, it coincides
with its own projective closure. Thus, the projective closure of P (∂K) is a C1

hypersurface. This yields that the projective closure of ∂K must be C1 as well, due
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to the commutativity of the following diagram:

RPn eP−−−−→ RPnxi xi
Hn P−−−−→ Rn

where, in terms of the homogeneous coordinates [x1 : · · · : xn+1], P̃ is the map

[x1 : · · · : xn : xn+1]
eP7−→ [x1 : · · · : xn+1 : xn].

So we have, i(∂K) = P̃−1(i(P (∂K))), which yields that i(∂K) = P̃−1(i(P (∂K)))
because P̃ is a homeomorphism. Further note that i(P (∂K)) = i(P (∂K)), because
P (∂K) is bounded, and i is a homeomorphism restricted to any compact subset of
Rn. So we conclude that

i(∂K) = P̃−1
(
i(P (∂K))

)
which completes the proof.

7. Examples (and Counterexamples)

Here we gather a number of examples which establish the optimality of various
aspects of the theorems discussed in the introduction. All curves described below
may be rotated around their axis of symmetry to obtain surfaces with analogous
properties.

Example 7.1. It is easy to see that without the assumption on multiplicity in
Theorem 1.1, the set X may not be a hypersurface; see Figure 1, specially the
middle diagram, which also demonstrates that the value of m in Theorem 1.1 is
optimal. Further, the collection of hypersurfaces which make up X may not be
finite, even locally. Figure 5 shows one such example. It has continuously varying

Figure 5:

flat tangent cones, but cannot be decomposed into a finite number of hypersurfaces
near the neighborhood surrounding the apex of the parabola.
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Example 7.2. For any given α > 0, there is a convex real algebraic hypersurface
which is not C1,α. Explicit examples are given by the convex curves y2n−1 = x2n,
where n = 1, 2, 3, . . . . These curves are C1 by Theorem 1.1, and are C∞ everywhere
except at the origin o. But they are not C1,α, for α > 1/(2n−1), in any neighborhood
of o. All these properties are shared by the projectively equivalent family of closed
convex curves (1 − y)y2n−1 = x2n which is depicted in Figure 6, for n = 2, 3, 4.
Here the singular point o lies at the bottom of each curve.

Figure 6:

Example 7.3. There are real algebraic hypersurfaces with flat tangent cones which
are supported by balls (of nonuniform radii) at each point but are not C1, such as
the sextic surface z3 = x5y + xy5 depicted in Figure 7a. This surface is regular in
the complement of the origin. So it has support balls there. Further, one might
directly check that there is even a support ball at the origin. On the other hand
the surface is not C1, since all its tangent planes along the x and y axis are vertical,
while at the origin the tangent plane is horizontal.

(a) (b)

Figure 7:

Example 7.4. There are real algebraic hypersurfaces whose tangent cones are hy-
persurfaces but are not hyperplanes, such as the Fermat cubic x3 + y3 = z3, see
Figure 7b. All points of this surface, except the origin, are regular and therefore
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the tangent cones are flat everywhere in the complement of the origin. On the other
hand, the tangent cone at the origin is the surface itself, since the surface is invariant
under homotheties.

Example 7.5. There are real semialgebraic convex hypersurfaces in Rn which are
not C1. An example is the portion of the “Ding-dong curve” [18] given by x2 =
y2(1 − y) and y ≥ 0; see Figure 8a. Also note that this curve is projectively
equivalent to y(1 − x2) = 1, −1 ≤ x ≤ 1, depicted in Figure 8b, which shows that
there are semialgebraic strictly convex hypersurfaces which are homeomorphic to
Rn−1 but are not entire graphs.

(a) (b)

Figure 8:

Example 7.6. There are real analytic convex hypersurfaces homeomorphic to Rn−1

whose projective closure is not C1 or even differentiable; for instance, x2 + e−y = 1
defines an unbounded convex planar curve which is contained within the slab −1 ≤
x ≤ 1 and thus is not an entire graph, see Figure 9a.

(a) (b) (c)

Figure 9:

Example 7.7. There are smooth real algebraic hypersurfaces which are homeo-
morphic to Rn−1 but are not entire graphs. Consider for instance the planar curve
y(1 − x2y) = 1 pictured in Figure 9b. This curve is projectively equivalent to the
“pear-shaped quartic” or Piriform given by x2 = y3(1− y), see Figure 9c.
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Example 7.8. There are real algebraic convex hypersurfaces homeomorphic to
Rn−1 whose projective closure is not C1 or even a topological hypersurface. Consider
for instance the parabolic cylinder P ⊂ R3 given by 2z = x2 + 1. This surface is
projectively equivalent to the circular cylinder C given by (z − 1)2 + x2 = 1, via
the transformation (x, y, z) 7→ (x/z, y/z, 1/z). Translating C, we obtain C ′ given by
z2 + x2 = 1. Now consider the projective transformation (x, y, z) 7→ (x/y, 1/y, z/y)
which maps C ′ to the cone z2 +x2 = y2. Since, as we discussed in Section 6.2, these
projective transformations extend to diffeomorphism of RP3, we then conclude that
that the projective closure of our original surface P had a conical singularity.

Appendix A. Another Proof for
The Regularity of Real Analytic Convex Hypersurfaces

Using the classical resolution of singularities for planar curves, we describe here
an alternative proof of the C1-regularity of real analytic convex hypersurfaces (which
was a special case of Theorem 1.3). More specifically, we employ the following basic
fact, c.f. [23, Lemma 3.3], which may be considered the simplest case of Hironaka’s
uniformization theorem [4, 19]. By a real analytic curve here we mean a real analytic
set of dimension one.

Lemma A.1 (Newton-Puiseux [17, 23]). Let Γ ⊂ R2 be a real analytic curve and
p ∈ Γ be a nonisolated point. Then there is an open neighborhood U of p in R2

such that Γ ∩ U = ∪ki=1Γi where each “branch” Γi is homeomorphic to R via a real
analytic (injective) parametrization γi : (−1, 1)→ Γi. �

See [17, p. 76–77] for the proof of the above lemma in the complex case, which
in turn yields the real version as described in [23, p. 29]. Other treatments of the
complex case may also be found in [8, 37]. The main ingredient here is Puiseux’s
decomposition theorem for the germs of analytic functions, which goes back to
Newton, see [21, Thm. 1.1] or [10, Sec. 2.1]. Next note that any simple planar
curve which admits an analytic parametrization must be piecewise smooth, because
the speed of the parametrization can vanish only on a discrete set; furthermore, the
curve may not have any “corners” at these singularities:

Lemma A.2. Let γ : (−1, 1) → R2 be a nonconstant real analytic map, and set
T (t) := γ′(t)/‖γ′(t)‖. Then limt→a+ T (t) = ± limt→a− T (t) for all a ∈ (−1, 1). In
particular, γ has continuously turning tangent lines.

By “tangent line” here we mean the symmetric tangent cone of the image of γ
(Section 2.1). Note also that the analyticity assumption in the above lemma is
essential (the curve y = |x|, −1 < x < 1, for instance, admits the well-known C∞
parametrization given by γ(t) := e−1/t2(t/|t|, 1) for t 6= 0, and γ(0) := (0, 0)).

Proof. We may assume a = 0. If ‖γ′(0)‖ 6= 0, then the proof immediately follows.
So suppose that ‖γ′(0)‖ = 0. Then, by analyticity of γ′, there is an integer m > 0
and an analytic map ξ : (−ε, ε) → R2 with ‖ξ(0)‖ 6= 0 such that γ′(t) = tmξ(t).
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Thus

T (t) =
tmξ(t)
‖tmξ(t)‖

=
(
t

|t|

)m ξ(t)
‖ξ(t)‖

,

which in turn yields:

lim
t→0+

T (t) = 1m
ξ(0)
‖ξ(0)‖

= (−1)2m
ξ(0)
‖ξ(0)‖

= (−1)m lim
t→0−

T (t).

�

The last two lemmas yield the following basic fact which generalizes Corollary 5.8
obtained earlier from Theorem 1.3. Recall that a simple planar curve has a cusp at
some point if its tangent cone there consists of a single ray (c.f. Section 5.4).

Corollary A.3. Each branch of a real analytic curve Γ ⊂ R2 at a nonisolated point
p ∈ Γ is either C1 near p or has a cusp at p. �

This observation quickly shows that a convex real analytic curve Γ ⊂ R2 is C1,
since by Lemma 5.7 it cannot have any cusps. This in turn yields the same result
in higher dimensions, via a slicing argument, as we describe next. Let X ⊂ Rn

be a real analytic convex hypersurface. There exists then a convex set K ⊂ Rn

with ∂K = X. Thus, by Lemma 4.5, to establish the regularity of X it suffices
to show that through each point p of X there passes a unique support hyperplane.
Suppose, towards a contradiction, that there are two distinct support hyperplanes
H1 and H2 passing through p. Then L := H1 ∩H2 has dimension n − 2. Now let
o be a point in the interior of K. Since o 6∈ L, there exists a (two dimensional)
plane Π ⊂ Rn which is transversal to L at p, and passes through o. Consequently
Γ := X ∩ Π = ∂(K ∩ Π) is a convex real analytic planar curve, and therefore must
be C1 (by Corollary A.3). So Γ must have exactly one support line at p, which is a
contradiction since `i := Hi ∩Π are distinct support lines of Γ at p.
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