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1. INTRODUCTION

In 1948 E. Hopf [3] proved that any Riemannian metric on the two di-
mensional torus that is without conjugate points is a flat metric. The proof
proceeds by showing that any metric on a compact surface without conju-
gate has non-positive Gaussian curvature and then using the Gauss-Bonnet
theorem to conclude that when the surface is a torus that the Gaussian
curvature is identically zero. In 1958 L. Green generalized Hopf’s argument
to show that any metric on a compact Riemannian manifold of any dimen-
sion that is without conjugate points has non-positive scalar curvature. The
note here is based on Green’s paper gives an elementary exposition of the
Hopf-Green result, however the proof is just a reworking of Green’s proof
with no changes of substance.

2. SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS WITHOUT
CONJUGATE POINTS

In this section t +— R(t) will be a smooth map form the real numbers
R into the vector space of m x m symmetric matrices. For any a € R let
S(t;a) be defined by the initial value problem

(2.1) S"(t;a) + R(t)S(t;a) =0, S(a;a) =0, S'(a,a)=1

where [ is the m xm identity matrix. We say that R(t) is free of conjugate
points iff of all « € R and t # a we have det S(t;a) # 0. If R(t) is free of
conjugate points, then for ¢ # a define

At;a) = —S'(t,a)S(t,a) "
If we view (B.1)) as the Jacobi equations along a geodesic y(t) in a Riemannian
manifold then the condition that R(t) is free of conjugate points is exactly
that the geodesic is free of conjugate points in the usual sense. If t < a

then A(t;a) is the second fundamental form (viewed as a (1,1) tenser) of
the geodesic sphere centered at «(¢) and passing through ~(t) with respect
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to the normal d/dt. The horosphere determined by this geodesic is objected
obtained by taking the geometric limit of these geodesic spheres as a — oo.
The following result more or less says that these second fundamental form
of these horospheres exits and that it satisfies the correct matrix Riccati
equation.

Theorem 2.1 (E. Hopf [8] (m = 1) and L. Green [2] (m > 2)). If R(t) is
free of conjugate points then
U(t) :== lim A(t;a)

a—0o0

exists for all t, the function t — U(t) is smooth and satisfies the Riccati
equation
U'(t)=U(t)? + R(t).

If A and B are symmetric m x m matrices then A < B means that B— A
is positive semi-definite. Likewise A < B will mean that B — A is positive
definite.

Lemma 2.2. Under the hypothesis of the theorem, if t < a < b, then
A(t;a) > A(t; b).

Proof. We first note that if A(¢,a) and A(t;b) are the second fundamental

forms of the geodesic spheres centered at y(a) and (b) and through ~(t)

then the triangle inequality implies the geodesic sphere centered at v(b).
This can be translated into the desired inequality.

(If two hypersurfaces are tangent at a point and one 7(t) m

lies on one side of the other, then there is an inequality

between the second fundamental forms.) To give an w

analytic proof we first note that a direct calculation

shows that A(t;a) satisfies a Riccati equation A’'(t;a) = A(t;a)?+ R(t). Also

from the initial value problem defining S(¢,a) near t = a

S(t;a) = (t —a)l + O(t —a)?,

7y

_ 1
S(t;a)™t = = a)I + O(t — a)?,
S'(t;a) =1+ O(t — a)*.
Thus
(2.2) At;a) = =S'(t;a)S(t;a) ! = ! I+ O(t—a).

(t—a)
For t just a little smaller than a we thus see that A(t; a) is of approximately of
the form C1T for C' large and positive. As a < b this implies A(t,a) > A(t, b)
for ¢ just a little smaller than a. But then the comparison theory for the
Riccati equation [1, Sec. 3] implies A(t,a) > A(t,b) for all t < a. O

Lemma 2.3. With the hypothesis of the theorem, if a,b > 0 then A(t;a) >
A(t;b) for —b <t < a.
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Proof. Geometrically if «(t) is a line, that is if it minimizes the distance
between any two of its points, and A(¢,a) and A(¢;b) are the second funda-
mental forms of the geodesic spheres centered at y(a) and (b) and through
v(t) then the triangle inequality implies the geodesic sphere centered at ~y(a)
is outside the geodesic sphere centered at «y(b). As in the last lemma this
implies an inequality between the second fundamental forms.

Analytically we again use equation (.3). If a is
replaced by —b in (B.J) then for ¢ just a little larger
than —b we see that A(t, —a) is approximately —C'T
for C' a large positive constant. Thus for ¢t just a
little larger than —a we have A(t; —a) < A(t;b) and
thus the comparison theory implies A(t; —a) < A(t;b) for —a <t <b. O

Proof of Theorem 2. Fix ¢ > 0 and let a > ¢. Lemma 2.3 implies that
on the interval [—c, ¢] we have A(t,a) > A(t,—2c). Thus for some constant
(only depending on R(t) and ¢) there holds —CT < A(t,a) for all t € [—c, ]
and a > c¢. By Lemma P.7 there for fixed ¢t € [—¢, ] A(t,a) is a decreasing
function of a. As there is a lower bound, we see that U(t) = lim,_,o A(t;a)
exists for all ¢ € [—¢,c]. For ¢t € [—¢,c], a > 2¢ we see that A'(t;a) =
A(t;a)?* + R(t) stays bounded, so A(t;a) is uniformly Lipschitz and thus
by Ascoli’s theorem the convergence in the limit is uniform. This in turn
implies that as a — oo that A’(t;a) = A(t;a)? + R(t) converges uniformly
to something, and it is easy to see that this something must be U’(t). Thus
U'(t) = U(t)2 4 R(t). As U(t) satisfies a an ordinary differential equation it
is a smooth function. O

3. RIEMANNIAN MANIFOLDS WITHOUT CONJUGATE POINTS

Let (M,g) be a compact n dimensional Riemannian manifold without
conjugate without conjugate points. Let S(M) be the unit sphere bundle of
M and let ¢* be the geodesic flow on S(M). Then, as usual, the geodesic
flow preserves the natural volume measure on S(M). For each u € S(M)
let v, (t) be the geodesic fitting u (that is 4/,(0) = u). Then as ~ is without
conjugate points we can construct a field linear maps U(t) along «y so that for
each t U(t) is a selfadjoint linear map ~. (t)* that satisfies U’(t) = U(t)? +
R(t) where R(t) is defined by R(t)X := R(X,~.,(t)),(t) and R(X,Y)Z =
VxVyvZ —-VyVxZ — V[X,Y]Z is the curvature tensor of (M, g). Define a
function U on S(M) by U, := U(0). Thus if M is simply connected U, is
the second fundamental form of the horosphere determined by =, through
the base point of u. For u € S(M) the function ¢ + Uy, is smooth, but I
do not know if the dependence of U, on w is continuous, but I assume that
it is not. However the map u +— U, is measurable (in [2] Green refers us to
Hopf’s paper [3] which I have yet to look at. But as far as I am concerned
all functions that come up in geometry problems are measurable.)
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We now take traces of the differential equation U’ = U? + R and use the
invariance of the Liouville measure under the geodesic flow.

O:

§‘~x

tr(Ugl —U,)du invariance of du

1
= / /tr U, dt du
s(m) Jo

1
s Jo

tr(U2) + tr(Ry) du invariance of du
(M)

tr(U2) 4 Ric(u, u) du definition of Ric
(M)

n—1
= / tr(U2) du + M/ Scal dx
S(M) n M

where at the last step we have used that [g,_, Ric(u,u)du = %n_l Scal
where Scal is the scalar curvature of (M, g). This gives the formula

I
o0

n
lde = ——— U?) du.
/ Scal dx VolgnT /S( )tr( ) du

This implies at once that if (M, g) is compact without conjugate points and
then the integral of Scal is non-positive and if |, a Scal dr = 0 then U, = 0
almost everywhere. This implies R, = U/, —U2 = 0 for almost all u € S(M).
Therefore M must be flat. When n = 2 this is due to E. Hopf [3] and for
n > 3 it is due to L. Green [2]. Note that if n = 2 and M is a torus
then by the Gauss-Bonnet theorem [ y Scal dz = 0. Thus a metric without
conjugate points on a torus is flat.
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