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Introduction

Let U ⊆ Rn be a connected open set and f : U → RN a smooth map. Then f is an
immersion iff for all x ∈ U the differential dfx is injective. If x1, . . . , xn are the natural
coordinates on Rn and x = (x1, . . . , xn) then f can be written as a column vector of
smooth functions

f(x1, . . . , xn) =


f 1(x)

...
fN(x)


and the condition that f be an immersion is just that the vectors ∂if = ∂f/∂xi are
pointwise linearly independent in U . The image of a smooth immersion can be thought
of as a smooth n-dimensional submanifold of RN . To understand the geometry of the
image a first step is to see what happens to the length of curves in U as they are mapped
by f . Let c(t) := (x1(t), . . . , xn(t)), a ≤ t ≤ b be a smooth curve in U so that the tangent
vector to c is c′(t) = (ẋ(t), . . . , ẋn). To simplify notation let

fi := ∂if, fij = fji := ∂ijf, etc.

Then the tangent vector to γ(t) := f ◦ c(t) is

γ′(t) = df(c′(t)) =
n∑
i=1

fiẋ
i.

Thus
γ′(t) · γ′(t) =

∑
i,j

fi · fjẋiẋj

where · is the standaard inner product on RN . Therefore the length of γ is

Length[γ] =
∫ b

a

√
γ′(t) · γ′(t) dt =

∫ b

a

√∑
i,j

gijẋiẋj dt(1)

where
gij = gji = fi · fj.
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This is usually expressed by saying “the element of arclength ds is given by”

ds2 =
∑
i,j

fi · fj dxidxj =
∑
i,j

gijdx
idxj.

A Riemannian metric on U ⊂ Rn is a set of smooth functions gij = gji so that the
matrix g(x) := [gij(x)] is positive definite for all x ∈ U . For geometric reasons Riemannian
metrics are written as

ds2 = g =
∑
i,j

gijdx
idxj.

Given a Riemannian metric we can define the length of curve γ(t) = (x1, . . . , xn) by
equation (1) and start to study the geometry of U with length measured in this manner.
If a Riemannian metric g is of the form g = df · df for an immersion f we say that g is
the Riemannian metric induced by f . Here are some examples. To start with the
familiar let f : (0,∞)× (−∞,∞)→ R2 be “polar coordinates” f(r, θ) = (r cos θ, r sin θ)t

(where vt is the transpose of the vector v). (Note that while f is an immersion, it is not
injective.) Then

df =

[
cos θ
sin θ

]
dr +

[
−r sin θ
r cos θ

]
dθ

and the induced Riemannian metric is

ds2 = g = df · df = dr2 + r2dθ2

which is the usual formula for arclength in polar coordinates. For a less familiar example
let f : R2 → R3 be

f(u, v) = u

 cos v
sin v

0

+

 0
0
v

 .
(This is a parameterization of the helicoid z = arctan(y/x).) Then

df =

 cos v
sin v

0

 du+ u

 − sin v
cos v

0

 dv +

 0
0
1

 dv
Thus

ds2 = df · df = du2 + (1 + u2)dv2.

Exercise. (This example was brought to my attention by Margaret Reese [13].) For each
0 < α < π/2 define f : (0,∞)× (−∞,∞)→ R3 by

f(u, v) =
√
u2 + v2

 sin(α) cos
(
csc(α) arctan

(v
u
))

sin(α) sin
(
csc(α) arctan

(v
u
))

cos(α)


Show f parameterizes part of the cone z2 = cot2(α)(x2 +y2) and the induced Riemannian metric
is the standard flat metric

ds2 = g = df · df = du2 + dv2.
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That the metric on the cone is the flat metric is not surprising to anyone who has made a cone
using paper and tape (the metric on the paper is flat and lengths of curves are not changed by
bending the paper so long as it is not torn). This parameterization of the cone is usefully in
solving the following problem: Given two points P1 and P2 on the cone, find the curve on the
cone of shortest length connecting these points. Provided these points are in the image of f ,
say P1 = f(u1, v1) and P2 = f(u2, v2), and some other conditions are satisfied (which we leave
to the reader to find and which hold if the points are close enough together) then the curve of
shortest length is c(t) = f((1− t)u1 + tu2, (1− t)v1 + tv2) with 0 ≤ t ≤ 1 and the length of this
curve is

√
(u2 − u1)2 + (v2 − v1)2.

Hint: Because of the rotational symmetry of the cone it makes sense to work in coordinates
adapted to this symmetry. Thus change to polar coordinates u = r cos θ and v = r sin θ. In
these coordinates f is

f = r


sin(α) cos

(
θ

sin(α)

)
sin(α) sin

(
θ

sin(α)

)
cos(α)


and it is enough to show df · df = dr2 + r2dθ2.
These examples motivate:
Isometric Imbedding Problem. Given a Riemannian metric g =

∑
i,j gijdx

idxj on U
then find (or prove the existence of) an immersion f : U → RN so that df · df = g.

The earliest result on this is the theorem of Janet-Cartan-Burstin [9, 2, 1] that when
the functions gij are real analytic the Riemannian metric g =

∑
ij gijdx

idxj is locally
embeddable in RN with N = 1

2
n(n + 1) (so that when n = 2, N = 3). In one sense

this is very satisfying for gij = fi · fj represents 1
2
n(n + 1) equations and the number

of unknown functions is N . Thus in the Janet-Cartan-Burstin theorem the number of
unknown functions equals the number of equations. In the case of C∞ metrics and for
global results things are more complicated. The main result is due to Nash [12] who in
1956 proved every compact C∞ Riemannian manifold can be globally embedded in RN

with N = 1
2
n(3n+ 11) (this number has since been improved see [5, Chap. 3]). The first,

and by far the harder step, was to show that the space of embeddable metrics is open in
the space of all metrics by use of a new type of implicit function theorem he invented for
just this task. It is then shown that the set of embeddable metrics is also closed in the set
of all metrics and as the space of metrics is connected this finishes the proof. The implicit
function part of the argument was generalized and simplified by Moser [10, 11] into what
has come to be called the Nash-Moser implicit function theorem. It has become one of
the more important methods for dealing with nonlinear problems and has applications
far beyond isometric embeddings. For more information on isometric embeddings see the
books by Griffiths and Jensen [4] and Gromov [5, Chap 3] (the latter of these devotes 129
pages to isometric embeddings). For more on the Nash-Moser implicit function theorem
see the article [8] of Hamilton.

Recently Matthias Günther [6, 7] has greatly simplified the original version of Nash’s
proof of the embedding theorem by finding a method that avoids the use of the Nash-
Moser theory and just uses the standard implicit function theorem from advanced calculus
(although applied to a functional between Banach spaces). In this note we give most of the
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details in Günther’s proof applied to the local imbedding problem for smooth Riemannian
metrics. Our presentation owes a good deal to the unpublished note of Deane Yang [14].

Analytic Preliminaries

Here we collect the results form analysis needed in the proof. Let U ⊂ Rn be a
bounded open set with smooth boundary. If 0 < α < 1 and u : U → R is a continuous
function on U (the closure of U) then the Hölder semi-norm of u is defined by

[u]Cα(U) := sup
x,y∈U, x 6=y

|u(x)− u(y)|
|x− y|α

.

Then for k ≥ 0 the space Ck,α(U) is the set of functions u so that the norm

‖u‖Ck,α(U) := sup
x∈U
|u(x)|+

∑
|I|=k

[∂Iu]Cα(U)

is finite (where I = (i1, . . . , in) is a multi-index, ∂I := ∂i11 ∂
i2
2 · · · ∂inn and |I| = i1 + i2 +

· · ·+ in). Let Ck,α
0 (U) be the subspace of Ck,α(U) of functions that vanish on ∂U . Let ∆

be the usual Laplacian ∆ :=
∑n
i=1 ∂

2
i . Then the following is a standard result from the

theory of elliptic partial differential equations.
Global Schauder Estimates. The map ∆ : C2,α

0 (U) → C0,α(U) is an isomorphism.
That is φ is bijective and there is a constant C so that for all φ ∈ C2,α

0 (U)

1

C
‖φ‖C2,α

0 (U) ≤ ‖∆φ‖C0,α(U) ≤ C‖φ‖C2,α
0 (U)

For a proof see Chapter 6 of [3]. This implies there is an inverse map ∆−1 : C0,α(U) →
C2,α

0 (U). The operator ∆−1 is of order −2 in the sense that it smoothes to order 2.
Let Ck,α(U,RN) be the set of functions of class Ck,α with values in the vector space RN

with the obvious norm and let Ck,α
0 (U,RN) be the subspace of those function that vanish

on ∂U . Then ∆ is defined on functions of Ck,α(U,RN) by just by letting ∆(u1, . . . , uN)t =
(∆u1, . . . ,∆uN) and with this definition the last theorem is true for ∆ : Ck+2,α

0 (U,RN)→
Ck,α(U,RN). This is the from of the result we will use.

As in the scalar valued case this implies that there is a bounded inverse ∆−1 :
Ck,α(U,RN) → Ck+2,α

0 (U,RN). The Laplacian ∆ clearly commutes with the partial
derivative ∂i, thus the same is true of its inverse, that is ∂i∆

−1u = ∆−1∂iu, a fact that
will be used several times in the calculations below.

The Main Theorem

An immersion f : U → RN is free if and only if for all x ∈ U the n + 1
2
n(n + 1)

vectors fi, fij(x) are a basis of RN (which implies N = n + 1
2
n(n + 1)). Our goal is to

show that the set of metrics induced by free immersions is open in the C2,α topology in
the set of all metrics. Let f : U → RN be a free immersion where U is a bounded open
set in Rn and let g = df · df be the induced Riemann metric. Then let h =

∑
ij hijdx

idxj

where hij = hji where it is no longer assumed the matrix [hij] is positive definite. If h
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is small in the uniform norm, then g + h =
∑
ij(gij + hij)dx

idxj will be positive definite
and thus a Riemannian metric. Moreover every Riemannian matrix close to g will be of
the form g + h for some symmetric h. Likewise a small perturbation of f is of the form
f + u where u : U → RN . If g + h is the metric induced by f + u then using g = df · df
we have g + h = (df + du) · (df + du) implies

du · df + df · du+ du · du = h.

Define a non-linear operator I (which depends on f) from Ck+1,α(U,RN) to Ck,α(U, Sym)
(where the second space is the set of all Ck,α functions form U to the vector space Sym
of all symmetric n× n matrices) by

I[u]ij := ∂iu · fj + ∂ju · fi + ∂iu · ∂ju.(2)

Thus given h we wish to solve I[u] = h for u. Güther’s wonderfully ingenious trick is to
show when f is free the operator I can be factored as I[u] = L(u−Q(u, u)) where L is a
linear map with a right inverse and Q(u, u) is a quadratic map of order zero (that it is it
maps Ck,α functions to Ck,α functions). Then the proof of the advanced calculus version
of the implicit function theorem implies that I[u] = h can be solved for u provided h is
small (see below). We now put I[u] in the required form.

I[u]ij = ∂iu · fj + ∂ju · fi + ∂iu · ∂ju
= ∂i(u · fj) + ∂j(u · fi)− 2u · fij + ∂iu · ∂ju
= ∂i(u · fj) + ∂j(u · fi)− 2u · fij + ∆−1∆(∂iu · ∂ju)

= ∂i(u · fj) + ∂j(u · fi)− 2u · fij
+∆−1(∂i∆u · ∂ju) + ∆−1(∂iu · ∂j∆u) + 2∆−1

∑
k

∂iku · ∂jku

= ∂i(u · fj) + ∂j(u · fi)− 2u · fij
+∆−1∂i(∆u · ∂ju) + ∆−1∂j(∂iu ·∆u)− 2∆−1(∂iju ·∆u) + 2∆−1

∑
k

∂iku · ∂jku

= ∂i(u · fj + ∆−1(∆u · ∂ju)) + ∂j(u · fi + ∆−1∂iu ·∆u)− 2u · fij
−2∆−1(∂iju ·∆u) + 2∆−1

∑
k

∂iku · ∂jku

= ∂i(u · fj +Qj(u, u)) + ∂j(u · fi +Qi(u, u))− 2u · fij + 2Qij(u, u)

where Qi and Qij are quadratic functionals given by

Qi(u, u) := ∆−1(∂iu ·∆u), Qij(u, u) := ∆−1

(∑
k

∂iku · ∂jku− ∂iju ·∆u
)
.

Because ∆−1 is a bounded linear map from C0,α(U) onto C2,α
0 (U) these quadratic func-

tionals are bounded on C2,α
0 (U), that is there are constants Ci, Cij so that

‖Qi(u, u)‖C2,α
0 (U) ≤ Ci‖u‖2

C2,α
0 (U)

, ‖Qij(u, u)‖C2,α
0 (U) ≤ Cij‖u‖2

C2,α
0 (U)

.

Because f is free there is a uniquely defined quadratic functional Q(u, u) so that

Q(u, u) · fi = Qi(u, u), Q(u, u) · fij = Qij(u, u).(3)
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As Q(u, u) is just a linear combination with smooth coefficients of the Qi and Qij’s it
will also be a bounded quadratic functional on C2,α

0 (U). Thus if Q(u, v) is the symmetric
bilinear functional associated with Q(u, u) there is a constant C1 so that

‖Q(u, v)‖C2,α
0 (U) ≤ C1‖u‖C2,α

0 (U)‖v‖C2,α
0 (U).(4)

Using (3) in the rewritten version of I[u] gives

I[u]ij = ∂i(u · fj +Q(u, u) · fj) + ∂j(u · fi +Q(u, u) · fi)− 2u · fij + 2Q(u, u) · fij
= L(u−Q(u, u))ij

where L is the linear map

(Lv)ij := ∂j(u · fj) + ∂j(u · fi)− 2u · fij.(5)

Summarizing:
Günther’s Lemma. If f : U → RN is free, the isometric embedding equation can be
rewritten as

I[u] = L(u−Q(u, u)) = h

where L and Q are as (5) and (3) above.
We wish to solve this for u. As a first step we note (or rather Nash noted) that it is

not hard to solve “linearized” problem Lu = h.
Nash’s Lemma. Let C2,α(U, Sym) be the space of C2,α functions on U with values in
the space Sym of symmetric n × n matrices. Let C2,α

0 (U, Sym) be the subspace of those
h that vanish on ∂U . Define M : C2,α(U, Sym)→ C2,α(U,RN) by

Mh = v if and only if v · fi = 0, −2v · fij = hij

(such a v exists and is unique because f is free). Then M is a right inverse to L in that

LMh = h.

Also M maps C2,α
0 (U, Sym) into C2,α

0 (U,RN). Finally M is bounded:

‖Mh‖C2,α ≤ C2‖h‖C2,α(6)

for some constant C2.
Proof: A straight forward exercise in (pointwise) linear algebra and chasing through the
definition of the norm ‖ · ‖C2,α .
Theorem (Nash, Günther) Let U ⊂ Rn be a bounded domain with smooth boundary
and f : U → RN (N = n + 1

2
n(n + 1)) a smooth free immersion. Then there is a δ > 0

(only depending on f and α) so that if g is a C2,α Riemannian that agrees with df · df
on ∂U and ‖g − df · df‖C2,α < δ then there is an immersion v : U → RN with g = dv · dv
and that agrees with f on ∂U . The dependence of v on g is continuous and if g is Ck,α,
2 ≤ k ≤ ∞ then so is v.
Proof: Every g that agrees with df · df on ∂U is of the form df · df + h where vanishes
on ∂U , that is h ∈ C2,α

0 (U, Sym). Let v = f + u where u ∈ C2,α
0 (U,RN) (then u vanishes
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on ∂U and thus v agrees with f on ∂U). As above we want to solve the system I[u] = h.
By Günther’s lemma this can be rewritten as L(u − Q(u, u)) = h. Let M be the right
inverse to L given by Nash’s lemma. Then it is enough to find u so that

u = Mh+Q(u, u).

(Apply L to this equation and use LMh = h to see that any such u solves our problem.)
Define Φh : u ∈ C2,α

0 (U,RN)→ C2,α
0 (U,RN) by

Φh(u) = Mh+Q(u, u).

Then we are looking for fixed points of Φh. We will show that Φh is a contraction on a
closed ball. Let C1 and C2 be as in (4) and (6). Using the bound (4) and bilinearity

‖Φh(u2)− Φh(u1)‖C2,α = ‖Q(u2, u2)−Q(u1, u1)‖C2,α

≤ ‖Q(u2, u2 − u1)‖C2,α + ‖Q(u2 − u1, u1)‖C2,α

≤ C1(‖u1‖C2,α + ‖u2‖C2,α)‖u2 − u1‖C2,α

Therefore

‖u1‖C2,α , ‖u2‖C2,α ≤ 1

4C1

implies ‖Φh(u2)− Φh(u1)‖C2,α ≤ 1

2
‖u2 − u1‖C2,α .

Using (4) and (6)

‖Φh(u)‖C2,α ≤ ‖Mh‖C2,α + ‖Q(u, u)‖C2,α ≤ C2‖h‖C2,α + C1‖u‖2
C2,α

so that

‖u‖C2,α ≤ 1

4C1

, ‖h‖C2,α ≤ 3

16C1C2

implies ‖Φh‖C2,α ≤ 1

4C1

.

Define

r :=
1

4C1

, δ =
3

16C1C2

then for any h ∈ C2,α
0 (U, Sym) with ‖h‖C2,α ≤ δ we see Φh maps the closed ball B(r) :=

{u ∈ C2,α
0 (U,RN) : ‖u‖C2,α ≤ r} into its self and is a contraction with Lipschitz constant

≤ 1
2
. By the contraction mapping principle (for example see [3, Page 69]) Φh has a unique

fixed point u in B(r). This proves the existence of a solution.
To see the dependence of u on h is continuous let u1, u2 ∈ B(r) and ‖h1‖C2,α , ‖h2‖C2,α ≤

δ with Φh1(u1) = u1 and Φh2(u1) = u2. Noting that Φh2 = M(h2−h1)+Φh1 and using (6)
and that Φh2 is a contraction

‖u2 − u1‖C2,α = ‖Φh2(u2)− Φh1(u1)‖C2,α

≤ ‖M(h2 − h1)‖C2,α + ‖Φh2(u2)− Φh2(u1)‖C2,α

≤ C2‖h2 − h1‖C2,α +
1

2
‖u2 − u1‖C2,α

so that ‖u2 − u1‖C2,α ≤ 2C2‖h2 − h1‖C2,α . This shows the dependence of u on h is not
only continuous, but Lipschitz continuous.

This only leaves the regularity question. For fixed u ∈ B(r) the linear operator
Qu := I − Q(u, ·) is elliptic of order zero. Thus if h is in Ck,α, then so is Mh and
Φh(u) = u iff Quu = Mh. Therefore the regularity statement of the theorem follows form
standard arguments.
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