Chapter 1. Introduction	5
Chapter 2. Basics about Lie Groups and Homogeneous Spaces2.1. Definitions, Invariant Vector Fields and Forms2.2. Invariant Volume Forms and the Modular Function2.3. Homogeneous Spaces	7 7 10 12
 Chapter 3. Representations, Submodules, Characters and the Convolution Algebra of a Homogeneous Space 3.1. Representations and Characters 3.2. Definitions and Basic Properties of the Convolution Algebra 3.3. Isotropic Functions and Approximations to the Identity 3.4. Symmetric and Weakly Symmetric Spaces 	23 23 28 33 36
Chapter 4. Compact Groups and Homogeneous Spaces 4.1. Complete Reducibility of Representations 4.2. The L^2 Convolution Algebra of a Compact Space	39 39 48
Chapter 5. Compact Symmetric and Weakly Symmetric Spaces 5.1. The Decomposition of $L^2(G/K)$ for Weakly Symmetric Spaces 5.2. Diagonalization of Invariant Linear Operators on Compact Weakly Symmetric spaces 5.3. Abelian Groups and Spaces with Commutative Convolution Algebra	51 51 56 57
 Appendix A. Some Results form Analysis A.1. Bounded Integral Operators A.2. Spectral Theorem for Commuting Compact Selfadjoint and Normal Operators on a Hilbert Space A.3. Miscellaneous analytic facts. 	61 61 63 64
 Appendix B. Radon Transforms and Spherical Functions on Finite Homogeneous Spaces B.1. Introduction B.2. Finite Homogeneous Spaces B.3. Injectivity Results for Radon Transforms B.4. The Convolution Algebra of a Finite G-Space B.5. Finite Symmetric Spaces B.6. Invariant Linear Operators on Finite Symmetric Spaces B.7. Radon Transforms for Doubly Transitive Actions 	, 67 67 68 71 73 76 78
 Appendix C. Fiber Integral and the Coarea Formula C.1. The basic geometry of the fibers of a smooth map C.2. Fiber Integrals and the Coarea Formula C.3. The Lemma on Fiber Integration C.4. Remarks on the coarea formula and fiber integration 	81 81 84 86 89
 Appendix D. Isoperimetric Constants and Sobolev Inequalities D.1. Relating Integrals to Volume and Surface Area D.2. Sobolev Inequalities D.3. McKean's and Cheeger's lower bounds on the first eigenvalue D.4. Hölder Continuity Problems 	91 91 92 94 96 98
Bibliography	101
Index	103