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1. Introduction

This set of notes is a result of a very pleasant interaction between the
analysts, combinatorsts, and geometers in the mathematics department at
the University of South Carolina. Let v1, . . . , vn be vectors in Rd so that
any subset of {v1, . . . , vn} of size d is linearly independent (for convenience
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2 RALPH HOWARD

say that such a set is in general position). Then Jerry Griggs has posed
the problem of giving good upper and lower bounds on the number

C(d, n) := max
v1,...,vn

max
y∈Rd

#
{

(ε1, . . . , εn) : εk = ±1 and
n∑
k=1

εkxk = y
}

where v1, . . . , vn varies sets in general position. By using a clever combina-
tion of linear algebra, probability, and elementary number theory Griggs [1]
was given a lower bound

C(d, n) ≥ C(d)
(

1
n
√
n

)d
2n.

In the paper [2] Halász gives upper bounds for a more general problem with
imply that

C(d, n) ≤ C ′(d)
1
n

(
1√
n

)d
2n.

Halász’s paper uses quite a bit of machinary from probability theory and
in lectures in our combintoric’s seminar Kostya Oskolkov showed that the
probabality could be avoided and that Halász’s result can be reduced to
estimating certian integrals whoses integrands are products of absolute val-
ues of cosines. My contribution to this project is noting that in some cases
these integrals can be estimated by use of rearrangment inequalites. This
very much simplifies the proof of Thoerm 1 in [2]. However this only leads
to the upper bound

C(d, n) ≤ C ′′(d)
(

1√
n

)d
2n.

Unfortunately there seem to be structural reasons why the simplier methods
used in the notes here can not give the stronger result.

The notes here are basically an expanded version of Oskolkov’s lectures
with some proofs and references added on the use of rearrangement inequal-
ities (the basic reference here is the wonderful book [3] of Leib and Loss).
The main result here (Theorem 4.3) is a slight refinement of Theorem 1
of [2] in that all constants are given explicitly1. I hope that these notes are
readable to non-analysts and in particular to combinatorsts.

2. Statement of the problem and application of the Fourier

transform.

2.1. The Problem. Let v1, . . . , vn ∈ Rd be n vectors in the d dimensional
Euclidean space Rd and D ⊂ Rd a bounded domain and define

ND = #
{

(ε1, . . . , εn) : εk = ±1 and
n∑
k=1

εkvk ∈ D
}
.

1Note however that “explicit” does not mean “correct”. This is a technical subject and
the amount of proof reading required to insure the correctness of all the constants was
more than I was up for.
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Then ND is the number, counted with multiplicity, of the sums ±v1±· · ·±vn
that are in D. Thus different choice of ε1, . . . , εn that give rise to the same
sum in D each count in computing D. In the extreme case where vk = 0 for
all k all the sums

∑n
k=1 εkvk are the same and equal to 0, but in this case if

0 ∈ D we have ND = 2n. The translate of D by y ∈ Rd is D + y = {x+ y :
x ∈ D}. Define ND by

ND = max
y∈Rd

ND+y

The number ND is thus just the maximum number of sums
∑n

k=1 εkvk
(counted with multiplicity) that can be captured by a translate of D and
is called the concentration. We wish to give a method for estimating ND
form above in terms of the geometry of D and v1, . . . , vn. We will start by
estimating ND, but the resulting inequality will end up being “translation
invariant” and thus also gives a bound on ND.

2.2. Reduction to an analytic problem. We first give an integral for-
mula for ND using a trick from analytic number theory. For any subset
A ⊂ R denote the Lebesgue measure of A by |A|. Let r1, . . . , rn : [0, 1]→ R
be independent random variables all with the distribution that takes on the
values ±1 each with probability 1/2. (Those wishing to avoid all use of
probability see Remark 2.3 below.) A concrete choice of r1, . . . , rn is the
Rademacher functions given by rk(t) = sign sin(2kπt) in which case it is
easy to check that

|{t ∈ [0, 1] : rk(t) = +1}| = |{t ∈ [0, 1] : rk(t) = −1}| = 1
2
.

It takes a little more work to show these are independent as random vari-
ables, but this is still elementary. Let

S(t) :=
m∑
k=1

rk(t)xk.

Then, because each rk(t) takes on the values ±1 and the rk are independent
random variables, as t ranges over [0, 1] the function S(t) ranges over all the
sums

∑
εkxk and for a give choice of ε1, . . . , εn the measure of the set of t

that realizes this sum is 1/2n. Denote by χD is the characteristic function
of D (i.e. χD(x) = 1 if x ∈ D and χD(x) = 0 if x /∈ D) then from the
properties of S(t) just given

ND = 2n
∫ 1

0
χD(S(t)) dt.

If ϕ : Rd → R is a function that satisfies

ϕ ≥ χD
then there is the obvious inequality

ND ≤ 2n
∫ 1

0
ϕ(S(t)) dt.(2.1)
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The reason we wish to replace χD a function ϕ ≥ χD is that we will be
using Fourier transform methods and the Fourier transform of χD is rather
unpleasant (for example it is not in L1(Rd)) and we will be able to make
choices of ϕ whose Fourier transforms are easier to work with.

Our convection on the constants in the Fourier transform are as follows.
If f ∈ L1(Rd) then its Fourier transform is

f̂(ξ) = (2π)−
d
2

∫
Rd

f(x)e−i〈x,ξ〉 dx

where 〈 , 〉 is the standard inner product on Rd and dx is the standard volume
measure. If f and f̂ are both in L1 then the Fourier inversion formula holds
and is given by

f(x) = (2π)−
d
2

∫
Rd

f̂(ξ)ei〈x,ξ〉 dξ.

We now let ϕ ≥ χD be a function so that both ϕ and ϕ̂ are in L1 and use
the Fourier inversion formula in the inequality (2.1) and invert the order of
integration to get

ND ≤ 2n(2π)−
d
2

∫
Rd

ϕ̂(ξ)
∫ 1

0
ei〈S(t),ξ〉 dt dξ.(2.2)

To simplify this note that as each rk(t) takes on the values +1 and −1 each
with measure 1/2 for any real number c∫ 1

0
eirk(t)c dt =

1
2
eic +

1
2
e−ic = cos(c).

Using this, the definition of S(t), and the independence of r1, . . . , rn∫ 1

0
ei〈S(t),ξ〉 dt =

∫ 1

0
ei(r1(t)〈x1,ξ〉+···+rn(t)〈xn,ξ〉)dt

=
∫ 1

0

n∏
k=1

eirk(t)〈xk,ξ〉dt

=
n∏
k=1

∫ 1

0
eirk(t)〈xk,ξ〉dt

=
n∏
k=1

cos〈xk, ξ〉.(2.3)

Putting this back in (2.2) gives

ND ≤ (2π)−
d
2

∫
Rd

ϕ̂(ξ)
n∏
k=1

cos〈xk, ξ〉 dξ

≤ (2π)−
d
2

∫
Rd

|ϕ̂(ξ)|
n∏
k=1

| cos〈xk, ξ〉| dξ(2.4)

Thus we have done most of the work toward proving:
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Proposition 2.1 (Oskolkov’s Lemma). Let D be a bounded domain in Rd

and ϕ a function so that ϕ ≥ χD and both ϕ and ϕ̂ are in L1(Rd). Then

ND ≤ (2π)−
d
2

∫
Rd

|ϕ̂(ξ)|
n∏
k=1

| cos〈xk, ξ〉| dξ.(2.5)

Proof. For any y ∈ Rd and function f : Rd → R let τyf(x) := f(x−y) be the
translate of f by y. Then τyχD = χD+y. Let ϕ ≥ χD as in the statement of
the proposition. Then τyϕ ≥ χD+y. The Fourier transform of a translation
is given by τ̂yϕ(ξ) = e−i〈ξ,y〉ϕ̂(ξ) and therefore |τ̂yϕ(ξ)| = |ϕ̂(ξ)|. Using this
in (2.4) gives

ND+y ≤ (2π)−
d
2

∫
Rd

|ϕ̂(ξ)|
n∏
k=1

| cos〈xk, ξ〉| dξ.

The right side of this is independent of y and (2.5) follows.

Remark 2.2. We are now in the situation of many proofs in analysis. We
have the inequality (2.5) which depends on an arbitrary “test function” ϕ.
The game now becomes to find a good, or at least a manageable choice, of
ϕ. We will start by looking at choices for ϕ in the one dimensional case and
then using these to get construct ϕ in higher dimensions in the case D is a
cube.

Remark 2.3. The basic property of the functions rk(t) used was the com-
putation 2.3. Using the Rademacher functions this calculation can be di-
rectly form the definition of the rk(t)’s and all mention of probability thus
avoided.

2.3. A choice of the test function ϕ in one dimension and for D
an interval. First we review a little about the Fourier transform in for
functions on Rd. If f, g ∈ L1(Rd) then the convolution f ∗ g of f and g is
given by

f ∗ g(x) =
∫

Rd

f(x− y)g(y) dy =
∫

Rd

f(y)g(x− y) dy.

This is also in L1(Rd). The Fourier transform and convolution are related
by

(2π)−d/2f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).

(The factor on the left is due to the choice of where we are putting the 2π’s
in the definition of the Fourier transform.) Back in the one dimensional case
let f(ξ) = χ[−a,a](ξ) be the characteristic function of an interval of length
2a centered at the origin. Then

f̂(x) =
1√
2π

∫ a

−a
eixξdξ =

√
2
π

sin(ax)
x

.
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Then
1√
2π
f̂ ∗ f(x) = f̂(x)2 =

2
π

sin2(ax)
x2

.

The smallest positive zero of sin(ax)/x is at x = π/a and the function
sin(ax)/x is decreasing on [0, π/a]. Let r = π/a so that a = π/r and
r/2 = π/(2a). For these values of r and a the smallest values of sin2(ax)/x2

on the interval [−r/2, r/2] occur when x = ±r/2 and the smallest value is

sin2(ra/2)
(r/2)2

=
4
r2
.

Therefore
√

2πr2

16
f̂ ∗ f(x) =

r2 sin2(πx/r)
4x2

≥ 1 for x ∈ [−r/2, r/2].

We also can compute f ∗ f explicitly and get

f ∗ f(ξ) = max(0, 2a− |ξ|) = max(0, 2π/r − |ξ|2).

Lemma 2.4. If ϕ1 : R→ [0,∞) is given by

ϕ1(x) =
r2 sin2(πx/r)

4x2

then ϕ1 ≥ χ[−r/2,r/2], ϕ1 ∈ L1(R), and

ϕ̂1(ξ) =
√

2πr2

16
max(0, 2π/r − |ξ|)

which is supported in [−2π/r, 2π/r].

Proof. On the set of functions symmetric about the origin (that is f(−x) =
f(x) the Fourier transform and its inverse are given by the same formula.
Therefore applying the inverse transform to the calculations above gives the
result.

2.4. The test function for D a cube in Rd. Let Q(r) be the cube
[−r/2, r/2]d be the centered cube in with side of length r in Rd, and let
x1, . . . , xd be the coordinate functions on Rd.

Lemma 2.5. Define a function ϕ : Rd → [0,∞) by

ϕ(x) =
(
r2

4

)d d∏
j=1

sin2(πxj/r)
x2
j

then ϕ ∈ L1(Rd), ϕ ≥ χQ(r),

ϕ̂(ξ) =

(√
2πr2

16

)d d∏
j=1

max(0, 2π/r − |ξj |)
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which is supported in Q(2π/r) and satisfies the bound

|ϕ̂(ξ)| ≤

(
(2π)3/2ra

16

)d
.

Proof. With the notation of Lamma 2.4 we have ϕ(x) = ϕ1(x1)ϕ1(x2) · · ·ϕ1(xd)
and the results follow from that lemma.

Proposition 2.6. Let Q(r) be the cube with sides parallel to the coordiante
axis in Rd and edge lenght of r. Then the concentration of v1, . . . , vk satisfies

NQ(r) ≤ 2n
(πr

8

)d ∫
Q(2π/r)

n∏
k=1

| cos〈vk, ξ〉| dξ.

Proof. We use the test function ϕ of Lemma 2.5 (and the bounds given
there) in Proposition 2.1 to get:

NQ(r) ≤ (2π)−
d
2

∫
Rd

|ϕ̂(ξ)|
n∏
k=1

| cos〈vk, ξ〉| dξ

≤ 2n(2π)−
d
2

(
(2π)3/2ra

16

)d ∫
Q(2π/2)

n∏
k=1

| cos〈vk, ξ〉| dξ

= 2n
(πr

8

)d ∫
Q(2π/r)

n∏
k=1

| cos〈vk, ξ〉| dξ

This completes the proof.

Remark 2.7. To get an idea if this estimate is any good we look at the
extreme case where vk = 0 for all k. Then ND = 2n for any D. The
estimate of the last proposition gives (using that cos〈vk, ξ〉 = cos(0) = 1)

NQ(r) ≤ 2n
(πr

8

)d
Vol(Q(2π/r)) = 2n

(
π2

4

)d
≤ 2n(2.468)d

which is not all that good, but not outrageously bad.

3. Rearrangement inequalities and their applications.

3.1. The basic rearrangement inequalities. Let A ⊂ Rd be a Lebesgue
measurable set and denote the measure of A by |A|. Define the symme-
tirzation A∗ of A to be the closed ball centered at the origin such with the
same measure as A. Thus in one dimension

A∗ := [−|A|/2, |A|/2]

and in two dimensions

A∗ := B(0, (|A|/π)1/2).
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More generally if define ω(d) to be the volume of the unit ball in Rd then
for A ⊂ Rd

A∗ := B(0, (|A|/ω(d))1/d).
We now wish to extend this idea of syemmtrization from sets to non-negative
functions. For a charactertic function χA of a set how to do this is clear:

χ∗A := χA∗

We now use that any non-negative function can be expressed as an integral
of the characteristic functions of the sets {f ≥ t} (which is a standard
abbreviation for {x : f(x) ≥ t}) as follows

f(x) =
∫ f(x)

0
1 dt =

∫ ∞
0

χ{f≥t}(x) dt.(3.1)

This representation of f is sometimes called the layer cake representation
of f . Note that this, along with Fubini’s theorem, implies∫

Rd

f(x) dx =
∫

Rd

∫ ∞
0

χ{f≥t}(x) dt dx

=
∫ ∞

0
χ{f≥t}(x) dx dt

=
∫ ∞

0
|{x : f(x) ≥ t}| dt.

We now define the symmetric decreasing rearrangement of a non-
negative measurable function f by

f∗(x) :=
∫ ∞

0
χ∗{f≥t}(x) dt.(3.2)

The basic properties of f∗ are that it is monotone decreasing as a function
of |x|:

|x| ≤ |y| implies f∗(x) ≥ f∗(y).(3.3)

Letting |x| = |y| (so that |x| ≤ |y| and |y| ≤ |x|) this implies f∗ is symmetric

|x| = |y| implies f∗(x) = f∗(y).

A little less obvious but very important is that f and f∗ are equi-measurable
in the sense that

|{f∗ ≥ t}| = |{f ≥ t}|(3.4)

for all t.
The two properties (3.3) and (3.4) come close to characterizing f∗ and in

fact do characterize f∗ up to a set of measure zero.
What makes the symmetric decreasing rearrangement interesting to us is

Theorem 3.1 (Basic rearrangement inequality). Let f1, . . . , fm : Rd → [0,∞)
be non-negative measurable functions. Then∫

Rd

f1(x)f2(x) · · · fm(x) dx ≤
∫

Rd

f∗1 (x)f∗2 (x) · · · f∗m(x) dx.
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Proof. We first consider the case where each fk = χAk is the characteristic
function of a measurable set. By reordering we can assume that A1 has the
smallest measure of the sets A1, . . . , Am. Then the product f1f2 · · · fm is just
χA1∩···∩Am , that is the characteristic function of the intesection A1∩· · ·∩Am.
But A1 ∩ · · · ∩Am ⊆ A1 and so∫

Rd

f1(x)f2(x) · · · fm(x) dx = |A1 ∩ · · · ∩Am| ≤ |A1|(3.5)

But in this case f∗k = χA∗k and |A∗k| = |Ak|. Thus A∗1 will have the smallest
measure of the sets A∗1, . . . , A

∗
m. But as all the A∗k are closed balls centered

at the origin this implies A∗1 ∩ · · · ∩A∗m = A∗1. Thus∫
Rd

f∗1 (x)f∗2 (x) · · · f∗m(x) dx = |A∗1 ∩ · · · ∩A∗m| = |A∗1| = |A1|.

Putting this together with (3.5) implies the result in the case all the fk are
characteristic functions. In the general case we use the layer cake represen-
tation (3.1) to reduce to the case of characteristic functions. In the following
we interchange the order of integration without comment.∫

Rd

f1(x)f2(x) · · · fm(x) dx

=
∫ ∞

0
· · ·
∫ ∞

0

∫
Rd

χ{f1≥t1}(x) · · ·χ{fm≥tm}(x) dx dt1 · · · dtm

≤
∫ ∞

0
· · ·
∫ ∞

0

∫
Rd

χ{f∗1≥t1}(x) · · ·χ{f∗m≥tm}(x) dx dt1 · · · dtm

=
∫

Rd

f∗1 (x)f∗2 (x) · · · f∗m(x) dx.

This completes the proof.

3.2. A trick for reducing the dimension of the problem. The next
result is basically just a technical lemma that shows us in some cases to
reduce a problem in estimating a function of one function of several variables
to a several (hopefully easier) estimates of functions of one variable. First
some notation. For x ∈ Rd let x1, . . . , xd be the coordinates of x (so that
x = (x1, . . . , xd)). Then for 1 ≤ j ≤ d and f(x) = (x1, . . . , xd) let

S∗j f(x1, . . . , xd) =
{

symmetric decreasing rearrangment of f with
respect to xj holding other variables fixed.

This one variable version of symmetrization is called Steiner symmetriza-
tion after Steiner who introduced it early in the last century and who seems
to have been to use symmetrization methods in proving geometric inequali-
ties.

Proposition 3.2. Let F : Rd → [0,∞) be a nonnegative measurable func-
tion that can be factored as

F (x) = F (x1, . . . , xd) = f1(x1)f2(x1, x2)f3(x1, x2, x3) · · · fd(x1, . . . , xd)
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where fj only depends on x1, . . . , xj. Assume that for each j there is a
symmetric deceasing function gj(t) of one variable so that

S∗j fj(x1, . . . , xj) ≤ gj(xj)

and also assume that there is a symmetric decreasing function G : Rd →
[0,∞) so that

g1(x1)g2(x2) · · · gd(xd) ≤ G(x1, . . . , xd) = G(x).

Then
F ∗(x) ≤ G(x)

for all x.

Proof. It is not hard to verify from the definitions that

|{x :F (x) ≥ t}| = |{(x1, . . . , xd) : f1(x1) · · · fd(x1, . . . , xd) ≥ t}|
≤ |{(x1, . . . , xd) : f1(x1) · · · fd−1(x1, . . . , xd−1)gd(xd) ≥ t}|
≤ |{(x1, . . . , xd) : f1(x1) · · · fd−2(x1, . . . , xd−2)gd−1(xd−1)gd(xd) ≥ t}|
...

≤ |{(x1, . . . , xd) : g1(x1) · · · gd−1(xd−1)gd(xd) ≥ t}|
≤ |{(x1, . . . , xd) : G(x1, . . . , xd) ≥ t}|.

And so F ∗(t) ≤ G∗(t) = G(t) (where G∗ = G as G is symmetric and a
monotone decreasing function of |x|). This completes the proof.

3.3. Application of the rearrangement inequalities to integrals of
products of cosines.

Lemma 3.3. Let f : [−R,R] → [0, 1] be given by f(x) = | cos(ax + b)|
where a is an integral multiple of π/(2R) (this implies that 2R is a period
of f(x))). Then

f∗(x) = cos(πx/(2R)).

Proof. Doing this in terms of the definition (3.2) is hard work, but by using
the characterization (3.3) and (3.4) and drawing a picture this becomes more
or less clear.

Lemma 3.4. Let f : [−R,R]→ [0, 1] be given by f(x) = | cos(ax+b)| where
a ≥ π/(2R). Then

f∗(x) ≤ cos(πx/(4R)).

Proof. As a ≥ π/(2R) the smallest Pmin period of f(x) is ≤ 2R. Let R1 be
the smallest number ≥ R so that 2R1 is a period of f(x). Then R1 ≤ R. Let
f1(x) be the natural extension of f(x) to [−R1, R1] (that is f1(x) = | sin(ax+
b)| for |x| ≤ R1). From the characterization of symmetric rearrangements
given by (3.3) and (3.4) we clearly have f∗(x) ≤ f∗1 (x) for |x| ≤ R. But
then the last lemma and R1 ≤ R implies

f∗(x) ≤ f∗1 (x) = cos(πx/(2R1)) ≤ cos(πx/(4R)).
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This completes the proof.

Lemma 3.5. Let f : [−R,R]→ [0, 1] be given by f(x) = | cos(ax+b)| where
a ≤ π/(2R). Then

f∗(x) ≤ cos(ax).

Proof. An exercise.

Lemma 3.6. For |t| ≤ π/2 the inequality

cos(t) ≤ e−t2/2

holds.

Proof. Anther exercise.

Lemma 3.7. Let f1, . . . , fd : [−R,R]d : → R be d functions given by

fj(x1, . . . , xj) = | cos(ajxj + bj(x1, . . . , xd−1))|.
(thus fj only depends on the variables x1, . . . , xj and bj only depends on
x1, . . . , xj−1). Let F (x) = F (x1, . . . , xd) be

F (x) = f1(x) · · · fd(x)

the product of the fj. Assume that |aj | ≥ π/(2R). Then

F ∗(x1, . . . , xd) ≤ e−
1
2

π2

16R2 (x2
1+···+x2

d)

Remark 3.8. In terms of other notation used here [−R,R]d = Q(2R).

Proof. Let gj(t) = | cos(πt/(4R))| Then by Lemma 3.4 the inequality

S∗j fj(x1, . . . , xj) ≤ gj(xj) = | cos(πxj/(4R))|.

As |xj | ≤ R we have |πxj/(4R)| ≤ π/4 < π/2 and this by Lemma 3.6 we
can estimate the product

g1(x1)g2(x2) · · · gd(xd) ≤ e
−π2x2

1
32R2 e

−π2x2
2

32R2 · · · e
−π2x2

d
32R2 = e−

1
2

π2

16R2 (x2
1+···+x2

d).

The function G(x1, . . . , xd) = e−
1
2

π2

16R2 (x2
1+···+x2

d) is symmetric and decreasing
so that Proposition 3.2 applies. This completes the proof.

Proposition 3.9. Let v1, . . . , vn ∈ Rd be n vectors in Rd and let m ≤ n.
Assume that for any unit vector u ∈ Rd that for at least m of the indices k
the inequality

|〈vk, u〉| ≥ π/(2
√
dR)

holds. Then ∫
Q(2R)

n∏
k=1

| cos〈ξ, vk〉| dξ ≤
(

8dR√
2π

)d( 1√
m

)d
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Proof. Let call an ordered set (vk1 , . . . , vkd) from the list v1, . . . , vn nice iff
the vectors vk1 , . . . , vkd are linearly independent, |v1| ≥ π/(2

√
dR) and for

2 ≤ j ≤ d the length of the orthogonal projection of vkj onto span(vk1 , . . . , vkj−1
)⊥

has length≥ π/(2
√
dR). If the number m in the statement of the proposition

is ≥ d then we can construct a nice ordered set (vk1 , . . . , vkd) as follows. First
choose vk1 so that |vk1 | ≥ π/(2

√
dR) and for future use let e1 := vk1/|vk1 |

be the unit vector in the direction of vk1 . Now assume that vk1 , . . . , vkj−1

have been defined. Then let u ∈ span(vk1 , . . . , vkj−1
)⊥ be a unit vector.

Then there is a vector vkj so that |〈vkj , u〉| ≥ π/(2
√
dR). This imples that

if v⊥kj is the orthogonal projection of vkj onto span(vk1 , . . . , vkj−1
)⊥ then

|v⊥kj | ≥ π/(2
√
dR). Now let ek := v⊥kj/|v

⊥
kj
| be the unit vector in the direc-

tion of v⊥kj . Then (vk1 , . . . , vkd) is nice and also e1, . . . , ed is an orthonormal
basis of Rd so that

span(e1, . . . , ej) = span(vk1 , . . . , vkj ) and |〈ej , vkj 〉| ≥ π/(2
√
dR)(3.6)

for j = 1, . . . , d.
Let p be the largest integer so that pd ≤ m (thus p ≤ m/d). Then be

doing the construction above p times we can find p nice ordered sets with no
elements in common and be reordering we can assume that the nice ordered
sets are

(v1, . . . , vd), (vd+1, . . . , v2d), . . . , (v`d+1, . . . , v(`+1)d), . . . , (v(p−1)d+1, . . . , vpd).

Let F` be the function

F`(ξ) = | cos〈ξ, v`d+1〉|| cos〈ξ, v`d+2〉| · · · | cos〈ξ, v(`+1)d〉|.

Then
n∏
k=1

| cos〈ξ, vk〉| =
p∏
`=1

F`(x) ·
n∏

k=pd+1

| cos〈ξ, vk〉| ≤
p∏
`=1

F`(x)(3.7)

We now estimate the symmetric rearrangement of F1. Let e1, . . . , ed be
the orthonormal basis of Rd associated with the nice ordered set v1, . . . , vd
as in (3.6). Then do an orthogonal change of variables η = Pξ (thus P is an
orthogonal matrix) so that in the variables η = (η1, . . . , ηd) the ηj axis is in
the direction of ej . Let Q′(2R) be the image of the cube Q(2R) under this
change of variables. Then Q′(2R) ⊂ Q(2

√
dR) (where the cube Q(2

√
dR)

is defined with respect to η coordinate system). Let F ′`(η) be F` in the new
coordinate system (and we extend F ′` to Q(2

√
dR) so that in Q(2

√
dR) is

still given by the same formulas as in Q′(2R)). Now in the coordinate system
η1, . . . , ηd we have

F ′1(η) =
d∏
j=1

| cos(ajηj + bj(η1, . . . , ηj−1))|
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where |aj | = |〈vj , ej〉| ≥ π/(2
√
dR). Therefore by Lemma 3.7 (with R

replaced by
√
dR) we have

(F ′1)∗(η1, . . . , ηd) ≤ e
− 1

2
π2

16
√
dR2 |η|2

Translating this back to the original coordinate system gives

F ∗1 ≤ e
− 1

2
π2

16
√
dR2 |η|2 .

Clearly the same estimate will hold for F` with 1 ≤ ` ≤ p. Thus by the basic
rearrangement inequality we have∫

Q(2R)

p∏
`=1

F`(ξ) dξ ≤
∫

Rd

p∏
`=1

F ∗` (ξ) dξ

≤
∫

Rd

e
− 1

2
mπ2

16
√
dR2 |η|2 dξ

= (
√

2π)d
(

1√
(pπ2)/(16dR2)

)d

≤
(

8dR√
2π

)d( 1√
m

)d
.

Combining this with (3.7) completes the proof.

Proposition 3.10. Let a1, . . . , an be non-negative real numbers and R > 0.
Let m be the number of the ak’s that satisfy ak > π/(2R). By reordering
it can be assume that ak ≤ π/(2R) for k ≤ (n −m) and ak > π/(2R) for
k ≥ (n−m+ 1). Then∫ R

−R

n∏
k=1

| cos(akx+ bk)| dx ≤
√

2π√
(mπ2)/(16R2) +

∑n−m
k=1 a2

k

.

Thus ∫ R

−R

n∏
k=1

| cos(akx+ bk)| dx ≤
√

2π√
(mπ2)/(16R2)

=
8R√
2πm

and ∫ R

−R

n∏
k=1

| cos(akx+ bk)| dx ≤
√

2π√∑n−m
k=1 a2

k

.

Proof. From the rearrangement Theorem 3.1 and Lemmas 3.4 and 3.5 which
give explicit bounds on the symmetric rearrangements of the functions fk(x) =
| cos(akx+ bk)| we have∫ R

−R

n∏
k=1

| cos(akx+ bk)| dx ≤
∫ R

−R
cosm(πx/(4R))

n−m∏
k=1

cos(akx) dx.
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Now use the inequality

cos(x) ≤ e−x2/2 for |x| ≤ π/2

of Lemma 3.6 to estimate∫ R

−R
cosm(πx/(4R))

n−m∏
k=1

cos(akx) dx ≤
∫ ∞
−∞

e
− 1

2

(
mπ2

16R2 +
∑n−m
k=1 a2

k

)
x2

dx

=
√

2π√
(mπ2)/(16R2) +

∑n−m
k=1 a2

k

.

Putting these inequalities together completes the proof.

4. Estimates on the concentration.

4.1. A one dimensional result.

Theorem 4.1. Let a1, . . . , an be real numbers and let m be the number of
the ak’s that satisfy |ak| > 1 and ordered so that |ak| ≥ 1 for k > n −m.
Then

N[−1,1] ≤
π
√

2π

2
√
m+ 4

∑n−m
k=1 a2

k

2n ≤ 3.94√
m+ 4

∑n−m
k=1 a2

k

2n.

Thus

N[−1,1] ≤
π
√

2π
2
√
m

2n ≤ 3.94√
m

2n

and

N[−1,1] ≤
π
√

2π

4
√∑n−m

k=1 a2
k

2n ≤ 1.97√∑n−m
k=1 a2

k

2n.

Proof. Replacing ak by −ak does not change the value of N[−1,1] and so there
is no loss in generality by assuming that ak ≥ 0 for all k. Letting r = 2 and
d = 1 in Proposition 2.6 gives

N[−1,1] ≤ 2n
2π
8

∫ π/2

−π/2

n∏
k=1

| cos(akx)| dx.

Now in Proposition 3.10 let R = π/2. Then π/(2R) = 1 and by assump-
tion there are exactly m of the ak’s with ak ≥ 1 = π/(2R). Therefore
Proposition 3.10 yields∫ π/2

−π/2

n∏
k=1

| cos(akx)| dx ≤
√

2π√
(mπ2)/(16R2) +

∑n−m
k=1 a2

k

=
√

2π√
m/4 +

∑n−m
k=1 a2

k

.

Putting these estimates together gives the result.
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4.2. Estimates when a positive proportion of the vectors have at
least unit length.

Theorem 4.2. Let v1, , . . . , vn ∈ Rd and assume that there is a number
δ > 0 so that at least δn of the vectors vk satisfy |vk| ≥ 1. Then if r ≤ 2/

√
d

NQ(r) ≤ C1(d)
1√
δn

2n

where
C1(d) ≤ 4(2π)d−1/2

(π
8

)d
.

Proof. Let vk = (v(k)
1 , . . . , v

(k)
d ). Then if |vk| ≥ 1 for at least one index j

the inequality |v(k)
j | ≥ 1/

√
d holds. Therefore the hypothesis of the theorem

implies that at least δn of the vectors vk will have |v(k)
j | ≥ 1/

√
d. But

then there will be a fixed j0 so that at least δn/d of the vectors will have
|v(k)
j0
| ≥ 1/

√
d. By relabeling we can assume that j0 = 1 and that for some

m ≥ δn/d that |v(k)
1 | ≥ 1/

√
d. To simplify notation let ak := v

(k)
1 for

k = 1, . . . ,m (so that |ak| ≥ 1/
√
d). Write vectors ξ ∈ Rd and ξ = (t, ξ′)

where t = ξ1 is the first coordinate of ξ and ξ′ = (ξ1, . . . , ξd). With this
notation for 1 ≤ k ≤ m we have 〈vk, ξ〉 = akt + bk where bk = 〈v′k, ξ′〉 (so
that bk is independent of t = ξ1). Therefore

n∏
k=1

| cos〈vk, ξ〉| ≤
m∏
k=1

| cos(akt+ bk)|.

Let Q′(2π/r) be the centered cube in Rd−1 with edges of length 2π/r so
that Q′(2π/r) = [−π/r, π/r]×Q′(2π/r). Using this estimate by integrating
one coordinate at a time∫

Q(2π/r)

n∏
k=1

| cos〈vk, ξ〉| dξ ≤
∫
Q′(2π/r)

∫ π/r

−π/r

m∏
k=1

| cos(akt+ bk)| dt dξ′

= Vol(Q′(2π/r))
∫ π/r

−π/r

m∏
k=1

| cos(akt+ bk)| dt

=
(

2π
r

)d−1 ∫ π/r

−π/r

m∏
k=1

| cos(akt+ bk)| dt.

If R = π/r then π/(2R) = r/2 ≤ 1/
√
d ≤ |ak| and so by Proposition 3.10

the estimate∫ π/r

−π/r

m∏
k=1

| cos(akt+ bk)| dt ≤
8R√
2πm

=
4
√

2π√
mr
≤ 4
√

2π√
δnr

holds (and we have used m ≥ δn). Combining with the above we have∫
Q(2π/r)

n∏
k=1

| cos〈vk, ξ〉| dξ ≤
4(2π)d−1/2

√
δn

(
1
r

)d
.
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Combining this with Proposition 2.6 completes the proof.

4.3. Estimates when the many of the vectors are not all close to a
hyperplane. The following is a very slight generalization of Theorem 1 of
Halász’s paper [2].

Theorem 4.3. Let v1, . . . , vn ∈ Rd and assume that for any unit vector u
that there are at least m indices k so that |〈vk, u〉| ≥ 1. Then

NQ(2
√
d) ≤ C2(d)

(
1√
m

)d
2n.

where

C2(d) ≤
(
π2d√

2π

)d
.

In particular this implies that if for some δ ∈ (0, 1) that m ≥ δn then

NQ(2
√
d) ≤ C2(d)

(
1√
δn

)d
2n.

Proof. Let r = 2
√
d in Proposition 2.6 to get

NQ(2
√
d) ≤ 2n

(
π
√
d

4

)d ∫
Q(π/

√
d)

n∏
k=1

| cos〈vk, ξ〉| dξ.

Let 2R = π/
√
d om Proposition 3.9 to get∫
Q(π/

√
d)

n∏
k=1

| cos〈vk, ξ〉| dξ ≤

(
4
√
dπ√
2π

)d(
1√
m

)d
.

Putting these two estimates together completes the proof.
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