TOTAL DIAMETER AND AREA OF CLOSED SUBMANIFOLDS
MOHAMMAD GHOMI AND RALPH HOWARD

ABSTRACT. The total diameter of a closed planar curve C' C R? is the integral
of its antipodal chord lengths. We show that this quantity is bounded below by
twice the area of C. Furthermore, when C' is convex or centrally symmetric, the
lower bound is twice as large. Both inequalities are sharp and the equality holds
in the convex case only when C is a circle. We also generalize these results to
m dimensional submanifolds of R", where the “area” will be defined in terms of
the mod 2 winding numbers of the submanifold about the n —m — 1 dimensional
affine subspaces of R".

1. INTRODUCTION

Integrals of chord lengths of closed curves in Euclidean space R” are natural geo-
metric quantities which have been studied since Crofton (see Note 1.3 for historical
background). More recently basic inequalities involving these integrals have been
used [1] to settle conjectures of Freedman-He-Wang [6] and O’Hara [12] on knot
energies. See also [5] for other applications to problems in physics. A fundamental
result in this area [1, Cor. 3.2] [7] is the sharp inequality:
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where f: R/LZ — R™ is a closed curve parametrized by arc length. Here, by
contrast, we develop sharp lower bounds for the above integral, which we call the
total diameter of f. To describe these results, let M be a closed Riemannian m-
manifold which has antipodal symmetry, i.e., it admits a fixed point free isometry
¢: M — M such that ¢? is the identity map. Then, for every p € M, we set
p* := ¢(p), and define the total diameter of any mapping f: M — R™ as

TDU%=AHU@ﬂ—ﬂMH@,

which generalizes the integral in (1). Further note that the integrand here is the
length of the line segment f(p)f(p*) which we call an antipodal chord of f. Next,
to bound this quantity from below, we define the “area” of f as follows. Let AG =
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AG,, ;,—m—1 denote the Grassmannian space of affine n—m—1 dimensional subspaces
of R™. There exists an invariant measure dA on AG such that for any smooth
compact m + 1 dimensional embedded submanifold S C R", the (m + 1)-volume of
S coincides with the integral over all A € AG of the cardinality of AN .S, see [19, p.
245]. Let wa(f, A\) denote the winding number mod 2 of f about A\. Then the area
of f is defined as

A(f) == /)\GAG wa(f,A) dA,

which is a variation on a similar notion studied by Pohl [15], and Banchoff and Pohl
[2], see Note 1.3. Note that wa(f,\) is well-defined whenever A\ is disjoint from
f(M), and consequently A(f) is well-defined when f(M) has measure zero (e.g.,
f is smooth). Furthermore, when f(M) is a closed embedded hypersurface, i.e.,
m =n—1 and f is injective, A(f) is simply the volume of the region enclosed by

f(M).

Theorem 1.1. Let M be a closed m-dimensional Riemannian manifold with an-
tipodal symmetry, and f: M — R™ be a C' isometric immersion. Then

(2) TD(f) = 2A(f),

and equality holds if and only if f(p) = f(p*) for all p € M (i.e., both sides of the
inequality vanish). Furthermore, if f is centrally symmetric or convex, then

(3) TD(f) = 2(m + 1)A(f),
and equality holds if and only if f is a sphere.

Here centrally symmetric means that, after a translation, f(p) = —f(p*) for all
p € M. By convexr we mean that f traces injectively the boundary of a convex set
in an m + 1 dimensional affine subspace of R". Further, when this set is a ball, we
say that f is a sphere. Note that, when m = 1, we may identify M with the circle
R/LZ, in which case (3) yields

L
/0 1F(t+ L/2) — F(0)]] di > 4A(f)

for convex planar curves f: R/LZ — R? parametrized by arc length. This to-
gether with (1) in turn yields A(f) < L?/(4x), which is the classical isoperimetric
inequality. For another quick application of Theorem 1.1, note that if D denotes
the diameter of a planar curve f, or the maximum length of all its chords, then
LD > TD(f) and thus (3) implies that LD > 4A(f) when f is convex or cen-
trally symmetric. In the convex case, this is a classical inequality due to Hayashi
[9, 20]. Another interesting feature of the above theorem is that equality in (2)
is never achieved when f is simple or injective; however, we will show in Section
6 that the strict inequality is still sharp for simple curves. More specifically, we
construct a family of simple closed planar curves f, such that TD(f,)/A(fn) — 2
as n — oo. This also shows that (3) does not hold without the convexity or the
symmetry conditions.
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The proof of Theorem 1.1 unfolds as follows. First, in Section 2, we use some
basic degree theory to show that each affine space A\ € AG with wy(f,\) # 0
intersects an antipodal chord of f. Then in Section 3 we integrate the Jacobian of
a natural map parametrizing the antipodal chords of f to obtain (2) fairly quickly;
see also Note 3.1 for an intuitive geometric proof of (2) for planar curves. The same
Jacobian technique also yields the proof of the symmetric case of (3) in Section 4
with a bit more work. Next we consider the convex case of (3) in Section 5. Here,
when m > 2, the rigidity of convex hypersurfaces (see Lemma 5.1) reduces the
problem to the symmetric case already solved in the Section 4. The case of m =1
or convex planar curves, on the other hand, requires more work, and surprisingly
enough constitutes the hardest part of Theorem 1.1.

Note 1.2 (Regularity of curves in Theorem 1.1). In the case where m = 1, or
f: M ~R/LZ — R" is a closed curve, the regularity requirement for f in Theorem
1.1 may be relaxed. In fact it suffices to assume in this case that f is rectifiable
and parametrized by arc length, i.e., for every interval I C R, the length of f(I)
coincides with that of I. Then f will be Lipschitz and thus absolutely continuous.
So, by a theorem of Lebesgue, it is differentiable almost everywhere and satisfies
the fundamental theorem of calculus. Consequently, all arguments below apply to
f once it is understood that the expressions involving f’(¢) are meant to hold for
almost all ¢.

Note 1.3 (Historical background). The first person to study integrals of chord
lengths of planar curves seems to have been Crofton in the remarkable papers [3, 4]
where he considers the length of chords cut off by a random line, and also the powers
of these lengths. Furthermore these papers give the invariant measure on the space
of lines in R?, that is the measure dA on AG3 1 mentioned above. For more on these
results and their history see Santalé’s book [19, Chap. 4]. Using winding numbers
to generalize the notion of volume enclosed by a simple curve or surface seems to
have originated in the works of Radé [16, 17, 18], where he considers nonsimple
curves in R? and the maps from the two dimensional sphere into R3. The idea
of relating integrals of linking numbers with affine subspaces to integrals of chord
lengths for curves in Euclidean spaces is due to Pohl [15]. The generalization of
these linking integrals to higher dimensional submanifolds, and pointing out that
they extend the notion of enclosed volume to higher codimensions, appear in the
paper of Banchoff and Pohl [2]. In contrast to our definition of A(f) above, Banchoff
and Pohl define the area as [, o w?(f, \)dA, where w(f, \) is the winding number
of f about A (which is well-defined only when M is orientable). Using this concept,
they generalize the classical isoperimetric inequality to nonsimple curves and higher
dimensional (and codimensional) submanifolds.

2. A TOPOLOGICAL LEMMA

The proofs of both inequalities in Theorem 1.1 hinge on the following purely
topological fact. Let us first review the general definition of winding number mod 2.
Here M denotes a closed topological m-manifold, f: M — R" is a continuous map,
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and A C R" — f(M) is an n—m — 1 dimensional affine subspace. Let A’ C R™ be an
m + 1 dimensional affine subspace which is orthogonal to A, and 7: R™ — X be the

orthogonal projection. Then m(\) consists of a single point, say o, which is disjoint
from 7(f(M)), and we set

wa(f,\) == wa(mwo f,0).

It remains then to define wy(m o f,0). To this end we may identify X' with R™*1
and assume that o is the origin. Then r := wo f/||7wo f|| yields a mapping M — S™,
and we set
wa(mo f,0) = degy(r),

the degree mod 2 of r. If r is smooth (which we may assume it is after a perturba-
tion), deg,(r) is simply the number of points mod 2 in r~!(q) where ¢ is any regular
value of r. Alternatively, degy(r) may be defined in terms of the Zs-homology of
M. In particular wa(f, \) is well-defined even when M is not orientable. See [13, p.
124] for more background on mod 2 degree theory.

We say that a topological manifold M has antipodal symmetry provided that
there exists a fixed point free homeomorphism ¢: M — M with ¢? = idy;. Then
for every p € M, the corresponding antipodal point is p* := ¢(p). An antipodal
chord of f: M — R™ is a line segment connecting f(p) and f(p*) for some p € M.

Lemma 2.1. Let M be a closed m-manifold with antipodal symmetry, f: M — R"
be a continuous map, and A C R™ — f(M) be an n —m — 1 dimensional affine space
such that wo(f,A) # 0. Then an antipodal chord of f intersects .

In particular note that, according to this lemma, any point in the region enclosed
by a simple closed curve C' C R? intersects some antipodal chord of C.

Proof. Let m: R™ — X, and o := 7()\) be as discussed above. Suppose towards a
contradiction that no antipodal chord of f passes through A. Then no antipodal
chord of 7o f passes through o, and wa (7o f,0) = wa(f,A) # 0. Now set fo:=mo f,
identify A’ with R™*! and o with the origin. Further, define f;: M — R™*! by

1 *
filp) = 5 (fo(p) + fo(p™))-
Note that F': M x I — R™*! given by

t t. .,
F.t) = (1 5) folo) + § falo")
gives a homotopy between fy and f1 in the complement of 0. Thus

wa(f1,0) = wa(fo,0) = wa(f,\) #0.

On the other hand, fi(p) = fi(p*). Thus if we set M := M/¢ and let w: M — M be
the corresponding covering map, then fi induces a mapping f1: M — R™*! such
that fi om = fi. Now let r1 := fi/||f1ll, 71 := f1/||f1]]- Then

rLom=r1.
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Further note that since M is a double covering of M, degy(m) = 0. Thus the
multiplication formula for mod 2 degree yields that
wa(f1,0) = degy(r1) = degy(r1) degy(m) = degy(r1) - 0 =0,

and we have the desired contradiction. OJ

3. PROOF OF (2)

Equipped with the topological lemma established above, we now proceed towards
proving the first inequality in Theorem 1.1. To this end, for any p € M, let

fp) = f") = fp),
be the antipodal vector of f at p, and define F': M x [0,1] — R" by

F(p,t) == (1 =t)f(p) +tf(p*) = f(p) + tf(p).

Note that F' covers each antipodal chord of f twice, and thus by Lemma 2.1, inter-
sects each A € AG with wa (A, f) # 0 at least twice. Consequently

(4) / / F)dpadt,

where J(F) = J(F)(p,t) denotes the Jacobian of F. To compute J(F), let e;,
1 < j < m, be an orthonormal basis of T,M, and 0/0t be the standard basis
for [0,1]. Then {e;,d/0t} forms an orthonormal basis for T{, (M x [0,1]), and
thus J(F) is the volume of the parallelepiped, or the norm of the (m + 1)-vector,
spanned by the derivatives of F' with respect to {e;,0/0t}; see [11] or [10] for more
background on m-vectors and exterior algebra. More specifically, if we set

Fj:=dF(ej) and F;:=dF ((‘iﬁ) oF

then we have

(5) J(F)=[Fi A AFg AFILSITE - [1E A

Next note that since f is an isometric immersion, and ¢ is an isometry,
Gi=dfyle) and € i=d(fo@)yle))

are each orthonormal as well, and we have

(6) Fj = (1 —t)dfy(ej) +td(fod)yle;) = (1 —1t)ej + tej.
Thus

(7) IF5]1> = 14 2¢(1 — t)((ej,e5) — 1) < 1.

So it follows that

(8) J(F)(p,t) < [[f @),

which in turn yields

/ / F)dpdt < / I7()ll dp = TD(f)
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as desired. Next, to establish the sharpness of (2), suppose that the first and last
terms of the above expression are equal. Then the middle two terms will be equal
as well. This in turn implies that equality holds in (8). Now (5) yields that equality

must hold in (7), which can happen only if (¢, €;) = 1. So ¢; = €}, and we have

0= 6; —€j =d(fo)p(ei) — dfp(ej) = d?p(ej)‘

Hence f = a for some constant vector a € R". But f(p) = —f(p*). Thus a = 0,
which yields that f(p*) = f(p) as claimed.

Note 3.1 (A geometric proof of (2) for planar curves). Here we describe an alter-
nate proof of (2) for planar curves f: R/LZ — R?2, which is more elementary and
transparent, but may not yield the sharpness of the inequality so easily. Divide the
circle R/LZ into 2n arcs C; of length At := L/2n, i € Z/(2nZ), and note that
C! = Ciqn, ie., Ciqy, is the antipodal reflection of C; given by the correspondence
t— t*:=t+ L/2. Let R; be the region covered by all the antipodal chords connect-
ing f(C;) and f(C;*), and set A; := Area(R;). By Lemma 2.1, R; covers all points

FiGure 1.

x € R? with wa(f,2) # 0, as i ranges from 1 to n. Thus

n 2n
9) A(f)SZAi:%ZAi-
=1 =1

Next we are going to derive an upper bound for each A;. Let m; denote the midpoint
of C;, and consider the disk D; of radius At/2 centered at f(m;). Note that, since
f is parametrized by arc length, f(C;) C D;. Now consider the diameters of D; and
D} := D;, which are orthogonal to the antipodal chord f(m;)f(m}), and let R}
be the rectangle formed by connecting the end points of these diameters, see Figure

1. Then

R; CR;UDZ‘UDf,
because R, U D; U D} is a convex set; indeed it is the convex hull of D; U D}. Thus
setting A} := Area(R}), we have

, At 2 N T 9
A< A (51) = 5m) - gomplae+ Fan
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So it follows that
1 2n

. T
A = 530 (IFma) = Fmi) At + T(An?).
Taking the limit of the last expression as At — 0 yields (2).

4. PROOF OF (3) IN THE CENTRALLY SYMMETRIC CASE

Here we continue using the same notation established in the last section. If f in
Theorem 1.1 is symmetric, then after a translation we may assume that f(p*) =
—f(p) forallp € M, or fo¢p = —f on M, which yields that €; = —¢;. Consequently,
it follows from (6) that

(10) Fy = (1-2t)¢,
and thus by (5) we have
(11) J(E) < |l [ Bl ] = 1= 2t [ £]]

So
1 1 B 1 _

a2 [ [ s [p-ama | T@ld= [ 7@
o Jum 0 M m+1 Jy

This together with (4) yields

1
2m + DA(f) < (m+ 1) /0 /M J(F) dpdt < /MHf(p)\dp=TD(f)

as claimed. To establish the sharpness of (3), suppose that the first and last terms
of the above expression are equal. Then the middle two terms will be equal as well.
This in turn yields that the first and last terms of (12) are equal, and so equality
holds between the first two terms of (12). It then follows that equality holds in (11).
This can happen only if

(f,Fj)=0.
But, since we have assumed that f is symmetric with respect to the origin, f = 2f.

Furthermore, by (10), F; is parallel to €¢; = df,(ej). Thus f(p) is orthogonal to
dfy(ej), which yields that

(e (1£17) ) () = 207 () dfp(es)) = 0.
So ||f]| is constant on M, which means that f is a sphere.

Note 4.1 (A quick proof of (3) for centrally symmetric embedded hypersurfaces).
Let D be a bounded domain in R™ with C' boundary 0D, and X: R® — R” be
the position vector field given by X (p) := p. Then div X = n. If v is the outward
normal along 0D, then by the divergence theorem

vol(D)zl/ dideV:l/ (X,v)dA < 1/ X dA
D aD n JoD

n n
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where dV = dz' A--- Ada™, and dA is the surface area measure on 9D. Thus if M
is a Riemannian manifold and f: M — 0D is an isometry, then

vol(D / 1F(p)]| dA.

If D is symmetric about the origin, f(p) — f (p*) 2f(p), and thus the above
inequality reduces to (3) in the case where m = n — 1, and f is symmetric and
injective.

5. PROOF OF (3) IN THE CONVEX CASE

Here we need to treat the case of convex curves (m = 1) separately from that of
higher dimensional convex hypersurfaces (m > 2), because convex hypersurfaces are
rigid when m > 2, and consequently the argument here reduces to the symmetric
case considered earlier; however, for convex curves (which are more flexible) we need
to work harder.

5.1. Convex hypersurfaces (m > 2). Recall that when we say f: M — R" is
convex, we mean that f maps M injectively into the boundary of a convex subset
of an m + 1 dimensional affine subspace of R”, which we may identify with R™*!,
Since we have already treated the symmetric case, it is enough to show that:

Lemma 5.1. Let M be a closed Riemannian (m > 2)-manifold with antipodal sym-
metry, and f: M — R™ be a C! isometric convex embedding. Then f is centrally
symmetric.

To prove the above lemma we need to recall the basic rigidity results for convex
hypersurfaces. A (closed) convex hypersurface is the boundary of a compact convex
subset of R™*! which has nonempty interior. We say that a class of convex hyper-
surfaces of R™*1 is rigid if any isometry between a pair of members in that class can
be extended to an isometry of R™*!. An equivalent formulation is that for every
pair of convex isometric embeddings f,g: M — R™t! there exists an isometry p
of R™*! such that p o f = ¢g. That all convex surfaces in R? are rigid is a classical
result of Pogorelov [14]. For C! convex hypersurfaces this has also been established
by Sen’kin [21] in R™*! according to Vilcu [23, Lem. 2]. A recent paper of Guan
and Shin [8] gives another proof of this fact in the C? case. Finally see [22] for a
classical argument for the rigidity of positively curved hypersurfaces.

Proof of Lemma 5.1. If f is an isometric embedding of M into R™*!, then so is
f o ¢. Thus, by the theorems of Pogorelov and Sen’kin mentioned above, there
exists an isometry p of R™*! such that po f(p) = f o ¢(p) = f(p*) for all p € M.
In particular p is fixed point free on f(M), because p # p* and f is injective. After
a translation we may also assume that p is linear. Then,

) <f(p) +f(p*)> _ )+ f)

2 2

In other words, p fixes the midpoint of each antipodal chord of f. Let X be the affine
hull of these midpoints. Then p fixes each point of X. So X may not intersect f(M)
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because p is fixed point free on f(M). But, since f(M) is convex, X is contained
in the region enclosed by f(M). Consequently X cannot contain any lines which
means dim(X) = 0. So X is a singleton, which implies that the midpoints of all
antipodal chords of f coincide. Hence f is centrally symmetric. O

5.2. Convex curves (m = 1). Here we may identify M with R/LZ. Further,
similar to Section 3, we set

f@) = f(&) = ft),
where t* =t + L /2, and define F': R/LZ x [0,1] — R? by

(13) F(t,s) = (1—s)f(t) +s f(t") = f(t) + s f(1).
A straight forward computation shows that
|Fu A Fo)?

= (1= s2lF &) A FOI + SIFE) A FOIP + 251 = s)(F'(8) A F(1), () A F(2)),

where F| = Fi(t,s) and Fy = Fy(t,s) denote the partial derivatives of F', and we
may think of A as the cross product in R3. The key observation here is that if f is
convex, then

(14) FONFE) =) A FE).

This follows from the basic fact that when f traces a convex planar curve, f'(t)
and f'(t*) point into the opposite sides of the line passing through f(t) and f(t*),

see Figure 2, and thus (f'(t), f(t)) and (f'(¢t*), f(t)) have opposite orientations as
ordered bases of R2.

7 -

FiGURE 2.

The last two expressions yield that

|Fy A B2 = (L= 9)[1£/()) A FON = sllF ) A F@I*
So by (4), we have

L 1 N N
(1) 24(f) < /0 /0 (L= )IF(E) A @ - s (%) A ()] dsdt.

To estimate the above integral, we require the following fact:
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Lemma 5.2. Let a,b > 0. Then
! 1
/ |(1—s)a— sblds < 5 max{a, b},
0

with equality if and only if a = b.

Proof. Computing the area under the graph of s — [(1 — s)a — sb|, see Figure 3,

_a
a+b
FiGUuRrE 3.

yields that

! 1 a a a? + b?
/0 |(1—s)a — sb|ds 2<aa+b+b< a—l—b)) a1 D)

By symmetry we may assume a < b. Let A = b/a. Then
a? +v? a1+ X\ a A—1 a 1 1
2(a +b) 2<1+A> 2(A 1+/\>—2A 30 = g max{a, b}
and equality holds if and only if A = 1, that is when a = b. O

Using the last lemma in (15), and recalling that || f'|| = 1, we have
L 1 B B
4A(f) <2 ; /0 [X =)@ AFON = sllfF ) A FO ds dt
L
< /0 max {[|f'(t) A FOIL LS/ () A F@))1} dt

L —
< /0 17 ()|l dt = TD(f)

as desired. Next to establish the sharpness of (3), note that if equality holds in (3)
then the first and last terms in the above expression are equal, and consequently all
the intermediate terms are equal. In particular, the equality between the integrals
in the first and second lines yields that

1@ A @I = 1LFE) A F@]

via Lemma 5.2. Consequently, the equality between the second and third lines yields
that

1F'@&) A FOI = IF @I = 1F'E) A F@II-
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Thus, since ||f'|| = 1, it follows that

(16) (f/(6), F(£)) = 0= (f'(t"), (1)),

which yields f/(t) = +£f'(t*), and then (14) ensures that f'(¢t) = —f'(¢*). Conse-
quently o(t) := (f(t) + f(t*))/2 does not depend on ¢, i.e., o'(t) = 0. Now if we set
0 := o(t), then we have

d 1d - / l(4k\ £ —
@) = ol = 5= IF @I = (£(t) = £, F(#) =0,

where the last equality again follows from (16). So f traces a circle centered at o.

6. SHARPNESS OF (2) FOR SIMPLE CURVES

Here we construct a one-parameter family of simple closed curves f,: R/L,Z —
R? parametrized by arc length such that

RS S L N
(a7) Jim s [0l =2

where f, () := fn(t*) — fo(t) and t* := ¢t + L,,/2. This shows that the constant 2
in (2) is in general sharp even for simple curves. Note that by (2), which we have
already established, the above limit is always > 2. Thus it suffices to find f,, such
that this limit is < 2. To this end, for n = 1,2,..., let each f,, trace with unit
speed a horseshoe shaped curve which consists of a pair of rectangular parts joined
by concentric semicircles as depicted in Figure 4. The rectangular parts here have

1

| ka b\
n

1 c d
n 3 E3

) a b
" c* d*

FIGURE 4.

constant length 1 and height 1/n. Further, the vertical separation distance between
them is 1/n?. In particular note that

2
A > —.
() 2 2
Next note that if R denotes the radius of the big semicircle, then we have
1 1 2

Re-4— <2
n+2n2_n

Let a, b, ¢, d denote the corners of the top rectangle, and a*, b*, ¢*, d* be the corners
of the bottom rectangle, as indicated in the figure. We want the corresponding points
in these two sets to be antipodal, i.e., a* = a+ L,,/2 and so on. To this end it suffices
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to choose the radius r of the small semicircle so that the length of the arc bd* is
equal to that of the arc b*d (with respect to the orientation of the curve as indicated
in the figure). The former quantity is 7R while the latter is 7r 4+ 2r — 1/n2. Setting
these values equal to each other, we obtain

TR+ 1/n?
T+2
Now it follows that for every point « € ab, x* lies directly below it on a*b*, and for

every = € dc, z* lies directly below it on d*c*. Thus, if we let C), denote the trace
of fn, and C}, := abUdc U a*b* U d*c* be the horizontal portions of C,,, then

1
2n?

— 1
IFall =~ +

on C,,. So we obtain the following estimate
_ — 1 1 1 1 2
=L hiCp) | —+=— | =4 —+— ) <24(fn) + —.
Ll = Length@) (5 + 57 ) =4 (5 + 5 ) <2400+ 5

Further we have

_ _ — 2
| WFl < Length(C, ~ C) max [[7,]) < 1R+ 2R) VER < 23R < .
Cn—

Cp—C n?

n n n

The last two inequalities show that

Ln _ _ _ 94
L m o= [ 7= [ [ <2400+ s

So it follows that

Ly a7
7 ol <2+ 1

which shows that the left hand side of (17) is < 2 as desired.
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