
CONVEX BODIES OF CONSTANT WIDTH AND CONSTANT
BRIGHTNESS

RALPH HOWARD

Abstract. In 1926 S. Nakajima (= A. Matsumura) showed that any convex
body in R3 with constant width, constant brightness, and boundary of class
C2 is a ball. We show that the regularity assumption on the boundary is
unnecessary, so that balls are the only convex bodies of constant width and
brightness.

1. Introduction.

A convex body in the n-dimensional Euclidean space Rn is a compact convex set
with non-empty interior. A convex body K in three dimensional Euclidean space
has constant width w iff the orthogonal projection of K onto every line is an interval
of length w. It has constant brightness b iff the orthogonal projection of K onto
every plane is a region of area b.

Theorem 1. Any convex body in R3 of constant width and constant brightness is
a Euclidean ball.

Under the extra assumption that the boundary is of class C2 this was proven by
S. Nakajima (= A. Matsumura) [17] in 1926 (versions of Nakajima’s proof can be
found in the books of Bonnesen and Fenchel [1, Sec. 68] and Gardner [8, p. 117]).
Since then the problem, often called the Nakajima problem, of determining if there
is a non-smooth non-spherical convex body in R3 of constant width and constant
brightness has become well known among geometers studying convexity (cf. [3,
p. 992], [4, p. 82], [6, Prob. A10], [8, Prob. 3.9, p. 119], [9, Ques. 2, p. 437], [10,
p. 24], [11, p. 368],). Theorem 1 solves this problem.

For convex bodies with C2 boundaries and positive curvature Nakajima’s result
was generalized by Chakerian [2] in 1967 to “relative geometry” where the width
and brightness are measured with respect to some convex bodyK0 symmetric about
the origin called the gauge body. The following isolates the properties required of
the gauge body. Recall the Minkowski sum of two subsets A and B of Rn is
A+B = {a+ b : a ∈ A, b ∈ B}.
Definition. A convex body K0 is a regular gauge iff it is centrally symmetric about
the origin and there are convex sets K1, K2 and Euclidean balls Br and BR such
that K0 = K1 +Br and BR = K0 +K2.

Any convex body symmetric about the origin with C2 boundary and positive
Gaussian curvature is a regular gauge (Corollary 2.4 below). For any linear subspace
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P of Rn let K|P be the projection of K onto P (all projections in this paper are
orthogonal). For a unit vector u let wK(u) be the width in the direction of u.
For each positive integer k and any Borel subset A of Rn let be Vk(A) be the
k-dimensional volume of A (which in this paper is the k-dimensional Hausdorff
measure of A). Two subsets A and B of Rn are homothetic iff there is a positive
scalar λ and a vector v0 such that B = v0 + λA.

Theorem 2. Let K0 be a regular gauge in R3 and let K be any convex body
in R3 such that for some constants α, β the equalities wK(u) = αwK0(u) and
V2(K|u⊥) = βV2(K0|u⊥) hold for all u ∈ S

2. Then K is homothetic to K0.

Letting K0 be a Euclidean ball recovers Theorem 1. While we are assuming
some regularity on the gauge body K0, the main point is that no assumptions,
other than convexity, are being put on K. It is likely that the result also holds
with no restrictions on either K or K0. One indication this may be the case is a
beautiful and surprising result of Schneider [22] that almost every, in the sense of
Baire category, centrally symmetric convex bodyK0 is determined up to translation
in the class of all convex bodies by just its width function. This contrasts strongly
with the fact that for any regular gauge K0 there is an infinite dimensional family
of convex bodies that have the same width function as K0 (see Remark 2.7 below).

Two convex bodies K and K0 in Rn have proportional k-brightness iff there is
a constant γ such that Vk(K|P ) = γVk(K0|P ) for all k-dimensional subspaces P
of Rn. Theorem 2 implies a result, valid in all dimensions, about pairs of convex
bodies that have both 1-brightness and 2-brightness proportional. If A and B
are convex sets in Rn and L is a linear subspace of Rn, then taking Minkowski
sums commutes with projection onto L, that is (A + B)|L = A|L + B|L. As the
projection of a Euclidean ball is a Euclidean ball, it follows that if K0 is a regular
gauge in Rn, then K0|L is a regular gauge in L. Also, if P is a linear subspace
of L, then K|P = (K|L)|P . Therefore if K0 is a regular gauge in Rn and K is a
convex body such that K and K0 have proportional 1-brightness and proportional
2-brightness, then for any three dimensional subspace L of Rn the set K0|L is
a regular gauge in L and K0|L and K|L will have proportional 1-brightness and
proportional 2-brightness as subsets of L. Thus by Theorem 2 K|L is homothetic
to K0|L. However, if the projections K0|L and K|L are homothetic for all three
dimensional subspaces L, then, [8, Thm 3.1.3, p. 93], K is homothetic to K0. Thus:

Corollary. If K0 is a regular gauge in Rn, n ≥ 3, and K is a convex body in
Rn that has 1-brightness and 2-brightness proportional to those of K0, then K is
homothetic to K0. In particular if K0 is a Euclidean ball this implies any convex
body K in Rn of constant 1-brightness and 2-brightness is also a Euclidean ball. �

The contents of this paper are as follows. In Section 2 some preliminaries about
convex sets are given and a C1,1 regularity result, Proposition 2.5, for the support
functions of convex sets in Rn that appear is a summand in a convex set with
C1,1 support function is proven. (I am indebted to Daniel Hug for some of the
results in this section). Section 3 gives explicit formulas, in terms of the support
function, h, for the inverse of the Gauss map of the boundary of a convex set in Rn

and conditions are given for two convex sets with C1,1 boundary to have propor-
tional brightness. It is important for our applications that some of these formulas
(eg. Proposition 3.2) apply even when the function h is not the support function
of a convex set. It is also shown that if the convex body, K, has its brightness
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function proportional to that of the gauge, K0, then the support function hK of K
satisfies a Monge-Ampère type equation. In Section 4 results about quasiregular
maps are used to show that certain Monge-Ampère type equations on spheres have
no odd solutions. In Section 5 the results of the previous sections are combined to
prove Theorems 1 and 2.

2. Preliminaries on convexity.

We assume that Rn has its standard inner product 〈 , 〉 and let S
n−1 be the unit

sphere of Rn. For any convex body K contained Rn the support function h = hK

of K is the function h : S
n−1 → R given by h(u) := maxy∈K〈y, u〉. A convex body

is uniquely determined by its support function. The Minkowski sum of K1 and
K2 corresponds to the sum of the support functions: hK1+K2 = hK1 + hK2 . The
width function of K is w(u) = h(u) + h(−u). This is the length of the projection
of K onto a line parallel to the vector u. In the terminology of Gardner, [8, p. 99],
the central symmetral of a convex body K is the convex body K0 := 1

2 (K −K) =
{ 1

2 (a − b) : a, b ∈ K}. The body K0 is centrally symmetric about the origin and,
denoting the support function of K0 by h0, it follows from h 1

2 (K−K) = 1
2hK + 1

2h−K

that h0(u) = 1
2 (h(u) + h(−u)). Therefore K and K0 have the same width in all

directions. These definitions imply that a convex body has constant width w if and
only if its central symmetral is a Euclidean ball of radius w/2.

We need the following, which is an elementary corollary of the Brunn-Minkowski
theorem. For a proof see [8, Thm 3.2.2, p. 100].

2.1. Proposition. The volumes of a convex body K and its central symmetral
K0 = 1

2 (K−K) satisfy V (K0) ≥ V (K) with equality if and only if K is a translate
of K0. �

Recall that a function f defined on an open subset U of Rk is of class C1,1 iff it
is continuously differentiable and all the first partial derivatives satisfy a Lipschitz
condition. A convex body K has C1,1 boundary iff its boundary ∂K is locally the
graph of a C1,1 function.

There is a very nice geometric characterization of the convex bodies that have
C1,1 boundaries in terms of freely sliding bodies. LetK1 andK2 be convex bodies in
Rn. Then K1 slides freely inside of K2 iff for all a ∈ ∂K2 there is a translate y+K1

of K1 such that y+K1 ⊆ K2 and a ∈ y+K1. It is not hard to see, [21, Thm 3.2.2,
p. 143], that K1 slides freely inside of K2 if and only if K1 is a Minkowski summand
of K2. That is, if and only if there is a convex set K such that K +K1 = K2. In
what follows we will use the expressions “K1 slides freely inside of K2” and “K1

is a Minkowski summand of K2” interchangeably. A proof of the following can be
found in [13, Prop. 1.4.3, p. 97].

2.2. Proposition. A convex body K has C1,1 boundary if and only if some Eu-
clidean ball Br slides freely inside of K. �

I learned the following elegant dual form of this theorem, with a somewhat
different proof, from Daniel Hug.

2.3. Proposition (D. Hug [14]). The support function h of a convex body K is C1,1

if and only if K slides freely inside of some Euclidean ball BR.
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Proof. Assume that K slides freely inside of the ball BR of radius R. Without
loss of generality it may be assumed that the origin is in the interior of K. Let
K◦ := {y : 〈y, x〉 ≤ 1 for all x ∈ K} be the polar body of K. The radial function
of K◦ (which is the positive real valued function ρ on Sn−1 such that u 7→ ρ(u)u
parameterizes the boundary ∂(K◦) of K◦) is ρ(u) = 1/h(u), [21, Rmk 1.7.7, p. 44].
So it is enough to show that ρ is a C1,1 function, and to show this it is enough
to show that the boundary ∂(K◦) is C1,1. By Proposition 2.2 it is enough to
show that some ball slides freely inside of K◦. Let ρ(u)u ∈ ∂(K◦). Because K
slides freely inside a ball of radius R there is a ball BR(a) of radius R centered at
some point a such that K ⊂ BR(a) and a point x ∈ K ∩ ∂BR(a) such that u is
the outward pointing normal to BR(a) at x. As the operation of taking polars is
inclusion reversing, BR(a)◦ is contained in K◦ and as u is the outward pointing unit
normal to both K and BR(a) at x we also have ρ(u)u ∈ ∂(BR(a)◦). The support
function of BR(a) is hBR(a)(u) = R+ 〈a, u〉 and therefore the radial function of the
polar BR(a)◦ is ρBR(a)◦(u) = 1/(R + 〈a, u〉). Thus points on ∂(BR(a)◦) are of the
form y = (1/(R+ 〈a, u〉))u for u ∈ S

n−1. This implies |y| = 1/(R + 〈a, u〉) and
〈a, y〉 = 〈a, u〉/(R + 〈a, u〉). If 〈a, u〉 is eliminated from these equations the result
can be written as

R2|y|2 − 〈a, y〉2 + 2〈a, y〉 = 1.

For each a this is an ellipsoid and an ellipsoid has positive rolling radius (which is
the largest number r so that a ball of radius r slides freely inside of the body). By
Blaschke’s rolling theorem, [21, Cor. 3.2.10, p. 150], the rolling radius is the smallest
radius of curvature of ∂(BR(v)◦) and this is a continuous function of the vector v.
The set of v such that BR(v) contains K is a compact set and therefore, by the
continuous dependence of the rolling radius of ∂(BR(v)◦) on v, there is a positive
number r0 such that a ball of radius r0 slides freely inside of any BR(v)◦ that
contains K. In particular this is true of BR(a)◦ and so K◦ contains an internally
tangent ball of radius r0 at ρ(u)u. But ρ(u)u was an arbitrary point of ∂(K◦) and
hence a ball of radius r0 slides freely inside of K◦ as required.

Conversely assume that the support function, h, of K is C1,1. Let h̃ be the
extension of h to Rn that is homogeneous of degree 1. Explicitly

(2.1) h̃(x) := max
y∈K

〈y, x〉.

As h is C1,1 the function h̃ is C1,1
Loc on Rn

r{0}. That is on each compact subset of
Rn r {0} the vector field ∂h̃ is Lipschitz. Therefore by Rademacher’s theorem, [7,
Thm 3.1.6, p. 216], the second derivative ∂2h̃ exists almost everywhere and is
bounded on compact subsets of Rn

r {0}. Moreover ∂2h̃(x) is symmetric at the
points where it exists (cf. [7, p. 219]). As h̃ is homogeneous of degree 1, the second
derivative ∂2h̃ is homogeneous of degree −1. Likewise the function | · | is also
homogeneous of degree 1 and ∂2| · | is homogeneous of degree −1. Also ∂2| · | is
symmetric and positive semidefinite on Rn

r {0}. Therefore the boundedness of
∂2h̃ on compact sets together with the homogeneity implies there is a constant
R > 0 such that if H0 := R| · | − h̃, then ∂2H0(x) exists and is positive semidefinite
for almost all x ∈ Rn

r {0}. We now show that H0 is convex. Let {ϕ`}∞`=1 be a
C∞ approximation to the identity such that ϕ` is nonnegative and supported in
the ball B1/`(0). Let H` be the convolution H`(x) :=

∫
Rn H0(y)ϕ`(x − y) dy =∫

Rn H0(x − y)ϕ`(y) dy. Then H` is C∞ and H` → H0 informally on compact
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subsets of Rn. Also on Rn r B2/`(0) Lebesgue’s bounded convergence theorem
implies the second derivative of H` is given by ∂2H`(x) =

∫
Rn ∂

2H0(x−y)ϕ`(y) dy,
which shows that ∂2H` is positive semidefinite on Rn

rB2/`(0). A smooth function
with positive semidefinite Hessian defined on a convex open set is convex (cf. [21,
Thm. 1.5.10, p. 29]). It follows that the restriction of H` to any convex open subset
of Rn

r B2/`(0) is convex. Let x0 and x1 be two points of Rn and [x0, x1] the
segment between them. If 0 is not on [x0, x1], then there is a convex open set U
containing [x0, x1] such that for large ` the sets B2/`(0) and U are disjoint. Thus
for large ` the restriction of H` to U is convex and therefore for 0 ≤ t ≤ 1,

H0((1 − t)x0 + tx1) = lim
`→∞

H`((1 − t)x0 + tx1)

≤ lim
`→∞

(
(1 − t)H`(x0) + tH`(x1)

)
= (1 − t)H0(x0) + tH0(x1)

If [x0, x1] does contain the origin, then H0((1−t)x0+tx1) ≤ (1−t)H0(x0)+tH0(x1)
still holds as can be seen by approximating [x0, x1] by a sequence of segments that
do not contain the origin. Therefore H0 is convex. But it is also homogeneous of
degree 1 and thus, [21, Thm 1.7.1, p. 38], the restriction H0

∣∣
Sn−1 is the support

function of a unique compact convex set K0. Then H0 + h̃ = R| · | implies that
K +K0 = BR(0). Therefore K is a summand in a ball. �
2.4. Corollary. Let K0 be a convex body that is centrally symmetric about the
origin, with ∂K0 of class C2 with positive Gauss curvature. Then K0 is a regular
gauge.

Proof. It follows from a generalization of Blaschke’s rolling theorem, [21, Cor.
3.2.10, p. 150], that if Br is a Euclidean ball with r smaller than any of the
radii of curvature of K0, then Br slides freely inside of K0 and if R is larger than
any of the radii of curvature of ∂K0, then K0 slides freely inside of BR. �
2.5. Proposition. Let K1, . . . ,Kk be convex bodies in Rn such that the Minkowski
sum K1 + · · · + Kk has C1,1 support function. Then each summand Kj also has
C1,1 support function.

Proof. If K1 + · · · +Kk has C1,1 support function, then, by Proposition 2.3, K1 +
· · · + Kk is a Minkowski summand in some ball BR. But then each Kj is also
a summand in BR and therefore Proposition 2.3 yields that Kj has C1,1 support
function. �
2.6. Corollary. Let K be a convex body such that its central symmetral has a C1,1

support function. Then the support function of K is also C1,1. In particular any
convex body of constant width has C1,1 support function.

Proof. If K0 is the central symmetral of K, then K+(−K) = 2K0. As K0 has C1,1

support function, h0, the support function, 2h0, of 2K0 is also C1,1 and therefore
the support function of K is C1,1 by Proposition 2.5. �
2.7. Remark. Corollary 2.6 is sharp in the sense that even when the support func-
tion, h0, of the central symmetral, K0, is C∞, the most that can be said about the
regularity of the support function, h, of K is that it is C1,1. For example let h0 be
the support function of a regular gauge, K0, and let p a C1,1 function p : Sn−1 → R
with p(−u) = −p(u). Then for sufficiently small ε > 0 the function h := h0 + εp is
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the support function of a convex body with the same width function as K0. But
there are many choices of h0 and p with h0 of class C∞ and h only of class C1,1.

3. Support Functions and the Inverse of the Gauss Map.

We view vector fields ξ on subsets of U of Rn as functions ξ : U → Rn. A
vector field on Sn−1 is a function ξ : Sn−1 → Rn such that for all u ∈ Sn−1 the
vector ξ(u) ∈ TuS

n−1. As the tangent space, TuS
n−1, to S

n−1 at u is just u⊥, the
orthogonal complement to u in Rn, a vector field ξ on S

n−1 can also be viewed as
a map from Sn−1 to Rn with ξ(u)⊥u for all u. If X ∈ TuSn−1 is a tangent vector
to S

n−1 at u, then a curve fitting X is a smooth curve c : (a, b) → S
n−1 defined on

an interval about 0 with c(0) = u and c′(0) = X. If ξ is a vector field on S
n−1 that

is differentiable at the point u, then for any X ∈ TuSn−1 the covariant derivative,
(∇Xξ)(u), of ξ by X is the projection of d

dtξ(c(t))
∣∣
t=0

onto TuS
n−1 where c is

any curve fitting X. This is independent of the choice of c fitting X and is given
explicitly by

(∇Xξ)(u) :=
d

dt
ξ(c(t))

∣∣∣∣
t=0

−
〈
d

dt
ξ(c(t))

∣∣∣∣
t=0

, u

〉
u.

This definition implies that for any smooth curve c : (a, b) → Sn−1 and any vector
field ξ on Sn−1

(3.1)
d

dt
ξ(c(t)) = (∇Xξ)(c(t)) +

〈
d

dt
ξ(c(t)), c(t)

〉
c(t)

for any value t such that ξ is differentiable at c(t).
For any C1 function p : S

n−1 → R the (spherical) gradient is the vector field,
∇p, on Sn−1 such that 〈∇p,X〉 = dp(X) for all vectors X tangent to Sn−1. At any
point u where the vector field ∇p is differentiable the second derivative of p is the
linear map ∇2p(u) : TuS

n−1 → TuS
n−1 given by

∇2p(u)X := (∇X∇p)(u).
3.1. Remark. There is a another way of viewing ∇2p that is useful. If p is defined on
S

n−1 then extend p to Rn to be homogeneous of degree one. That is let p̃ : Rn → R
be

(3.2) p̃(x) = |x|p(|x|−1x)

for x 6= 0 and p̃(0) = 0. Let ∂p̃ be the usual gradient of p̃, that is ∂p̃ is the
vector with components ∂1p̃, ∂2p̃, . . . , ∂np̃, and let ∂2p̃ be the field of linear maps
on Rn

r {0} given by ∂2p̃(x)Y := (∂Y ∂p̃)(x) where ∂Y is the usual directional
derivative in the direction of the vector Y . The matrix of ∂2p̃ with respect to the
coordinate basis is the usual Hessian matrix [∂i∂j p̃]. A straightforward calculation
shows that ∂2p̃ and ∇2p are related by

(3.3) ∂2p̃(x)Y =
1
|x|

(
∇2p(|x|−1x) + p(|x|−1x)I

)
(Y − |x|−2〈Y, x〉x).

This implies that if u ∈ Sn−1 and Y ∈ TuS
n−1 = u⊥, then

∂2p̃(u)Y = (∇2p(u) + p(u)I)Y

and ∂2p̃(u)u = 0. Thus TuS
n−1 is invariant under ∂2p̃. The symmetry of the second

partials implies that when p is C2, so that p̃ is C2 on Rn r {0}, then ∂2p̃(x) is
self-adjoint (that is 〈∂2p̃(x)X,Y 〉 = 〈X, ∂2p̃(x)Y 〉) for x ∈ Rn

r {0}. But then
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∇2p(u) = ∂2p̃(u)
∣∣
TuSn−1 −p(u)I implies that ∇2p(u) is self-adjoint on TuSn−1. The

formula (3.3) also implies that ∇2p exists at u ∈ S
n−1 if and only if ∂2p̃ exists at all

points tu with t > 0. This, combined with Fubini’s Theorem, yields that ∇2p exists
almost everywhere on Sn−1 if and only if ∂2p̃ exists almost everywhere on Rn.

The following proposition is known in the case that ϕ is the inverse Gauss map
and p the support function of strictly convex C2 convex body (cf. [15, Korollar
p. 132]). As we will need the result when p is is not the support function of a any
convex body and only has C1,1 smoothness we include a proof.

3.2. Proposition. Let ϕ : Sn−1 → Rn be a Lipschitz map such that for all u where
the derivative ϕ′(u) exists it satisfies ϕ′(u)X ∈ TuS

n−1 for all X ∈ TuS
n−1. Then

there is a unique C1,1 function p : S
n−1 → R such that

(3.4) ϕ(u) = p(u)u+ ∇p(u).
The derivative ϕ′(u) exists at u if and only if the second derivative ∇2p(u) of p
exists at u and at these points

(3.5) ϕ′(u) = p(u)I + ∇2p(u)

where I is the identity map on TuS
n−1. Conversely if p is C1,1 and ϕ is given by 3.4

then ϕ′(u)X ∈ TuS
n−1 for all X ∈ TuS

n−1 for all points u where ϕ is differentiable.
Finally for k ≥ 1 the function ϕ is Ck if and only if p is Ck+1.

Proof. Any function ϕ : Sn−1 → Rn can be uniquely written as ϕ(u) = p(u)u+ξ(u)
where p : S

n−1 → R and ξ is a vector field on S
n−1. Because ϕ is Lipschitz, so are

p and ξ. Therefore a theorem of Rademacher, [7, Thm 3.1.6, p. 216], implies that
p and ξ are both differentiable almost everywhere on Sn−1. Let E be the set of
points where both p and ξ are differentiable. Then ϕ is also differentiable at u. Let
u ∈ E, X ∈ TuS

n−1, and c a curve fitting X. Then, using (3.1),

ϕ′(u)X =
d

dt

∣∣∣∣
t=0

(
p(c(t))c(t) + ξ(c(t))

)

= dpu(X)u+ p(u)X + (∇Xξ)(u) +
〈
d

dt

∣∣∣∣
t=0

ξ(c(t)), u
〉
u.

But dpu(X) = 〈∇p(u), X〉 and, using that 〈ξ(c(t)), c(t)〉 ≡ 0,〈
d

dt

∣∣∣∣
t=0

ξ(c(t)), u
〉

=
d

dt

∣∣∣∣
t=0

〈ξ(c(t)), c(t)〉 − 〈ξ(c(t)), c′(t)〉
∣∣∣∣
t=0

= −〈ξ(u), X〉.

Therefore the formula for ϕ′(u)X becomes

(3.6) ϕ′(u)X = 〈∇p(u) − ξ(u), X〉u+ p(u)X + (∇Xξ)(u).

As ϕ′(u)X ∈ TuS
n−1 the component normal to S

n−1 must vanish. Hence 〈∇p(u)−
ξ(u), X〉 = 0 for all X ∈ TuSn−1. This implies

(3.7) ξ(u) = ∇p(u) at points u where both p and ξ are differentiable.

We now argue that p is continuously differentiable and that ∇p = ξ on all of S
n−1.

This will be based on the following elementary lemma, whose proof will be given
after the proof of Proposition 3.2.
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3.3. Lemma. Let q be a real valued Lipschitz function defined on an open subset U
of RN . Assume that there are Lipschitz functions q1, . . . , qN on U and a set of full
measure S ⊆ U such that for all x ∈ S the partial derivatives of q exist and satisfy
∂jq(x) = qj(x) for all x ∈ S. Then q is of class C1,1 and ∂jq = qj on all of U .

Near any point, u0, of S
n−1 there is a C∞ parameterization f : U → V ⊂ S

n−1

of a neighborhood V of u0, with U a bounded open set in Rn−1, and f a C∞

diffeomorphism. By making the domain U of f smaller we can assume that f
and its derivatives are Lipschitz. To show that p is C1,1 it is enough to show
the function q : U → R given by q(x) := p(f(x)) is C1,1. Let S be the subset
of points x ∈ U where both p and ξ are differentiable at f(x). As p and ξ are
Lipschitz and f is a diffeomorphism this is a set of full measure in U and at all
points of S we have, by (3.7), that ∇p(f(x)) = ξ(f(x)). As ξ is Lipschitz there
are real valued Lipschitz functions ξ1, . . . , ξn−1 defined on U such that ξ(f(x)) =∑n−1

i=1 ξ
i(x)∂if(x). Therefore at points x in S we have ∇p(f(x)) = ξ(f(x)) =∑n−1

i=1 ξ
i(x)∂if(x) and thus

∂jq(x) = dpf(x)(∂jf) = 〈∇p(f(x)), ∂jf〉 =
n−1∑
i=1

ξi(f(x))〈∂if(x), ∂jf(x)〉.

The functions qj(x) :=
∑n−1

i=1 ξ
i(f(x))〈∂if(x), ∂jf(x)〉 are Lipschitz so Lemma 3.3

implies that q, and therefore also p, is a C1,1 function and that ∇p is Lipschitz.
By (3.7) ∇p(u) = ξ(u) on the dense set E and ∇p and ξ are continuous thus

∇p = ξ on all of S
n−1. Therefore ϕ(u) is given by (3.4) as required. When ϕ

is of this form it is clear that ϕ is differentiable exactly at the points u where
the second derivative ∇2p(u) exists. At such points use ∇p = ξ and ∇Xξ(u) =
(∇X∇p)(u) = ∇2p(u)X in (3.6) to see that (3.5) holds. This completes the proof
that if ϕ : S

n−1 → Rn is a Lipschitz map with ϕ′(u)X ∈ TuS
n−1 for all u ∈ S

n−1

where ϕ is differentiable, then ϕ is given by (3.4) for a uniquely determined C1,1

function p.
Conversely if p is C1,1 let ξ = ∇p in the calculations leading up to (3.6) to

see that ϕ given by (3.4) satisfies ϕ′(u)X ∈ TuS
n−1 for all u ∈ S

n−1 where ϕ is
differentiable.

Finally ϕ(u) = p(u)u + ∇p(u) makes it clear that if p is Ck+1, then ϕ is Ck.
Conversely if ϕ is Ck, then p(u) = 〈u, ϕ(u)〉 implies p is Ck. Then ∇p(u) =
ϕ(u) − p(u)u implies that ∇p is also Ck. But if ∇p is Ck, then p is Ck+1. �

Proof of Lemma 3.3. We will show that the j-th distributional derivative of q is
qj . By definition this means we need to show that for all C∞ functions ψ with
compact support contained in U that

∫
U
q∂jψ dx = − ∫

U
qjψ dx. Let ej be the j-th

coordinate vector. Then∫
U

q(x)∂jψ(x) dx = lim
h→0

∫
U

q(x)
ψ(x+ hej) − ψ(x)

h
dx

= lim
h→0

(
1
h

∫
U

q(x)ψ(x+ hej) dx− 1
h

∫
U

q(x)ψ(x) dx
)

= lim
h→0

(
1
h

∫
U

q(x− hej)ψ(x) dx− 1
h

∫
U

q(x)ψ(x) dx
)

= lim
h→0

∫
U

q(x− hej) − q(x)
h

ψ(x) dx.
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But q is Lipschitz and therefore the quotients (q(x − hej) − q(x))/h are uni-
formly bounded. By assumption for all x ∈ S, limh→0(q(x − hej) − q(x))/h =
−∂jq(x) = −qj(x) and S has full measure so this limit holds almost everywhere.
Therefore Lebesgue’s bounded convergence theorem implies limh→0

∫
U

((q(x−hej)−
q(x))/h)ψ(x)) dx = − ∫

U
qjq(x)ψ(x) dx. Using this in the calculation above yields

that
∫

U
q∂jψ dx = − ∫

U
qjψ dx holds, and thus the distributional partial derivatives

∂jq are qj . Then a standard result about distributional derivatives, [12, Thm 1.4.2,
p. 10], implies that the classical partial derivatives ∂jq of q are equal to qj in all of
U . But a function with continuous partial derivatives is C1. Finally ∂jq = qj so
the derivative is Lipschitz, that is q is of class C1,1. �

3.4. Proposition. Let p : S
n−1 → R be a C1,1 function. Then for almost all

u ∈ Sn−1 the second derivative ∇2p(u) exists and is self-adjoint.

Proof. If p is C1,1 the vector field ∇p is Lipschitz and thus by Rademacher’s The-
orem ∇2p(u) exists for almost all u. We have seen, Remark 3.1, that if p is of
class C2, then ∇2p(u) is self-adjoint for all u ∈ S

n−1. In the case that p is C1,1,
for each ε > 0 there is a C2 function pε such that if Eε := {u ∈ Sn−1 : p(u) =
pε(u),∇p(u) = ∇pε(u),∇2p(u) = ∇2pε(u)} then the measure of S

n−1
r Eε is less

than ε, [7, Thm 3.1.15, p. 227]. As pε is C2, ∇2p(u) = ∇2pε(u) is self-adjoint for
all u ∈ Eε. Letting ε go to zero shows that ∇2p is self-adjoint almost everywhere
on S

n−1. �

Before applying Proposition 3.2 to the support function of a convex set, it is
useful to record some symmetry properties of the operators ∇ and ∇2. Note that
the tangent spaces TuSn−1 and T−uSn−1 to Sn−1 at antipodal points u and −u
are both just the orthogonal complement u⊥ to u. Therefore for a function p on
S

n−1 the vectors ∇p(u) and ∇p(−u) are in the same vector space, u⊥, and the
linear maps ∇2p(u) and ∇2p(−u) also both act on the space u⊥. Recall that a
function p : S

n−1 → R is even (respectively odd) iff p(−u) = p(u) (respectively
p(−u) = −p(u)) for all u ∈ S

n−1. These definitions extend in an obvious way
to vector fields or fields of linear maps on Sn−1. The proof of the following is
elementary and left to the reader.

3.5. Lemma. Let p : S
n−1 → R be a C1,1 function. If p is even, then ∇p is odd,

and ∇2p is even. If p is odd, then ∇p is even, and ∇2p is odd. (As p is C1,1 the
tensor ∇2p will only be defined almost everywhere. Saying that it is even (or odd)
means that ∇2p(u) is defined if and only if ∇2(−u) is defined and at these points
∇2p(−u) = ∇2p(u) (or ∇2p(−u) = −∇2p(u)).) �

Recall that if K is a convex body with C1 boundary ∂K, then the Gauss map
is the function ν : ∂K → S

n−1 where ν(x) = u iff u is the (unique as ∂K is C1)
outward pointing unit vector to K at x. If h is the support function of K, then
it is not hard to see that h(ν(x)) = 〈x, ν(x)〉, Therefore, if ν is injective, so that
ν−1 exists, then h(u) = 〈ν−1(u), u〉, [21, p. 106]. More generally when the support
function h is C1 the function ϕ(u) = h(u)u + ∇h(u) can still be viewed as the
inverse of the Gauss map:

3.6. Proposition. Let K be a convex body in Rn with C1 support function h. Then
the map ϕ(u) = h(u)u+∇h(u) maps S

n−1 onto ∂K with the property that ϕ(u) = x
if and only if u is an outward unit normal to K at x. Moreover h(u) = 〈u, ϕ(u)〉.
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Proof. We first assume that ∂K is C∞ with positive curvature. Then the Gauss
map ν : ∂K → S

n−1 is a diffeomorphism. Let ϕ := ν−1 : S
n−1 → ∂K be the inverse

of ν. Then ϕ is a diffeomorphism and TuS
n−1 and Tϕ(u)∂K are the same (as we are

identifying subspaces that differ by a parallel translation). Hence ϕ′(u)X ∈ TuSn−1

for all X ∈ TuS
n−1. By Proposition 3.2 this implies there is a unique smooth real

valued function p on S
n−1 such that ϕ(u) = p(u)u+∇p(u). Then p(u) = 〈ϕ(u), u〉.

But, from the remarks above, the support function of K is also given by h(u) =
〈ϕ(u), u〉 and therefore p = h. So in this case ϕ(u) = h(u)u+ ∇h(u) is the inverse
of the Gauss map and so ϕ(u) = x if and only if u is the outward normal to K at
x is clear.

Now assume that h is C1 and set ϕ(u) = h(u)u+∇h(u). Then ϕ is a continuous
map from S

n−1 to Rn. There are convex bodies {K`}∞`=1 whose boundaries are
smooth with positive curvature and such that if the support function of K` is
h`, then h` → h in the C1 topology, [21, pp. 158–160]. Therefore if ϕ`(u) :=
h`(u)u + ∇h`(u), then ϕ` → ϕ uniformly. The Hausdorff distance (see [21, p. 48]
for the definition) between K and K` is given in terms of the support functions by
dHau(K,K`) = ‖h − h`‖L∞ , [21, 1.8.11, p. 53], and so K` → K in the Hausdorff
metric. Because K and K` are convex this implies ∂K` → ∂K in the Hausdorff
metric. As ϕ`(u) ∈ ∂K` this yields ϕ(u) = lim`→∞ ϕ`(u) ∈ ∂K. Therefore ϕ maps
S

n−1 into ∂K. Let x ∈ ∂K and let u be an outward pointing unit normal to K
at x. Then u is an outward pointing normal to K` at ϕ`(u). Therefore the half
space H−

` := {y ∈ Rn : 〈y, u〉 ≤ h`(u)} contains K` and its boundary ∂H−
` is a

supporting hyperplane to K` at ϕ`(u). Using that h` → h uniformly, that K` → K
in the Hausdorff metric, and that ϕ`(u) → ϕ(u) we see that K is contained in
H+ := {y ∈ Rn : 〈y, u〉 ≤ h(u)} and that x ∈ ∂H+. Thus u is an outward pointing
unit normal to K at ϕ(u). But, [21, Cor. 1.7.3, p. 40], if the support function is
differentiable, then the body is strictly convex. Therefore K is strictly convex and
thus a unit vector can be an outward unit normal to K in at most one point. So,
as u is an outward unit normal to K at ϕ(u) and at x, we have ϕ(u) = x.

Summarizing, if x ∈ ∂K and u is an outward unit normal to K at x, then
ϕ(u) = x. But for any point of ∂K there is at least one unit normal u to K at x,
so ϕ : S

n−1 → ∂K is surjective. We need that if ϕ(u) = x, then u is an outward
pointing unit normal to K at x. The vector u will be an outward pointing unit
normal to K at some point y ∈ ∂K. But then ϕ(u) = y. Thus x = y and u is an
outward pointing unit vector to K at x. Finally we use that ∇h(u) is orthogonal
to u to conclude that 〈u, ϕ(u)〉 = 〈u, p(u)u+ ∇p(u)〉 = h(u). �

3.7. Proposition. Let K be a convex body with C1,1 support function h. Then
hI + ∇2h is positive semi-definite almost everywhere on S

n−1. If in addition there
is a Euclidean ball that slides freely inside of K, then there is a positive constant
C1 such that det(hI + ∇2h) ≥ C1 almost everywhere on S

n−1.

Proof. Let h̃ be the extension of h to Rn as a homogeneous function of degree one
(thus h̃ is given by both the formulas (2.1) and (3.2)). The function h̃ is convex,
[21, Thm 1.7.1, p. 38], and therefore its Hessian ∂2h̃ is positive semi-definite at all
points where it exists and is self-adjoint. But then the formula (3.3) relating ∂2h̃
and ∇2h together with Remark 3.1 and Proposition 3.4, shows that hI + ∇2h is
positive semi-definite almost everywhere on S

n−1.
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Assume that the Euclidean ball B2r of radius 2r slides freely inside of K. Then
there is a convex set K1 such that K1+B2r = K. However K1 may not be a convex
body (its interior might be empty). But K1 +B2r = (K1 +Br)+Br and K1 +Br is
a convex body. So by replacing K1 by K1 +Br we can assume K1 +Br = K with
K1 a convex body. Let h1 be the support function of K1. Then, as the support
function of Br is the constant r, h1 + r = h. This implies that h1 is also C1,1 and
therefore (h1I + ∇2h1) is positive semi-definite almost everywhere. But for any
positive semi-definite matrices A and B the inequality det(A+B) ≥ det(A) holds.
Therefore

det(hI + ∇2h) = det(rI + (h1I + ∇2h1)) ≥ det(rI) = rn−1 =: C1.

almost everywhere. �

3.8. Lemma. Let K be a convex body in Rn with C1,1 support function h. Then
for any unit vector a ∈ Rn,

2Vn−1(K|a⊥) =
∫

Sn−1
det(hI + ∇2h)|〈a, u〉| dVn−1(u).

Proof. Let h be the support function of K and let ϕ : S
n−1 → ∂K be ϕ(u) =

h(u)u + ∇h(u). By Proposition 3.6 ϕ maps Sn−1 onto ∂K and, as h is C1,1, the
map ϕ is Lipschitz. As ϕ is Lipschitz it is differentiable almost everywhere and by
Proposition 3.2 at the points u where it is differentiable ϕ′(u) = h(u)I + ∇2h(u).
Let f : Sn−1 → K|a⊥ be the function f(u) = ϕ(u)|a⊥. This maps Sn−1 onto K|a⊥.
An elementary computation shows that the Jacobian, J(f)(u) := det(f ′(u)), of f is
given by J(f)(u) = det

(
h(u)I + ∇2h(u)

) 〈a, u〉. The area theorem, [7, Thm. 3.2.3,
p. 243], (note that the definition of Jacobian used in the area theorem is the absolute
value of the one being used here) implies∫

K|a⊥
#(f−1[y]) dVn−1(y) =

∫
Sn−1

|J(f)(u)| dVn−1(u)

=
∫

Sn−1
det

(
h(u)I + ∇2h(u)

) |〈a, u〉| dVn−1(u)

where #(f−1[y]) is the number of points in the preimage f−1[y] := {x : f(x) = y}.
To complete the proof it is enough to show #(f−1[y]) = 2 for almost all y ∈ K|a⊥.

As K|a⊥ is convex its boundary ∂(K|a⊥) has measure zero. Therefore we only
need consider y in the interior, int

(
K|a⊥)

, of K|a⊥. If y ∈ int
(
K|a⊥)

then there
are exactly two points x1, x2 ∈ ∂K with xj |a⊥ = y. Thus f−1[y] is the disjoint
union of ϕ−1[x1] and ϕ−1[x2]. But, [21, Thm 2.2.4, p. 74], the set, P , of points x
in ∂K such that there is more than one outward unit normal to K at x is a set
of measure zero. So if x1, x2 /∈ P , each of the sets ϕ−1[x1] and ϕ−1[x2] will have
just one element and therefore #(f−1[y]) = 2. The map y 7→ y|a⊥ is Lipschitz
and hence it maps sets of measure zero to sets of measure zero. Thus P |a⊥ is a
set of measure zero. Hence for y ∈ int

(
K|a⊥)

r P |a⊥, and therefore for almost all
y ∈ K|a⊥, #(f−1[y]) = 2 which finishes the proof. �

3.9. Proposition. Let K1 and K2 be convex bodies in Rn with C1,1 support func-
tions h1 and h2 respectively. Then there is a constant β such that Vn−1(K1|a⊥) =
βVn−1(K2|a⊥) for all a ∈ S

n−1 if and only if

det(h1I + ∇2h1) = β det(h2I + ∇2h2) + q, with q an odd function.
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Proof. By Lemma 3.8 Vn−1(K1|a⊥) = βVn−1(K2|a⊥) for all a ∈ Sn−1 if and only if∫
Sn−1 q(u)|〈a, u〉| du = 0 for all a ∈ S

n−1 where q = det(h1I + ∇2h1) − β det(h2I +
∇2h2). That is, if and only if q is in the kernel of the cosine transform (Cf)(a) :=∫

Sn−1 f(u)|〈a, u〉| du. But, [8, Thm C.2.4, p. 381], the kernel of the cosine transform
is exactly the set of odd functions on S

n−1. �

4. Nonexistence of Odd Functions on Sn−1
Satisfying Certain

Differential Inequalities.

4.1. Theorem. There does not exist any odd C1,1 function p on S
n−1 such that for

some δ > 0

(4.1) det(pI + ∇2p) ≤ −δ
holds almost everywhere on Sn−1.

4.2. Remark. Trivial changes in the proof show that the condition (4.1) can be
replaced by the inequality det(pI + ∇2p) ≥ δ almost everywhere.

The proof is based on the following which may be of independent interest.

4.3. Proposition. Let U be an open neighborhood of the origin in Rn and f =
(f1, f2, . . . , fn) : U → Rn a Lipschitz map with f(0) = 0 and such that for some
δ > 0

det f ′(x) ≥ δ

for almost all x ∈ U . Then there is a neighborhood W of 0 and a constant Co > 0
such that for all y ∈W , there is an x ∈ U with f(x) = y and

|x| ≤ Co|y|.
4.4. Remark. It is not being assumed that the function f is injective. In particular
it applies to the map on the plane given in polar coordinates by f(r, θ) = (r, kθ)
where k is any positive integer. This example rules out proving the proposition by
use of some form of the inverse function theorem for Lipschitz functions such as the
Clarke inverse function theorem (cf. [5]).

Proof. Let x ∈ U be a point where f ′(x) exists. The operator norm of the linear
map f ′(x) is ‖f ′(x)‖ := sup|u|=1 |f ′(x)u|. We first claim that for some constant
K ≥ 1 that f is K-quasiregular, that is

(4.2) ‖f ′(x)‖n ≤ K det f ′(x)

holds almost everywhere on U . In fact, since f is Lipschitz, there is C > 0 such that
‖f ′(x)‖ ≤ C almost everywhere on U , and therefore the distortion inequality (4.2)
holds with K = Cn/δ. By a theorem of Reshetnyak [19] and Martio-Rickman-
Väisälä [16] (cf. [20, Thm 4.3, p. 37]) f has finite linear distortion at the origin:

lim sup
r↓0

max|x|=r |f(x)|
min|x|=r |f(x)| =: H <∞.

Thus there is a ro > 0 such that

(4.3) 0 < r ≤ ro implies max
|x|=r

|f(x)| ≤ 2H min
|x|=r

|f(x)|

Let Br be the ball of radius r centered at the origin. By a standard smoothing
argument there is a sequence of C∞ function f` = (f1

` , . . . , f
n
` ), given by a con-

volution f`(x) =
∫
ϕ`(y)f(x − y) dy with a smooth approximation {ϕ`}∞`=1 of the
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identity, such that f` → f uniformly on Bro
, f ′` → f ′ almost everywhere on Bro

and
f` satisfies the same Lipschitz condition as f . Therefore ‖f ′`(x)‖ ≤ C. Hence for
r ≤ ro by Lebesgue’s bounded convergence theorem, Stokes’ theorem, the uniform
convergence f` → f , and (4.3)

δVn(Br) ≤
∫

Br

det f ′(x) dx = lim
`→∞

∫
Br

det f ′`(x) dx

= lim
`→∞

∫
Br

d(f1
` df

2
` ∧ · · · ∧ dfn

` ) = lim
`→∞

∫
∂Br

f1
` df

2
` ∧ · · · ∧ dfn

`

≤ Vn−1(∂Br) lim
`→∞

(
max
|x|=r

‖f ′`(x)‖n−1 max
|x|=r

|f`(x)|
)

≤ Vn−1(∂Br)Cn−1 max
|x|=r

|f(x)|

≤ 2HVn−1(∂Br)Cn−1 min
|x|=r

|f(x)|.

Using this and that rVn−1(∂Br) = nVn(Br) yields that when 0 < |x| = r ≤ ro

|f(x)| ≥ min
|x|=r

|f(x)| ≥ δVn(Br)
2HVn−1(∂Br)Cn−1

=
δr

2nHCn−1
=

δ

2nHCn−1
|x|.

Hence if Co := 2nHCn−1/δ then

x ∈ Bro
implies |x| ≤ Co|f(x)|.

But, by a Theorem of Reshetnyak [18] (cf. [20, Thm. 4.1, p. 16]), non-constant
quasiregular maps are open, that is they map open sets to open sets. Hence W =
f [Bro

] is a neighborhood of f(0) = 0 with the required properties. �

4.5. Corollary. Let U be an open neighborhood of the origin in Rn and ψ : U → Rn

a Lipschitz map such that for some constant δ > 0 the inequality detψ′(x) ≤ −δ
holds for almost all x ∈ U . Then there is a constant Co > 0 and a neighborhood W
of ψ(0) such that for all y ∈W , there is an x ∈ U with ψ(x) = y and

|x| ≤ Co|y − ψ(0)|.
Proof. Let a be a unit vector in Rn and Rx := x − 2〈x, a〉a the reflection in
the hyperplane a⊥. Then detR = −1 and therefore the corollary follows from
Proposition 4.3 applied to the map f(x) := R(ψ(x) − ψ(0)). �

4.6. Lemma. Let p : S
n−1 → R be a C1,1 function such that for some δ0 > 0 the

inequality det(pI + ∇2p) < −δ0 holds almost everywhere on S
n−1. Let ϕ(u) :=

p(u)u+∇p(u). Then for any unit vector, a, the height function Ha(u) := 〈ϕ(u), a〉
can only have a local maximum or minimum at u = a or u = −a.
Proof. Let a be a unit vector and let e1, e2, . . . , en be the standard basis of Rn.
By a rotation we can assume that the height function Ha has a local maximum
or minimum at en. We then need to show that a = ±en. Let Bn−1 be the
open unit ball in Rn−1 and parameterize the upper hemisphere S

n−1
+ of S

n−1 by
u : Bn−1 → S

n−1
+ given by

u(x) = (x,
√

1 − |x|2 ).
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We can view the restriction of p to the upper hemisphere S
n−1
+ as a function of

x ∈ Bn−1. Let ∂p := ( ∂p
∂x1

, ∂p
∂x2

, . . . , ∂p
∂xn−1

). Then the spherical gradient is given by

∇p(x) = (∂p(x), 0) − 〈(∂p(x), 0), u(x)〉u(x)
= (∂p(x), 0) − 〈x, ∂p(x)〉(x,

√
1 − |x|2 )

and thus

ϕ(u) = p(x)u(x) + ∇p(x)
= (p(x)x, p(x)

√
1 − |x|2 ) + (∂p(x), 0) − 〈x, ∂p(x)〉(x,

√
1 − |x|2 ).

Write this as
ϕ(x) = (ψ(x), 〈ϕ(x), en〉)

where
ψ(x) = ∂p(x) + (p(x) − 〈x, ∂p(x)〉)x

is the orthogonal projection of ϕ(x) onto e⊥n = Rn−1. This is clearly Lipschitz in
a neighborhood of the origin. For x ∈ Bn−1 the tangent space to Sn−1 at u(x)
is u(x)⊥ and the orientation of this tangent space is so that the projection onto
Rn−1 is orientation preserving. (This because u(x) is in the upper hemisphere). By
Proposition 3.2 ϕ′(x) = p(x)I + ∇2p(x) almost everywhere and so by hypothesis
detϕ′(x) ≤ −δ0. The projection, π, of the tangent space TuS

n−1 onto Rn−1 has
Jacobian J(π) = 〈u, en〉. As ψ = π ◦ ϕ

J(ψ) = J(π)J(ϕ) = 〈u, en〉detϕ′(x) ≤ −〈u, en〉δ0.
But 〈u(x), en〉 =

√
1 − |x|2 so if x ∈ U := {x ∈ Bn−1 : |x| < √

3/2}, then
〈u(x), en〉 > 1/2 for x ∈ U . Thus for x ∈ U the inequality J(ψ) < −δ holds where
δ = 1

2δ0. Therefore ψ and U satisfy the hypothesis of Corollary 4.5. Hence ψ(0)
has a neighborhood W such that

(4.4) For y ∈W there is an x ∈ U with |x| ≤ Co|y − ψ(0)|.
Write a = (ã, an) where ã ∈ Rn−1. Then the height function Ha is given by

(4.5) Ha(u(x)) = 〈ψ(x), ã〉 + an〈ϕ(x), en〉.
But 〈ϕ(x), en〉 = (p(x) − 〈x, ∂p(x)〉)√1 − |x|2. Taylor’s theorem implies p(x) =
p(0) + 〈x, ∂p(0)〉 + O(|x|2), 〈x, ∂p(x)〉 = 〈x, ∂p(0)〉 + O(|x|2), and

√
1 − |x|2 =

1 +O(|x|2). Therefore 〈ϕ(x), en〉 = p(0) +O(|x|2). Using this in (4.5) gives

(4.6) Ha(u(x)) = 〈ψ(x), ã〉 + anp(0) +O(|x|2).
For real t with |t| small the point yt := ψ(0) + tã will be in the neighborhood
W of ψ(0). By the implication (4.4) there is an xt ∈ U with ψ(xt) = yt and
|xt| ≤ Co|yt − ψ(0)| = Co|t|. Using this in (4.6) gives

Ha(u(xt)) = 〈yt, ã〉 + anp(0) +O(t2) =
(〈ψ(0), ã〉 + anp(0)

)
+ t|ã| +O(t2).

This has a local maximum or minimum at t = 0 which is only possible if ã = 0.
As a is a unit vector this implies an = ±1. That is a = ±en, which completes the
proof. �
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Proof of Theorem 4.1. Assume that there is an odd C1,1 function p on Sn−1 such
that for some δ > 0 the inequality det(pI + ∇2p) ≤ −δ holds almost everywhere
on S

n−1. Let ϕ(u) = p(u)u + ∇p(u). By Lemma 3.5 the function u 7→ ∇p(u) is
even on Sn−1. Therefore ϕ(−u) = ϕ(u) for all u ∈ Sn−1. Let a be any unit vector
in Rn. Then the height function Ha(u) = 〈ϕ(u), a〉 will also satisfy Ha(−u) =
Ha(u). As S

n−1 is compact Ha will have both a global maximum and a global
minimum. By Lemma 4.6 these maximizers can only occur at a and −a. But then
Ha(−a) = Ha(a) implies that the maximum and minimum values of Ha are the
same and therefore Ha is constant. Hence all the height functions Ha are constant
which implies ϕ is constant and thus ϕ′(u) = 0 for all u. But by Proposition 3.2
det(ϕ′(u)) = det(pI+∇2p) ≤ −δ < 0 for almost all u. This contradiction completes
the proof. �

5. Three dimensional Bodies of Constant Width and Brightness.

To prove Theorem 2 we let K and K0 be convex bodies in R3 such that K0 is
centrally symmetric about the origin and that there are constants α and β such that
wK(u) = αwK0(u) and (K|u⊥) = βV2(K0|y⊥) for all unit vectors u. By rescaling
K by a factor of 1/α we can assume that α = 1, that is K and K0 have same width
in all directions. Then K0 being centrally symmetric about the origin implies that
K0 is the central symmetral 1

2 (K−K) of K. Therefore to prove Theorems 1 and 2
it is enough to prove:

5.1. Theorem. Let K be a convex body in R3 such that its central symmetral
K0 = 1

2 (K −K) is a regular gauge and for some constant β

(5.1) V2(K|u⊥) = βV2(K0|u⊥) for all u ∈ S
2.

Then K is a translate of K0.

5.2. Lemma. If (5.1) holds, then β ≤ 1 and if β = 1, then K is a translate of K0.

Proof. Let u ∈ S2. Then K0|u⊥ is centrally symmetric about the origin and, viewed
as convex bodies in the two dimensional space u⊥, the sets K0|u⊥ and K|u⊥ have
the same width function. Therefore K0|u⊥ is the central symmetral of K|u⊥. By
Proposition 2.1 this implies V2(K0|u⊥) ≥ V2(K|u⊥) with equality if and only if
K|u⊥ is a translate of K0|u⊥. As V2(K|u⊥) = βV2(K0|u⊥) this yields that β ≤ 1.
If β = 1, then for all u ∈ S2 the set K|u⊥ is a translate of K0|u⊥. This implies, [8,
Thm 3.1.3, p. 93], that K is a translate of K0. �

From now on we assume K and K0 satisfy the hypothesis of Theorem 5.1 and
that h and h0 are the support functions of K and K0 respectively. By Lemma 5.2
if β = 1, Theorem 5.1 holds, so, towards a contradiction, assume β < 1.

As K and K0 have the same width function, h(u) + h(−u) = h0(u) + h0(−u) =
2h0(u) because h0(−u) = h0(u) from the central symmetry of K0 about the origin.
Therefore

h(u) =
1
2
(h(u) + h(−u)) +

1
2
(h(u) − h(−u)) = h0(u) + p(u)

where p(u) := 1
2 (h(u)−h(−u)) is clearly an odd function. As K0 is a regular gauge

it slides freely inside of some Euclidean ball and thus by Proposition 2.3 h0 is C1,1.
Then Corollary 2.6 implies h is C1,1 and the formula p(u) = 1

2 (h(u)−h(−u)) shows



16 RALPH HOWARD

that p is also C1,1. Proposition 3.9 implies there is an odd function q on S2 such
that

(5.2) det(hI + ∇2h) = β det(h0I + ∇2h0) + q

holds almost everywhere on S
2. The equality h = h0 + p implies

(5.3) det(hI + ∇2h) = det
(
(pI + ∇2p) + (h0I + ∇2h0)

)
.

For any 2 × 2 matrix tr(A)2 − tr(A2) = 2 det(A), where tr(A) is the trace of A.
Define σ(A,B) on pairs of 2 × 2 matrices by σ(A,B) = 1

2 (tr(A) tr(B) − tr(AB)).
Then σ( , ) is a symmetric bilinear form and σ(A,A) = det(A). Hence det(A+B) =
det(A) + 2σ(A,B) + det(B). Using this in (5.3) gives

(5.4) det(hI+∇2h) = det(pI+∇2p)+2σ(pI+∇2p, h0I+∇2h0)+det(h0I+∇2h0).

The function h0 is even on S
2 and Lemma 3.5 implies ∇2h0 is also even. Therefore

h0I + ∇2h0 is even. Likewise Lemma 3.5 applied to the odd function p implies
pI+∇2p is odd. But det(−A) = det(A) for 2×2 matrices, so the function det(pI+
∇2p) is even. The function σ(pI + ∇2p, h0I + ∇2h0) is odd as a function of the
first argument and even as a function of the second argument, therefore σ(pI +
∇2p, h0I + ∇2h0) is an odd function. Comparing the two formulas (5.2) and (5.4)
for det(hI + ∇2h), equating the even parts, and rearranging gives

det(pI + ∇2p) = −(1 − β) det(h0I + ∇2h0).

By Proposition 3.7 and the assumption that a Euclidean ball slides freely inside
of K0, there is a constant C1 > 0 such that det(h0I + ∇2h0) ≥ C1 and therefore
det(pI + ∇2p) ≤ −δ holds almost everywhere with δ = (1 − β)C1 > 0. This
contradicts Theorem 4.1 and completes the proof.

Acknowledgments

I am indebted to Daniel Hug for supplying the statement and a proof of Propo-
sition 2.3 which greatly simplified my initial proof of the C1,1 regularity of the
support function of a set of constant width. Daniel also read preliminary versions
of the paper and suggested several simplifications and improvements. An anony-
mous referee provided a more natural and much shorter proof of Proposition 4.3,
which also generalized the result from R2 to Rn. Other of the referees helped
improve the exposition. A remark of Marek Kossowski was important in finding
the original proof of Proposition 4.3. I also had several useful conversations with
Mohammad Ghomi on topics related to this paper.

References

[1] T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Chelsea Publishing Co., Bronx,
N.Y., 1971, Reissue of the 1948 reprint of the 1934 original. MR 51 #8954

[2] G. D. Chakerian, Sets of constant relative width and constant relative brightness, Trans.
Amer. Math. Soc. 129 (1967), 26–37. MR 35 #3545

[3] , Is a body spherical if all its projections have the same I.Q.?, Amer. Math. Monthly
77 (1970), 989–992.

[4] G. D. Chakerian and H. Groemer, Convex bodies of constant width, Convexity and its appli-
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