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Let Rn have its usual inner product 〈·, ·〉 and let ‖ · ‖ be the indced norm.
Let Bn := {x ∈ Rn : ‖x‖ < 1} be the open unit ball, B

n := {x ∈ Rn :
‖x‖ ≤ 1} the closed unit ball, and Sn−1 := {x : ‖x‖ = 1} the unit sphere in
Rn.

Theorem 1 (Brouwer Fixed Point Theorem). Every continuous map f : B
n

→ B
n has a fixed point. That is there is an x ∈ B

n such that f(x) = x.

In [1] J. Milnor gave a proof of this result based on elementary multidi-
mensional integral calculus. In [2] C. A. Rogers simplified Milnor’s proof.
Here we give an exposition of the Milnor-Rogers proof.

Lemma 1. There is no C1 map f : B
n → Sn−1 such that f(x) = x for all

x ∈ Sn−1.

Proof. Assume, toward a contradiction, that such an f : B
n → Sn−1 exists.

For t ∈ [0, 1] let

ft(x) = (1 − t)x + tf(x) = x + tg(x)

where g(x) = f(x) − x. Note that for x ∈ B
n that

‖ft(x)‖ ≤ (1 − t)‖x‖ + t‖f(x)‖ ≤ (1 − t) + t = 1

and therefore ft : B
n → B

n. Also note that for all x ∈ Sn−1

ft(x) = (1 − t)x + tf(x) = (1 − t)x + tx = x,

and thus ft fixes all points on Sn−1. As f is C1, the same is true of g and
therefore there is a constant C such that for all x1, x2 ∈ B

n

‖g(x2) − g(x1)‖ ≤ C‖x2 − x1‖.
Now assume that there are distinct points x1 and x2 in B

n with ft(x1) =
ft(x2). This implies x2 − x1 = t(g(x1) − g(x2)) and therefore

‖x2 − x1‖ = t‖g(x1) − g(x2)‖ ≤ Ct‖x2 − x1‖.
As x1 6= x2 this implies Ct ≥ 1. Thus when t < 1/C the function ft : B

n →
B

n is injective. Let Gt = ft[Bn] be the image of the open unit ball under
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ft. The derivative of ft, viewed as a linear map f ′
t(x) : Rn → Rn, is given

by
f ′(x) = I + tg′(x)

where I is the identity map on Rn. As g is C1 there is a t0 such that
det f ′

t(x) > 0 for all t ∈ [0, t0]. Then by the inverse function theorem Gt is
an open set for all t ∈ [0, t0]. By possibly making t0 smaller we also have
that ft is injective for all t ∈ [0, t0].

We claim that Gt = Bn for all t ∈ [0, t0]. Assume that this is not the
case. Then the boundary ∂Gt will intersect the open ball Bn at some point
y0. As y0 ∈ ∂Gt there is a sequence x` ∈ Bn such that lim`→∞ ft(x`) →
y0. By the compactness of B

n we can pass to a subsequence and assume
that lim`→∞ x` = x0 for some x0 ∈ B

n. Then, by the continuity of f , we
have ft(x0) = y0. But, as Gt is open and open sets are disjoint from their
boundaries, y0 is not in Gt = f [Bn], thus x0 ∈ B

n\Bn = Sn−1. But for x0 ∈
Sn−1 we have that ft(x0) = x0, which implies that y0 = ft(x0) = x0 ∈ Sn−1,
which contradicts the assumption that y0 is in Bn. Therefore for t ∈ [0, t0]
the map ft : B

n → B
n is a bijection.

Define a function F : [0, 1] → R by

F (t) =
∫

B
n

det f ′
t(x) dx =

∫
B

n
det(I + tg′(x)) dx

where dx is the volume measure on Rn. This is clearly a polynomial in t.
And for t ∈ [0, t0] the function ft : B

n → B
n is a bijection and so by the

change of variable formula for multiple integrals F (t) is just the volume of
the image ft[B

n] = B
n. That is

F (t) = Volume(Bn) for t ∈ [0, t0].

But a polynomial that is constant on an interval is constant everywhere.
Therefore F (t) = Volume(Bn) for all t ∈ [0, 1] and in particular F (1) =
Volume(Bn) > 0. But f1(x) = f(x) ∈ Sn−1 for all x and therefore

〈f1(x), f1(x)〉 = ‖f1(x)‖2 = 1

for all x. Thus for any vector v ∈ Rn

2〈f ′
1(x)v, f1(x)〉 =

d

dt
〈f1(xt + tv), f1(x + tv)〉

∣∣∣∣
t=0

=
d

dt
1

∣∣∣∣
t=0

= 0.

This shows that the range of f ′
1(x) is contained in f(x)⊥, the orthogonal

compliment of f(x). But then rank f ′
1(x) ≤ n − 1 for all x ∈ B

n and
therefore det f ′

1(x) = 0 for all x ∈ B
n. Whence

F (1) =
∫

B
n

det f ′
1(x) dx = 0.

This contradicts that F (1) > 0 and completes the proof. �
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Proof of the Brouwer Fixed Point Theorem. Let f : B
n → B

n be a continu-
ous map. Then by the Stone-Weierstrass theorem there is a sequence of C1

functions p` : B
n → Rn such the ‖f(x) − p`(x)‖ ≤ 1/` for all x ∈ B

n. (In
fact we can choose the p`’s to be polynomials.) Then ‖p`(x)‖ ≤ ‖f(x)‖ +
‖p`(x) − f(x)‖ ≤ 1 + 1/`. Therefore if h` = (1 + 1/`)−1p` we have that
h` : B

n → B
n and h` → f uniformly.

We claim that each h` has a fixed point in B
n. For if not, let f` : B

n →
Sn−1 be map

f`(x) = point where the ray from h`(x) to x meets Sn−1.

If h` has no fixed point this map is C1 and
has f`(x) = x for all x ∈ Sn−1 contradicting
Lemma 1.

Let x` be a fixed point of h`, that is h`(x`) =
x`. As B

n is compact we can pass to a subse-
quence and assume that x` → x0 for some x0

in B
n. As h` → f uniformly this implies

h`(x)

x

f`(x)

f(x0) = lim
`→∞

h`(x`) = lim
`→∞

x` = x0.

That is f has x0 as a fixed point. �
We get as a corollay, important enough to be called a theorem, a version

of Lemma 1 where f is not required to be C1.

Theorem 2. There is no continuous map f : B
n → Sn−1 with f(x) = x for

all x ∈ Sn−1.

Proof. Assume that such an f : B
n → Sn−1 existed. Let g : B

n → B
n be

given by g(x) = −f(x). Therefore g also maps B
n into Sn−1. Therefore if

x = g(x) we have x ∈ Sn−1. But for x ∈ Sn−1, g(x) = −f(x) = −x 6= x.
Thus g has no fixed point, contradicting Theorem 1. �
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