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1. Introduction

Let S1 be the unit circle realized as R/Z. Then a regular closed curve
in Rn is a smooth mapping c : S1 → Rn so that the velocity vector c′(t)
never vanishes. The tantrix of such a curve is the map t : S1 → Sn−1 given
by t(t) = c′(t)/‖c′(t)‖, that is the unit tangent to c parallel translated to
the origin. Our goal is to understand which curves t : S1 → Sn−1 can be
realized as the tantrix to a regular closed curve. A first step is the following,
due to Löwner, is a necessary condition for a curve to be a tantrix. This
is attributed to Löwner by both Fenchel [1, p. 39] and Pólya and Szegő [2,
Band II S. 165 und 391 Aufgabe, 13.]. I have not been able to track down
the original paper of Löwner.

Theorem 1.1 (Löwner). If a curve t : S1 → Sn−1 is a tantrix then the
origin is in the convex hull of the image of t. This implies that every totally
geodesic Sn−2 in Sn−1 meets t in at least one point.

Proof. Let L be the length of c. Then if γ(s) is the unit speed param-
eterization of c we have that γ is defined on R/LZ and that γ′(s) is a
reparameterization of the tantrix t of c. Therefore t and γ′ have the same
image. But the center of mass of γ′ is the origin:∫ L

0
γ′(s) ds = γ(L)− γ(0) = 0.

This clearly implies that 0 is in the convex hull of the image of γ′ with is
the same as the image of t.
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Also for any nonzero vector a ∈ Rn we have a ·
∫ ∫ L

0 γ′(s) ds =
∫ L

0 a ·
γ′(s) ds = 0. (Here · is the standard inner product on Rn.) Any totally
geodesic Sn−2 in Sn−1 is of the form Sn−1 ∩ a⊥ for a nonzero vector a.
Therefore as the image of γ′ is connected the equality

∫ L
0 a · γ′(s) ds = 0

implies that either a ·γ′(s) ≡ 0 or that a ·γ′(s) changes signs. In either there
are points of γ′ on a⊥ ∩ Sn−1. Thus t meets every totally geodesic Sn−2 in
at least one point.

This necessary condition comes close to being sufficient. The following is,
in the proper circles, a well known folk theorem (I learned of the result and
its proof from Mike Gage), however the only explicit reference I have seen is
the original paper of Fenchel on the total curvature of space curves [1] where
a not quite correct version is stated and attributed to Löwner. The reference
Fenchel gives is Pólya and Szegő [2, Band II S. 165 und 391 Aufgabe, 13.],
but in fact Pólya and Szegő state and prove a version of Theorem 1.1, which
they also credit to Löwner, but do not state or prove the converse.

Theorem 1.2. Let t : S1 → Sn so that the image of t is not contained in
any totally geodesic Sn−2. Then t is the tantrix of a regular space curve if
and only if 0 is in the interior of the convex hull of the image of t. Explicitly
if t is of continuous and 0 is in the interior of the convex hull of the image
of t, then there is a C1 curve c : S1 → Rn so the that t(t) = c′(t)/‖c′(t)‖.
(If t is Ck then c is Ck+1.)

Remark 1.3. It is all right if t is not injective, or if it is not an immersion.

Remark 1.4. It is sometimes stated that a sufficient condition for a curve
in S2 to be a tantrix is that it meet every great circle. However this only
implies that the origin is in the convex hull of the image of the curve, not
that it is in the interior of the of the convex hull. For an explicit example

Figure 1. A curve on the sphere S2 that meets every great circle in
at least two points, but which is not the tantrix of any smooth curve.

consider the curve of Figure (1). This curve agrees with a great circle for
interval large enough to contain a pair of antipodal points of the great circle
formed by intersecting the sphere with the x-y plane, and the curve is in the
upper half space {z > 0}. The origin is in the convex hull of this curve, and
so every great circle will meet this curve in at least two points. However
from the proof of Theorem 1.1 we have that if γ is a unit speed curve with



CHARACTERIZATION OF TANTRIX CURVES 3

the pictured curve as tantrix, then the center of mass of γ′ is 0. However
any parameterization of the pictured curve must have center of mass above
the x-y plane. So it is impossible that the curve is a tantrix of any C1 curve.

A condition equivalent to t having 0 in its convex hull is that t is not
contained in closed hemisphere if Sn−1.

2. Proof of Theorem 1.2

First assume that t is a tantrix of some curve, and that t is not contained
in any totally geodesic Sn−2. Then, just as in the proof of Theorem 1.1,
there is a unit speed curve γ of length L so that γ′ is a reparameterization
of t and the center of mass of γ′ is the origin. If 0 is not an interior point of
the convex hull of t then it is on the boundary of the convex hull. Therefore
by standard results from convexity there is a supporting hypersurface to the
convex hull at the origin. This means that there is a unit vector a so that
a ·γ′(s) ≥ 0 for all s. But then

∫ L
0 a ·γ′(s) ds = 0 and continuity implies that

a · γ′(s) ≡ 0, and thus γ′, and therefore also t, is contained in the totally
geodesic Sn−2 a⊥Sn−1. This contradicts a hypothesis and so we must have
that 0 is in the interior of the convex hull of t.

Now assume that 0 is in the interior of convex hull of t. We are viewing S1

as R/Z so that t can be thought of as a map t : R→ S2 with t(t+1) = t(t).
We will try to find a positive function v : R → (0,∞) with v(t + 1) = v(t)
and so that the center of mass of the product vt is the origin. That is∫ 1

0
v(τ)t(τ) dτ = 0,(2.1)

Then periodicity implies that for all t∫ t+1

t
v(τ)t(τ) dτ = 0.(2.2)

Set

c(t) :=
∫ t

0
v(τ)t(τ) dτ.

The integral condition (2.2) implies c(t + 1) = c(t) so c is a closed curve
c : S1 → Rn. Also c′(t) = v(t)t(t) and as v is positive this implies that c is
an immersion. Finally c′(t) = v(t)t(t) clearly implies that t is the tantrix of
c.

We now show the existence of the function v so that (2.1) holds. As
the origin is in the interior of the convex hull of c we can use a theorem
of Carathéodory’s Theorem1 (cf. [3, p. 3]) to find distinct t0, . . . , tn ∈ [0, 1)
and α0, . . . , αn > 0 so that

n∑
i=0

αit(ti) = 0.

1This theorem is that if A ⊆ Rn, then any point of the convex hull of A is a convex
combination of ≤ n+ 1 points of A.
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By continuity there is a δ > 0 so that if P0, . . . , Pn ∈ Rn then

‖c(ti)− Pi‖ < δ for i = 0, . . . , n =⇒ 0 ∈ convex hull {P0, . . . , Pn}.(2.3)

Now for i = 0, . . . , n there is a smooth positive C∞ function vi on R with
vi(t+ 1) = vi(t),

∫ 1
0 vi(t) dt = 1 and that approximates the point mass at ti

well enough that ∥∥∥∥c(ti)− ∫ 1

0
vi(t)t(t) dt

∥∥∥∥ < δ.

Therefore the implication (2.3) and Carathéodory’s Theorem yields
β0, . . . , βn ≥ 0 with

∑n
i=0 βi = 1 and

0 =
n∑
i=0

βi

∫ 1

0
vi(t)t(t) dt =

∫ 1

0

n∑
i=0

βivi(t)t(t) dt =
∫ 1

0
v(t)t(t) dt

where v(t) =
∑n

i=0 βivi(t). This gives us the v so that the desired rela-
tion (2.1) holds and completes the proof.

3. The Case of Curves Symmetric with respect to a Group.

We can view S1 = R/Z as a group in the usual way. Let G be a closed
subgroup of S1. Then either G is a finite cyclic group, or G = S1. Given
such a subgroup we a map γ : S1 → Rn has a G symmetry iff there is a
continuous group homomorphism ρ : G→ O(n) so that for all g ∈ G

γ(t+ g) = ρ(g)γ(t)(3.1)

for all t ∈ S1.

Theorem 3.1. Let t : S1 → Sn−1 be a smooth curve so that the origin is
in the interior of the convex hull of the image of t and assume that t has
is G-symmetric with respect to some finite (and thus cyclic) subgroup of
S1. Then there is a G-symmetric regular closed curve c : S1 → Rn so that
t(t) = c′(t)/‖c′(t)‖.

Proof. We first consider the case whereG is a finite cyclic group. Let ρ : G→
O(n) be so that (3.1) holds. From the proof of Theorem 1.2 we know that
there is a function v : R→ (0,∞) so that

∫ 1
0 v(τ)t(τ) dτ = 0. For any g ∈ G

we have ∫ 1

0
v(τ − g)t(τ) dτ =

∫ 1

0
t(τ + g) dτ

=
∫ 1

0
v(τ)ρ(g)t(τ) dτ

= ρ(g)
∫ 1

0
v(τ)t(τ) dτ

= 0.
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Therefore if ṽ is defined by

ṽ(t) :=
∑
g∈G

v(t− g).

Then ṽ(t+ g) = ṽ(t) for all g ∈ G (in particular ṽ(t+ 1) = ṽ(t)) and∫ 1

0
ṽ(τ)t(τ) dτ = 0.

As in the proof of Theorem 1.2 the curve c(t) :=
∫ t

0 ṽ(τ)t(τ) τ is a regular
closed curve with tantrix t. Also for g ∈ G
c′(t+ g) = ṽ(t+ g)t(t+ b) = ṽ(t)ρ(g)t(t) = ρ(g)(ṽ(t)t(t)) = ρ(g)c′(t).

Therefore
d

dt
(c(t+ g)− ρ(g)c(t)) = c′(t+ g)− ρ(g)c′(t) = ρ(g)c′(t)− ρ(g)c′(t) = 0.

This implies that for all g ∈ G there is an a(g) ∈ Rn so that

c(t+ g) = a(g) + ρ(g)c(t).

Lemma 3.2. Let A : Rn → Rn be a linear map and let a ∈ Rn be so that
for some positive integer m ≥ 2 the equation

(Am−1 +Am−1 + · · ·+A+ I)a = 0(3.2)

holds. There there is a vector b ∈ Rn so that (I −A)b = −a.

Proof. We start with the polynomial identity

(x− 1)(xm−2 + 2xm−3 + 3xm−4 + · · · + (m− 2)x+ (m− 1))

= xm−1 + 2xm−2 + 3xm−3 + · · · + (m− 2)x2 + (m− 1)x

− xm−2 − 2xm−3 − 3xm−4 + · · · − (m− 2)x− (m− 1)

= xm−1 + xm−2 + · · ·+ x− (m− 1)

= (xm−1 + xm−2 + · · ·+ x+ 1)−m

Letting p(x) = −1
m (xm−2 + 2xm−3 + 3xm−4 + · · ·+ (m− 2)x+ (m− 1)) this

leads to

−1 =
−1
m

(xm−1 + xm−2 + · · ·+ x+ 1) + (1− x)p(x).

Setting x = A in this gives

−I =
−1
m

(Am−1 +Am−2 + · · ·+A+ I) + (I −A)p(A).

Using the hypothesis (3.2) now gives that

−a = −Ia = (I −A)p(A)a.

Therefore b = p(A)a is the desired vector.
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Let m be the order of the group G and let g be a generator of G. Let
a = a(g) so that c(t+ g) = a+ ρ(g)c(t). Then

c(t+ 2g) = a+ ρ(g)c(t + g) = a+ ρ(g)a + ρ(g)2c(t)

c(t+ 3g) = a+ ρ(g)c(t + 2g) = a+ ρ(g)a + ρ(g)2a+ ρ(g)3c(t)
...

...

c(t+ kg) = a+ ρ(g)a+ · · ·+ ρ(g)k−1a+ ρ(g)kc(t).

As the group G has order m we have ρ(g)m = I and so ρ(g)mc(t) = c(t).
Therefore using k = m in this calculation gives (ρ(g)m−1 + ρ(g)m−1 + · · ·+
ρ(g) + I)a = 0. Therefore by Lemma 3.2 there is a vector b so that (I −
ρ(g))b = −a. Now let c̃ = b+ c(t). Then

c̃(t+ g) = b+ c(t+ g)

= b+ a+ ρ(g)c(t)

= (I − ρ(g))b + a+ ρ(g)(b + c(t))

= 0 + ρ(g)c̃(t)

= ρ(g)c̃(t)

This and induction (or the calculation above with a = 0) implies that c̃(t+
kg) = ρ(g)k c̃(t) = ρ(kg)c̃(t). As g is a generator of the group G every
element of G is of the form kg for some k. This completes the proof.

References

1. W. Fenchel, Uber krummungund windung geschlossener raumkurven, Math. Ann. 101
(1929), 238–252.
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