FUBINI'S THEOREM ON THE TERMWISE DIFFERENTIABILITY OF SERIES WITH MONOTONE TERMS

RALPH HOWARD DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOUTH CAROLINA COLUMBIA, S.C. 29208, USA HOWARD@MATH.SC.EDU

Contents

1.	Introduction.	1
2.	Proof of Theorem 2.	2
3.	Some examples	3

1. INTRODUCTION.

A basic result in the differentiability of real valued functions of a real variable is Lebesgue's Theorem on the differentiability of monotone functions:

Theorem 1. Let $f: [a,b] \to \mathbf{R}$ be a monotone increasing function. Then f'(x) exists for almost all $x \in [a,b]$ and

$$\int_{a}^{b} f'(x) \, dx \le f(b) - f(a).$$

A less well known, but still fundamental, result is the Theorem of Fubini on the termwise differentiability of series with monotone terms:

Theorem 2. Let $f_k: [a, b] \to \mathbf{R}$ be monotone increasing for k = 1, 2, ... and assume that the series

$$f(x) = \sum_{k=1}^{\infty} f_k(x)$$

converges pointwise on [a, b]. Then

$$f'(x) = \sum_{k=1}^{\infty} f'_k(x)$$

for almost all $x \in [a, b]$

Date: June 28, 2006.

RALPH HOWARD

We will give a proof of this result and use it so construct some examples of strictly increasing functions with that have derivative zero almost everywhere.

2. Proof of Theorem 2.

We write

$$f(x) = \sum_{k=1}^{n} f_k(x) + R_n(x)$$

where

$$R_n(x) = \sum_{k=n+1}^{\infty} f_k(x)$$

is the *n*-th remainder for the *n*-th partial sum $\sum_{k=1}^{n} f_k(x)$. Note that f and R_n are also monotone increasing functions and therefore are differentiable almost everywhere by Theorem 1. Let E be the set of points where all the functions f_k are f are differentiable. As each of these functions is differentiable almost everywhere, we have that $[a,b] \setminus E$ has measure zero. If $x \in E$, then the partial sum $\sum_{k=1}^{n} f_k(x)$ is differentiable at x and therefore so is $R'_n(x) = f'(x) - \sum_{k=1}^{n} f'_k(x)$ exists. Therefore, as $R'_n(x) \ge 0$,

$$f'(x) = \sum_{k=1}^{n} f'_k(x) + R'_n(x) \ge \sum_{k=1}^{n} f'_k(x)$$

for all $x \in E$. Letting $n \to \infty$ gives $f'(x) \ge \sum_{k=1}^{\infty} f'_k(x)$ for all $x \in E$ and thus

(2.1)
$$\sum_{k=1}^{\infty} f'_k(x) \le f'(x) \quad a.e.$$

By Theorem 1 applied to the monotone increasing functions R_n we have

$$0 \le \int_{a}^{b} R'_{n}(x) \, dx \le R_{n}(b) - R_{n}(a) = \sum_{k=n+1}^{\infty} (f_{k}(b) - f_{k}(a)).$$

As both the series $\sum_{k=1}^{\infty} f_k(a)$ and $\sum_{k=1}^{\infty} f_k(b)$ converge the series $\sum_{k=1}^{\infty} (f_k(b) - f_k(a))$ converges and thus $\lim_{n\to\infty} \sum_{k=n+1}^{\infty} (f_k(b) - f_k(a)) = 0$. Using this in what we have just done gives

(2.2)
$$\lim_{n \to \infty} \int_a^b R'_n(x) \, dx = 0$$

 $\mathbf{2}$

Also

$$\int_{a}^{b} f'(x) \, dx = \int_{a}^{b} \left(\sum_{k=1}^{n} f_{k}(x) \right)' dx + \int_{a}^{b} R'_{n}(x) \, dx$$
$$= \int_{a}^{b} \sum_{k=1}^{n} f'_{k}(x) \, dx + \int_{a}^{b} R'_{n}(x) \, dx$$
$$\leq \int_{a}^{b} \sum_{k=1}^{\infty} f'_{k}(x) \, dx + \int_{a}^{b} R'_{n}(x) \, dx$$

Letting $n \to \infty$ and using (2.2) gives

(2.3)
$$\int_{a}^{b} f'(x) \, dx \le \int_{a}^{b} \sum_{k=1}^{\infty} f'_{k}(x) \, dx.$$

But by (2.1) $\sum_{k=1}^{\infty} f'_k(x) \leq f'(x)$ almost everywhere. Therefore the only what that (2.3) can hold is if $f'(x) = \sum_{k=1}^{\infty} f'_k(x)$ a.e. This completes the proof.

3. Some examples

Let H(x) be the function

$$H(x) = \begin{cases} 0, & x \le 0; \\ 1, & 0 < x. \end{cases}$$

That is H(x) is just the characteristic function of the set $(0, \infty)$. It is clearly monotone increasing, and also H'(x) = 0 for all $x \neq 0$. Let $\langle r_k \rangle_{k=1}^{\infty}$ be an enumeration of the rational numbers and set

$$f(x) := \sum_{k=1}^{\infty} \frac{1}{2^k} H(x - r_k).$$

This will be a strictly increasing function which has a jump discontinuity at each rational number. However by applying Theorem 2 to intervals [a, b] and letting $a \to -\infty$ and $b \to \infty$ we have

$$f'(x) = \sum_{k=1}^{\infty} \frac{1}{2^k} H'(x - r_k) = 0$$

for almost all $x \in \mathbf{R}$.

For a somewhat more interesting example let h be the Cantor function on [0, 1]. This is functions that is monotone increasing on [0, 1], with h(0) = 0, h(1) = 1 and is locally constant on the compliment of the Cantor set. This function is increasing and has h'(x) = 0 for all in the compliment of the

Cantor set. Thus h'(x) = 0 a.e. Let

$$g(x) = \begin{cases} 0, & x < 0; \\ h(x), & 0 \le x \le 1; \\ 1, & 1 < x. \end{cases}$$

Then g is monotone increasing and has g'(x) = 0 a.e. Again letting $\langle r_k \rangle_{k=1}^{\infty}$ be an enumeration of the rational numbers we set

$$F(x) = \sum_{k=1}^{\infty} \frac{1}{2^k} g(x - r_k).$$

By Theorem 2 this will have F'(x) = 0 almost everywhere. It is not hard to check that F is strictly increasing. Thus we have an easy example of a continuous **singular function**, that is a continuous strictly increasing function with F' = 0 a.e.