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Other than the last section the following is based on a lecture I gave in a

class on integral geometry at the Royal Institute of Technology in Stockholm

in the Fall of 1993.

1. Introduction

Let M2 be a compact two dimensional manifold and let g be any smooth

Riemannian metric on M2. Let Area(g) be the area of this metric and

sys1(g) the length of the shortest non-contractible closed geodesic in (M
2; g).

In 1949 Loewner [3, Note on page 71] proved that when M2 is the two

dimensional torus the remarkable inequality

sys1(g)
2 � 2p

3
Area(g)

holds. The proof is based on the fact any metric on a torus is globally

conformal to a 
at metric and that by a clever but elementary averaging

argument the inequality for general metrics on can be reduced to verifying

the inequality for 
at metrics. This inequality is sharp and equality holds

for the 
at torus based on the hexagonal lattice.

A few years latter Pu [3] showed Loewner's method can be extended to

any compact Riemannian manifold with a transitive group of isometries to

show that for certain \isosytolic" inequalities (de�ned below) that in a given

conformal class the invariant metric will give the extremal inequality (see

Theorem 2.1 below). As every smooth metric on the real projective space

RP2 is conformal to a metric with constant curvature +1 this implies for

any metric g on RP2 there is the sharp inequality

sys1(g)
2 � �

2
Area(g):

In this note we make the elementary observation that the method of

Loewner and Pu works not only for metrics conformal to a an invariant

metric, but also for metrics �-quasi-conformal to an invariant metric. The

resulting inequality relates the constant � to the to isosytolic inequalities.

Thus the constants in the isosystolic inequalities can be used to estimate
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the quasi-conformal distance of a metric from an invariant metric. As an

application we use recent results of Babenko and Katz [1] to show there are

metrics on the three dimensional torus that have arbitrarily large conformal

distance from all 
at metrics.

2. The Quasi-Conformal Version of the Loewner-Pu

Inequality.

Let M be a smooth compact manifold and g0 and g two Riemannian

metrics on M . Then for a constant � � 1. the metric g is � quasi-

conformal to g0 i� there is a di�eomorphism ' : M ! M and a positive

function u :M ! R so that

u2g0 � '�g � �2u2g0:(2.1)

When � = 1 the g0 and g are conformal .

Let Hk(M) be the k dimensional homology ofM with integer coeÆcients.

Then any homology class � 2 Hk(M) can be represented by a chain S =P
i aisi so that each singular simplex si : �k ! M is a C1 map (here �k

is the standard k dimensional simplex). For a smooth metric g on M can

then de�ne the volume of such a chain S by

Vol
g
k(S) =

X
i

jaijVolgk(si);

where the volume of si is the volume the singular Riemannian space (�k; s
�g).

(Thus this volume depends on the Riemannian metric on M .) The volume

of a homology class � 2 Hk(M) is then

Vol
g
k(�) := inf

S2�
Vol

g
k(S)

where the in�mum is over all C1 chains representing �. Also for any smooth

metric g on M de�ne, following Berger [2], the k-systole of g by

sysk(g) := inf
06=�2H

k
(M)

Vol
g
k(�):

The following is generalization of a result of Pu [3, Theorem 2 p. 62] form

conformally related to quasi-conformally related metrics. The proof here

only involves trivial changes form that given in [3].

Theorem 2.1. Let M = G=K, dimM = n, be a homogeneous space with

G a compact Lie group and K a closed subgroup. Let g0 be a Riemann-

ian metric on M that is invariant under the action of G and let g be any

Riemannian metric on M that is � quasi-conformal to g0. Then

sysk(g)

Voln(g)
k

n

� �k
sysk(g0)

Voln(g0)
k

n

for 1 � k � n� 1.
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Corollary 2.2. With the same hypothesis

Voln(g)

sysk(g) sysn�k(g)
� Voln(g0)

�n sysk(g0) sysn�k(g0)
:

Proof. If g is � quasi-conformal to g0 then for some di�eomorphism ' :M !
M the inequalities (2.1) hold. By replacing g by '�g we can assume

u2g0 � g � �2u2g0:

We denote by dV
g
n the volume element of the metric g and the volume

element induced on k dimensional submanifolds by g will be denoted by dV
g
k

with similar notation for volumes induced by g0. The inequalities between

g and g0 imply

uk dV
g0
k � dV

g
k � �kuk dV

g0
k :

Thus

Z
M

u(z)n dV
g0
k (z) �

Z
M

1 dV g
n (z) = Volgn(M):

and for and k dimensional submanifold S

Vol
g
k(S) � �k

Z
S

u(x)k dV
g0
k (x):

We use the normalized measure Haar measure d� on G so that
R
G
1 d� = 1.

Then for any point z 2M using the invariance of the metric g0 we have for

any function f :M ! R and z 2M

Z
G

f(�z) d� = Volg0n (M)�1
Z
M

f(y) dV g0
n (y):

We now assume S is a k dimensional submanifold ofM so that Vol
g0
k (S) =

sysk(g0). (Here we are cheating a bit. By a basic result of Federer and

Fleming there is an integral currant S with Vol
g0
k (S) = sysk(g0) and by a

regularity theorem due to Almgren this current is regular almost everywhere.

The use of these results can be avoided in the following argument by working

with a minimizing sequences of singular chains, at the expense of making the

proof slightly more complicated notationally.) Note for any � 2 G we have

sysk(g) � Vol
g
k(�S). Therefore, using the inequalities above and H�older's
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inequality,

sysk(g) �
Z
G

Vol
g
k(�S) d�

�
Z
G

�k
Z
S

u(�x)k dV
g0
k (x) d�

= �k
Z
S

Z
G

u(�x)k d� dV
g0
k (x)

= �k sysk(g0)

Z
G

u(�x0)
k d� (This is independent of choice of x0)

� �k sysk(g0)

�Z
G

u(�x0)
n d�

� k

n

= �k sysk(g0)Vol
g0
n (M)�

k

n

�Z
M

u(z)n dV g0
n (z)

� k

n

� �k sysk(g0)Vol
g0
n (M)�

k

n (Volgn(M))
k

n

which is equivalent to the required inequality. The proof of the corollary is

straightforward.

3. Application to Quasi-Conformal Geometry.

Let g0, g be two smooth Riemannian metrics on the compact Riemannian

manifoldMn. Then de�ne the quasi-conformal distance between g0 and

g by

Conf Dist(g; g0) := inff� : g is � quasi-conformal to g0g:
A little work then shows

Conf Dist(g; g0) = Conf Dist(g0; g)

and if g1 is anther smooth metric then

Conf Dist(g1; g00) � Conf Dist(g1; g)Conf Dist(g; g0):

Thus the function d(g; g0) := lnConf Dist(g; g0) makes the space of all con-

formal classes of metrics on Mn into a metric space. Corollary 2.2 implies

Conf Dist(g; g0)
n �

Voln(g0) sysk(g) sysn�k(g)

Voln(g) sysk(g0) sysn�k(g0)
:(3.1)

Lemma 3.1. There is a constant c(n) so that for any 
at metric g0 on the

n dimensional torus Tn the inequality

Voln(g0)

sysk(g0) sysn�k(g0)
� c(n)

holds for 1 � k � n� 1.

Proof. A (non-trivial) exercise.
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Combining this with (3.1) implies that for any smooth metric g and any


at metric on Tn that

Conf Dist(g; g0)
n � c(n)

sysk(g) sysn�k(g)

Voln(g)
:(3.2)

Theorem 3.2. For each n � 3 and D0 > 0 there is smooth metric g on the

n dimensional torus Tn so that for all 
at metrics g0 on T
n Conf Dist(g; g0) �

D0.

Proof. By a recent result of Babenko and Katz [1] there is a sequence of

smooth metrics g` on Tn so that

lim
`!1

sys1(g`) sysn�1(g`)

Voln(g`)
=1:

This together with (3.2) completes the proof.
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