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The question answered in this note was posed to me by Dominik Gothe, an
undergraduate here at the University of South Carolina with the agreeable
habit of asking interesting mathematical questions motivated by physics.
I was unable give him much help. The question was brought up during
an afternoon tea in the mathematics department generating a good deal
of discussion. A graduate student, Paisa Seeluangsawat, became interested
and came up with a solution. When Dominik was e-mailed this solution he
replied with a solution he had found. Below is my version of a combination
of the solutions of Dominik and Paisa. Any mistakes are mine and not theirs.

Given a region K in the Euclidean space R3 assume that mass is dis-
tributed over K with constant density ρ. If a particle of unit mass is at
the origin and assuming the Newtonian inverse square law for gravitational
attraction, the gravitational force of K on the particle is the vector

F(K) :=
∫∫∫

K

Gρ r̂
|r|2

dV (r) = Gρ

∫∫∫
K

r̂
|r|2

dV (r)

where r is the position vector, r̂ is the unit vector in the direction of r, dV
is volume measure, and G is the gravitational constant.

Problem 1. If the mass, M0, of K is fixed, then what shape for K maxi-
mizes |F(K)|?

A restatement is: What is the shape of a planet (of mass M0 and uniform
density ρ) that maximizes the weight of someone standing at the origin?

As scaling will simplify several of our calculations, we record here that if
λ > 0 and λK := {λr : r ∈ K} is the dilate of K by λ, then a change of
variable r 7→ λr in the integral formula above for F(K) shows

(1) F(λK) = λF(K).

As Gρ > 0, Problem 1 is equivalent to

Problem 2. If the volume of K is fixed to be V0 := M0/ρ, that what is the
shape of K that maximizes |P(K)| where P(K) is

P(K) :=
∫∫∫

K

r̂
|r|2

dV (r).
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This shows that the value of the gravitational constant G does not effect
the optimal shape.

The functional P(K) is not easy to work with as it is vector valued. The
following shows P(K) can be replaced by a scalar valued functional.

Lemma 1. Let e be a unit vector and E a region that maximizes the inner
product e ·P(K) over all regions with V (K) = V0, then E maximizes |P(K)|
over all regions with V (K) = V0.

Remark. Conversely if E maximizes |P(K)| over all domains with V (K) =
V0 and e = |P(E)|−1P(E), then E maximizes e ·P(K) over all domains with
V (K) = V0.

Proof. Towards a contradiction, assume that E does not maximize |P(K)|
over regions with V (K) = V0. Then there is a region E′ with V (E′) = V0

and |P(E′)| > |P(E)| and e and P(E′) do not point in the same direction,
for if they did it would lead to the contradiction e · P(E′) = |P(E′)| >
|P(E′)| ≥ e · P(E′). Choose a rotation, g, about the origin with so that
gP(E′) points in the same direction as e. Then

P(gE′) = gP(E′)

(which is clear on geometric and/or physical grounds and can also be verified
by the anal retentive by a change of variable in the integral defining P(E′)).
This implies |P(gE′)| = |P(E′)|. As rotations preserve volumes, the region
gE′ has volume V0 and as e and P(gE′) point in the same direction

e ·P(gE) = |P(gE′)| = |P(E′)| > |P(E)| ≥ e ·P(E),

which contradicts the maximizing property of E. �

Proposition 2. Let h : R3 → R. Assume that there is a constant c such
that the set

Ec := {r ∈ R2 : h(r) ≥ c}

has volume V0. Then for any other region E with V (E) = V0∫∫∫
E
h(r) dV (r) ≤

∫∫∫
Ec

h(r) dV (r)

and equality holds if and only if E = Ec up to sets of measure zero. (That
is V (E r Ec) = 0 and V (Ec r E) = 0.)

Proof. We will show the contrapositive: If E and Ec do not differ by only
sets of measure zero and V (E) = V (Ec), then

∫∫∫
E h dV <

∫∫∫
Ec
h dV .

Thus assume that E and Ec do not differ by only sets of measure zero and
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that V (E) = V (Ec). Then V (E r Ec) = V (Ec r E) > 0. Therefore∫∫∫
E
h(r) dV (r) =

∫∫∫
E∩Ec

h(r) dV (r) +
∫∫∫

ErEc

h(r) dV (r)

<

∫∫∫
E∩Ec

h(r) dV (r) +
∫∫∫

ErEc

c dV (r)

=
∫∫∫

E∩Ec

h(r) dV (r) + cV (E r Ec)

=
∫∫∫

E∩Ec

h(r) dV (r) + cV (Ec r E)

≤
∫∫∫

E∩Ec

h(r) dV (r) +
∫∫∫

EcrE
h(r) dV (r)

=
∫∫∫

Ec

h(r) dV (r).
�

Let e = (1, 0, 0) be the unit vector in the direction of the positive x-axis.
Then the position vector and the unit vector in its direction are given in the
standard coordinates as

r = (x, y, z), r̂ =
(x, y, z)√
x2 + y2 + z2

.

Therefore

P(E) =
∫∫∫

E

(x, y, z)
(x2 + y2 + z2)3/2

dx dy dz.

From Lemma 1 we see that it is enough to find a domain E that maximizes

e ·P(E) =
∫∫∫

E

x

(x2 + y2 + z2)3/2
dx dy dz

subject to the constraint V (E) = V0. In light of Proposition 2 (with h =
x/(x2 + y2 + z2)3/2) to find the maximizer, which will be unique up to sets
of measure zero, it is enough to find a constant, c, such that

Ec :=
{

(x, y, z) :
x

(x2 + y2 + z2)3/2
≥ c
}

has volume V0. Note that, using the change of variables u =
√
c x, v =

√
c y,

and w =
√
c z

Ec =
{

(x, y, z) :
x

(x2 + y2 + z2)3/2
≥ c
}

=
{

(x, y, z) :
√
c x

((
√
c x)2 + (

√
c y)2 + (

√
c z)2)3/2

≥ 1
}

=
{(

u√
c
,
v√
c
,
w√
c

)
:

u

(u2 + v2 + w2)3/2
≥ 1
}
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which is just the dilate of E1 by a factor of 1/
√
c. That is

Ec =
1√
c
E1.

Thus for c > 0
V (Ec) = c−3/2V (E1).

So it is enough to compute V (E1). This is defined by

x ≥ (x2 + y2 + z2)3/2.

Raising this to the 2/3 power and rearranging

y2 + z2 ≤ x2/3 − x2 = x2/3(1− x4/3).

Taking square roots gives√
y2 + z2 ≤ x1/3

√
1− x4/3.

This is the region formed by revolving the curve y = x1/3
√

1− x4/3 with
0 ≤ x ≤ 1 about the x-axis.1 The volume is

V (E1) = π

∫ 1

0
y2 dx = π

∫ 1

0
(x2/3 − x2) dx =

4π
15

and so

V (Ec) =
4πc−3/2

15
.

To compute |P(E1)| let f(x) = x1/3
√

1− x4/3,

|P(E1)| = e ·P(E1) =
∫∫∫

E1

x

(x2 + y2 + z2)3/2
dx dy dz

=
∫ 1

0
x

∫∫
y2+z2≤f(x)2

dy dz

(x2 + y2 + z2)3/2
dx

=
∫ 1

0
x

∫ 2π

0

∫ f(x)

0

r dr dθ

(x2 + r2)3/2
dx

= 2π
∫ 1

0
x

∫ f(x)

0

r dr

(x2 + r2)3/2
dx

= 2π
∫ 1

0

(
−1√

r2 + f(x)2

)∣∣∣∣∣
f(x)

r=0

dx

= 2π
∫ 1

0
x

(
1
x
− 1√

f(x)2 + x2

)
dx.

Substituting f(x)2 = x2/3 − x2 this becomes

|P(E1)| = 2π
∫ 1

0
x

(
1
x
− 1
x1/3

)
dx =

4π
5
.

1In polar coordinates this is r =
√

cos θ with −π/2 ≤ θ ≤ π/2.



5

Using Ec = (1/
√
c)E1 and the scaling property (1) (which also holds for P

as it is a constant multiple of F)

|P(Ec)| =
1√
c
|P(E1)| = 4π

5
√
c
.

We now find the radius of the ball with the same volume as E1. If r1 is
this radius then

4π
3
r31 =

4π
15
.

Solving for r1:

r1 =
1
3
√

5
.

The ball, B, with this radius that has the same unit normal as E1 at the
origin has center (r1, 0, 0) and is defined by

(x− r1)2 + y2 + z2 ≤ r21
that is √

y2 + z2 ≤
√
r21 − (x− r1)2 =

√
2r1x− x2,

which is the body defined by rotating y = g(x) :=
√

2r1 − x2 with 0 ≤ x ≤
2r1 about the x-axis.

|P(B)| = e ·P(B) =
∫∫∫

B

x

(x2 + y2 + z2)3/2
dx dy dz

=
∫ 2r1

0
x

∫∫
y2+z2≤g(x)2

dy dz

(x2 + y2 + z2)3/2
dx

=
∫ 2r1

0
x

∫ 2π

0

∫ g(x)

0

r dr dθ

(x2 + r2)3/2
dx

= 2π
∫ 2r1

0
x

∫ g(x)

0

r dr

(x2 + r2)3/2
dx

= 2π
∫ 2r1

0
x

(
1
x
− 1√

g(x)2 + x2

)
dx

= 2π
∫ 2r1

0
x

(
1
x
− 1√

2r1x

)
dx

= 2π
2
3
r1

=
4π

3 3
√

5
.

Thus the ratio of the force on the particle by E1 and the force by a
spherical planet of equal mass and density is

|F(E1)|
|F(B)|

=
|P(E1)|
|P(B)|

=
4π
5

3 3
√

5
4π

=
3

3
√

25
≈ 1.025985568.
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So the custom planet only increases the weight on someone on the surface
of a spherical planet of the same mass and density by a bit less than 2.6%.
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The figure shows the profile curves for two bodies of revolution about the
x-axis. One is for a spherical planet of diameter 1 and uniform density, the
other is a planet of the same volume and same uniform density (and thus the
same mass) that maximizes force on a particle at the origin over all planets
with the same mass and uniform dersity. The ratio of the sizes of the forces
is 3/ 3

√
25 ≈ 1.025985568.


