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1. INTRODUCTION.

A basic result in the differentiability of real valued functions of a real vari-
able is Lebesgue’s Theorem on the differentiability of monotone functions:

Theorem 1. Let f: [a,b] — R be a monotone increasing function. Then
f(x) exists for almost all x € [a,b] and

b
/ f(2)dz < £(b) - f(a).

A less well known, but still fundamental, result is the Theorem of Fubini
on the termwise differentiability of series with monotone terms:

Theorem 2. Let fi: [a,b] — R be monotone increasing for k = 1,2, ... and
assume that the series

f@) = fula)
k=1

converges pointwise on [a,b]. Then

fla)=>" filx)
k=1

for almost all x € [a, D]

Date: June 28, 2006.



2 RALPH HOWARD

We will give a proof of this result and use it so construct some exam-
ples of strictly increasing functions with that have derivative zero almost
everywhere.

2. PROOF OF THEOREM 2.

We write
f@) =" fulx) + Ru(x)
k=1

where

k=n+1

is the n-th remainder for the n-th partial sum ) ;_; fx(x). Note that f and
R,, are also monotone increasing functions and therefore are differentiable
almost everywhere by Theorem 1. Let E be the set of points where all the
functions fj are f are differentiable. As each of these functions is differen-
tiable almost everywhere, we have that [a, b] \ E has measure zero. If x € F,
then the partial sum >°;_, fx(z) is differentiable at = and therefore so is
Rl (x) = f'(z) — > p_; fi(x) exists. Therefore, as R}, () > 0,

flx) = fula) + Ry(@) 2 ) filx)
k=1 k=1

for all x € E. Letting n — oo gives f/'(z) > > 72, fi(z) for all z € E and
thus

(2.1) S fi@) < f@) ae.
k=1
By Theorem 1 applied to the monotone increasing functions R,, we have
b [ee]
0< [ Rie)do < Rofb) = Bule) = 3 ((b) - fila).
a k=n+1

As both the series > 77 | fr(a) and > "7 | fr(b) converge the series Y po ; (f(b)—
fr(a)) converges and thus lim, oo Y o, .1 (fx(b) — fr(a)) = 0. Using this
in what we have just done gives

b
(2.2) lim Rl (z)dz =0
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/abf’( d:c_/ <ka >da:+/ R (x

/ka dx+/ ' () dx

@ k=1

/aka dx+/R’

k=1

Also

Letting n — oo and using (2.2) gives

(23) [ reas [ e

k=1

But by (2.1) >"p2, fi(z) < f'(x) almost everywhere. Therefore the only
what that (2.3) can hold is if f'(z) = Y 72, f.(z) a.e. This completes the
proof. O

3. SOME EXAMPLES

Let H(x) be the function

0, =<0
H(x):{l O0<x

That is H(x) is just the characteristic function of the set (0, c0). It is clearly
monotone increasing, and also H'(xz) = 0 for all = # 0. Let (r;)72, be an
enumeration of the rational numbers and set

1
Fl#) =3 g He = ).
k=1
This will be a strictly increasing function which has a jump discontinuity
at each rational number. However by applying Theorem 2 to intervals [a, b]

and letting a — —oo and b — oo we have

— 1

Z ﬁH "2 —1,) =0
k=1

for almost all x € R.

For a somewhat more interesting example let h be the Cantor function on
[0, 1]. This is functions that is monotone increasing on [0, 1], with h(0) = 0,
h(1) =1 and is locally constant on the compliment of the Cantor set. This
function is increasing and has h'(xz) = 0 for all in the compliment of the
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Cantor set. Thus h/(z) = 0 a.e. Let

0, x <0
g(z) =< h(z), 0<z<1;
1, 1<z

Then g is monotone increasing and has ¢'(xz) = 0 a.e. Again letting (r4)7°,

be an enumeration of the rational numbers we set
o

1
F@) =" spo@ = ).
k=1
By Theorem 2 this will have F’'(z) = 0 almost everywhere. It is not hard
to check that F' is strictly increasing. Thus we have an easy example of
a continuous singular function, that is a continuous strictly increasing
function with F’ = 0 a.e.



