THE MILNOR-ROGERS PROOF OF THE BROUWER FIXED POINT THEOREM

RALPH HOWARD DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOUTH CAROLINA COLUMBIA, S.C. 29208, USA HOWARD@MATH.SC.EDU

Let \mathbf{R}^n have its usual inner product $\langle \cdot, \cdot \rangle$ and let $\|\cdot\|$ be the indeed norm. Let $B^n := \{x \in \mathbf{R}^n : \|x\| < 1\}$ be the open unit ball, $\overline{B}^n := \{x \in \mathbf{R}^n : \|x\| \le 1\}$ the closed unit ball, and $S^{n-1} := \{x : \|x\| = 1\}$ the unit sphere in \mathbf{R}^n .

Theorem 1 (Brouwer Fixed Point Theorem). Every continuous map $f: \overline{B}^n \to \overline{B}^n$ has a fixed point. That is there is an $x \in \overline{B}^n$ such that f(x) = x.

In [1] J. Milnor gave a proof of this result based on elementary multidimensional integral calculus. In [2] C. A. Rogers simplified Milnor's proof. Here we give an exposition of the Milnor-Rogers proof.

Lemma 1. There is no C^1 map $f: \overline{B}^n \to S^{n-1}$ such that f(x) = x for all $x \in S^{n-1}$.

Proof. Assume, toward a contradiction, that such an $f: \overline{B}^n \to S^{n-1}$ exists. For $t \in [0, 1]$ let

$$f_t(x) = (1-t)x + tf(x) = x + tg(x)$$

where g(x) = f(x) - x. Note that for $x \in \overline{B}^n$ that

$$||f_t(x)|| \le (1-t)||x|| + t||f(x)|| \le (1-t) + t = 1$$

and therefore $f_t \colon \overline{B}^n \to \overline{B}^n$. Also note that for all $x \in S^{n-1}$

$$f_t(x) = (1-t)x + tf(x) = (1-t)x + tx = x$$

and thus f_t fixes all points on S^{n-1} . As f is C^1 , the same is true of g and therefore there is a constant C such that for all $x_1, x_2 \in \overline{B}^n$

$$||g(x_2) - g(x_1)|| \le C ||x_2 - x_1||.$$

Now assume that there are distinct points x_1 and x_2 in \overline{B}^n with $f_t(x_1) = f_t(x_2)$. This implies $x_2 - x_1 = t(g(x_1) - g(x_2))$ and therefore

$$||x_2 - x_1|| = t||g(x_1) - g(x_2)|| \le Ct||x_2 - x_1||$$

As $x_1 \neq x_2$ this implies $Ct \geq 1$. Thus when t < 1/C the function $f_t : \overline{B}^n \to \overline{B}^n$ is injective. Let $G_t = f_t[B^n]$ be the image of the open unit ball under

Date: December 2004.

RALPH HOWARD

 f_t . The derivative of f_t , viewed as a linear map $f'_t(x) \colon \mathbf{R}^n \to \mathbf{R}^n$, is given by

$$f'(x) = I + tg'(x)$$

where I is the identity map on \mathbb{R}^n . As g is C^1 there is a t_0 such that det $f'_t(x) > 0$ for all $t \in [0, t_0]$. Then by the inverse function theorem G_t is an open set for all $t \in [0, t_0]$. By possibly making t_0 smaller we also have that f_t is injective for all $t \in [0, t_0]$.

We claim that $G_t = B^n$ for all $t \in [0, t_0]$. Assume that this is not the case. Then the boundary ∂G_t will intersect the open ball B^n at some point y_0 . As $y_0 \in \partial G_t$ there is a sequence $x_\ell \in B^n$ such that $\lim_{\ell \to \infty} f_t(x_\ell) \to y_0$. By the compactness of \overline{B}^n we can pass to a subsequence and assume that $\lim_{\ell \to \infty} x_\ell = x_0$ for some $x_0 \in \overline{B}^n$. Then, by the continuity of f, we have $f_t(x_0) = y_0$. But, as G_t is open and open sets are disjoint from their boundaries, y_0 is not in $G_t = f[B^n]$, thus $x_0 \in \overline{B}^n \setminus B^n = S^{n-1}$. But for $x_0 \in S^{n-1}$ we have that $f_t(x_0) = x_0$, which implies that $y_0 = f_t(x_0) = x_0 \in S^{n-1}$, which contradicts the assumption that y_0 is in B^n . Therefore for $t \in [0, t_0]$ the map $f_t : \overline{B}^n \to \overline{B}^n$ is a bijection.

Define a function $F: [0,1] \to \mathbf{R}$ by

$$F(t) = \int_{\overline{B}^n} \det f'_t(x) \, dx = \int_{\overline{B}^n} \det(I + tg'(x)) \, dx$$

where dx is the volume measure on \mathbb{R}^n . This is clearly a polynomial in t. And for $t \in [0, t_0]$ the function $f_t \colon \overline{B}^n \to \overline{B}^n$ is a bijection and so by the change of variable formula for multiple integrals F(t) is just the volume of the image $f_t[\overline{B}^n] = \overline{B}^n$. That is

$$F(t) = \text{Volume}(\overline{B}^n) \text{ for } t \in [0, t_0].$$

But a polynomial that is constant on an interval is constant everywhere. Therefore $F(t) = \text{Volume}(\overline{B}^n)$ for all $t \in [0, 1]$ and in particular $F(1) = \text{Volume}(\overline{B}^n) > 0$. But $f_1(x) = f(x) \in S^{n-1}$ for all x and therefore

$$\langle f_1(x), f_1(x) \rangle = ||f_1(x)||^2 = 1$$

for all x. Thus for any vector $v \in \mathbf{R}^n$

$$2\langle f_1'(x)v, f_1(x) \rangle = \left. \frac{d}{dt} \langle f_1(xt+tv), f_1(x+tv) \rangle \right|_{t=0} = \left. \frac{d}{dt} 1 \right|_{t=0} = 0.$$

This shows that the range of $f'_1(x)$ is contained in $f(x)^{\perp}$, the orthogonal compliment of f(x). But then rank $f'_1(x) \leq n-1$ for all $x \in \overline{B}^n$ and therefore det $f'_1(x) = 0$ for all $x \in \overline{B}^n$. Whence

$$F(1) = \int_{\overline{B}^n} \det f_1'(x) \, dx = 0.$$

This contradicts that F(1) > 0 and completes the proof.

Proof of the Brouwer Fixed Point Theorem. Let $f: \overline{B}^n \to \overline{B}^n$ be a continuous map. Then by the Stone-Weierstrass theorem there is a sequence of C^1 functions $p_{\ell}: \overline{B}^n \to \mathbf{R}^n$ such the $||f(x) - p_{\ell}(x)|| \leq 1/\ell$ for all $x \in \overline{B}^n$. (In fact we can choose the p_{ℓ} 's to be polynomials.) Then $||p_{\ell}(x)|| \leq ||f(x)|| + ||p_{\ell}(x) - f(x)|| \leq 1 + 1/\ell$. Therefore if $h_{\ell} = (1 + 1/\ell)^{-1} p_{\ell}$ we have that $h_{\ell}: \overline{B}^n \to \overline{B}^n$ and $h_{\ell} \to f$ uniformly.

We claim that each h_{ℓ} has a fixed point in \overline{B}^n . For if not, let $f_{\ell} \colon \overline{B}^n \to S^{n-1}$ be map

 $f_{\ell}(x) =$ point where the ray from $h_{\ell}(x)$ to x meets S^{n-1} .

If h_{ℓ} has no fixed point this map is C^1 and has $f_{\ell}(x) = x$ for all $x \in S^{n-1}$ contradicting Lemma 1.

Let x_{ℓ} be a fixed point of h_{ℓ} , that is $h_{\ell}(x_{\ell}) = x_{\ell}$. As \overline{B}^n is compact we can pass to a subsequence and assume that $x_{\ell} \to x_0$ for some x_0 in \overline{B}^n . As $h_{\ell} \to f$ uniformly this implies

$$f(x_0) = \lim_{\ell \to \infty} h_\ell(x_\ell) = \lim_{\ell \to \infty} x_\ell = x_0.$$

That is f has x_0 as a fixed point.

We get as a corollay, important enough to be called a theorem, a version of Lemma 1 where f is not required to be C^1 .

Theorem 2. There is no continuous map $f: \overline{B}^n \to S^{n-1}$ with f(x) = x for all $x \in S^{n-1}$.

Proof. Assume that such an $f: \overline{B}^n \to S^{n-1}$ existed. Let $g: \overline{B}^n \to \overline{B}^n$ be given by g(x) = -f(x). Therefore g also maps \overline{B}^n into S^{n-1} . Therefore if x = g(x) we have $x \in S^{n-1}$. But for $x \in S^{n-1}$, $g(x) = -f(x) = -x \neq x$. Thus g has no fixed point, contradicting Theorem 1.

References

- J. Milnor, Analytic proofs of the "hairy ball theorem" and the Brouwer fixed-point theorem, Amer. Math. Monthly 85 (1978), no. 7, 521–524. MR MR505523 (80m:55001)
- C. A. Rogers, A less strange version of Milnor's proof of Brouwer's fixed-point theorem, Amer. Math. Monthly 87 (1980), no. 7, 525–527. MR MR600910 (82b:55004)

