THE MILNOR-ROGERS PROOF OF THE BROUWER
FIXED POINT THEOREM

RALPH HOWARD
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SOUTH CAROLINA
COLUMBIA, S.C. 29208, USA
HOWARD@MATH.SC.EDU

Let R™ have its usual inner product (-, -) and let || - || be the indced norm.
Let B" := {z € R" : ||z|| < 1} be the open unit ball, B" := {z € R" :
|z|| < 1} the closed unit ball, and S™ ! := {x : ||z|| = 1} the unit sphere in
R".

Theorem 1 (Brouwer Fixed Point Theorem). Every continuous map f: B
— B" has a fired point. That is there is an x € B such that f(x) = x.

n

In [1] J. Milnor gave a proof of this result based on elementary multidi-
mensional integral calculus. In [2] C. A. Rogers simplified Milnor’s proof.
Here we give an exposition of the Milnor-Rogers proof.

Lemma 1. There is no C' map f: B" — S™ ' such that f(x) = x for all
recSnth,

Proof. Assume, toward a contradiction, that such an f: B" — S"! exists.
For ¢ € [0, 1] let

filx)=Q—-t)z+tf(x) =z +tg(x)
where g(z) = f(x) — z. Note that for z € B" that
[fe(@)] < @ =)zl + ¢l f(2)]| <A —t)+t =1
and therefore f;: B" — B'". Also note that for all z € §™1
file)=01-t)x+tf(z) =1 —-t)z+tz ==z,

and thus f; fixes all points on S”~ 1. As f is C!, the same is true of g and
therefore there is a constant C such that for all x1,z5 € B"

lg(z2) — g(z1)|| < Cllzz — x|

Now assume that there are distinct points 1 and a2 in B" with fi(xy) =
ft(x2). This implies z9 — 21 = t(g(x1) — g(x2)) and therefore

lze — 21]] = tl|g(z1) — g(22)|| < Ctl|ze — 21|

As x1 # xy this implies Ct > 1. Thus when t < 1/C' the function f;: B" —
B" is injective. Let Gy = f;[B"] be the image of the open unit ball under
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ft. The derivative of f;, viewed as a linear map f/(z): R" — R", is given
by

f'(@) =1+t (z)
where I is the identity map on R™. As g is C! there is a ty such that
det f{(x) > 0 for all ¢ € [0,¢p]. Then by the inverse function theorem G, is
an open set for all ¢ € [0,%9]. By possibly making t; smaller we also have
that f; is injective for all t € [0, t].

We claim that Gy = B™ for all t € [0,%9]. Assume that this is not the
case. Then the boundary 0G; will intersect the open ball B™ at some point
Yo As yp € 0Gy there is a sequence x, € B™ such that limy_ fi(z/) —
yo. By the compactness of B" we can pass to a subsequence and assume
that limy_,oc ¢ = o for some 29 € B'. Then, by the continuity of f, we
have f;(zg) = yo. But, as G; is open and open sets are disjoint from their
boundaries, yo is not in Gy = f[B"], thus z¢ € En\B" = S"~1. But for xy €
S"~1 we have that f;(z0) = 20, which implies that yg = fi(x¢) = g € S" 1,
which contradicts the assumption that yg is in B™. Therefore for ¢ € [0, to]
the map f;: B" — B is a bijection.

Define a function F': [0,1] — R by

F(t) = /_ det f/(z) dx = / det(I + tg'(x)) dx
B" B"
where dz is the volume measure on R". This is clearly a polynomial in ¢.
And for t € [0,t] the function f;: B — B" is a bijection and so by the
change of variable formula for multiple integrals F'(¢) is just the volume of
the image f;[B"] = B". That is

F(t) = Volume(B")  for t € [0, to].

But a polynomial that is constant on an interval is constant everywhere.
Therefore F(t) = Volume(B") for all t € [0,1] and in particular F(1) =
Volume(B™) > 0. But f(z) = f(z) € S*~! for all z and therefore

(fi(@), fr(@)) = || fr(2)]> =1

for all . Thus for any vector v € R"

_ 4y

=0.
—p dt

Af (@, @) = R+ 1), e+ )
t=0

This shows that the range of f](x) is contained in f(z)*, the orthogonal
compliment of f(x). But then rank f{(z) < n —1 for all 2 € B" and
therefore det f](x) = 0 for all z € B". Whence

F(1) = /B" det fi(x) dx = 0.

This contradicts that F'(1) > 0 and completes the proof. O
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Proof of the Brouwer Fized Point Theorem. Let f: B" — B" be a continu-
ous map. Then by the Stone-Weierstrass theorem there is a sequence of C!
functions py: B — R™ such the || f(z) — pe(z)| < 1/ for all z € B". (In
fact we can choose the p;’s to be polynomials.) Then ||ps(z)| < | f(z)| +
lpe(z) — f(2)|| < 1+ 1/€. Therefore if hy = (1 + 1/£)"1p, we have that
he: B" — B" and hy — f uniformly.

We claim that each hy has a fixed point in B". For if not, let f;: B" —
S~ be map

fe(x) = point where the ray from hy(z) to z meets S" L.

If hy has no fixed point this map is C! and
has fy(z) = x for all x € S"~! contradicting
Lemma 1.

Let x4 be a fixed point of hy, that is hy(xy) =

-_n .

x¢. As B is compact we can pass to a subse-
quence and assume that xy — zg for some xg
in B". As hy — f uniformly this implies

f(zo) = lim hy(xp) = lim zy = xp.
{—00 f—00
That is f has zg as a fixed point. O

We get as a corollay, important enough to be called a theorem, a version
of Lemma 1 where f is not required to be C*.

Theorem 2. There is no continuous map f: B — 8"~V with f(x) = z for
all z € S™ 1.

Proof. Assume that such an f: B" — S" ! existed. Let g: B® — B be
given by g(z) = —f(z). Therefore g also maps B" into S"~!. Therefore if
r = g(r) we have x € S"~!. But for x € S"7!, g(z) = —f(z) = —x # .
Thus ¢ has no fixed point, contradicting Theorem 1. O
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