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1. SOME BASES OF THE POLYNOMIALS OF DEGREE < n.

Let P,, be the vector space of real polynomials of degree < n. That
is
P, ={ay+axz+- -+ ayz" :ag,...,a, € R}
We have seen that dimP,, = n + 1 and that it has the “usual” basis

U:={lz,... 2"}

coming from the powers of z. In different problems there different bases
of P, that are better adapted to the problem. For example let a € R
then the ordered basis

A= {1,(x—a), (*”—2“)2’ (w;!a)3"“’(3;7_17!a)n}

has the property that if f(z) € P, is expressed in this basis:

~ (z-a)
(L1) fla) =S et
k=0
then the coordinate ay,...,a, are given by
ar = f*(a)

where f*) is the k-th derivative of f(z) (and f(®) = f be definition).

Problem 1. Derive this formula for a;, by taking the k-th derivative
of both sides of (1.1) and then setting z = a. (Note this is exactly the
usual derivation of the coefficients in a Taylor series that you know and

love from calculus.) I
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In our terminology the coordinate vector of the vector f(z) € P, is

- flo) ]
i
Faa=|

f"=9(a)
L f™(a) |
which is just the list of the values of the derivatives of f(z) at x = a. So

in a context where one is working with the derivatives of polynomials
at the point x = a the basis A is the natural one to use.

2. FORMULAS FOR SUMS OF POWERS.

We now give a basis of P, were it is easy to derive “summation
formulas” (the precise meaning of this will be cleared up below) and
then by expessing the usual basis {1, z, 2?,..., 2"} in terms of this basis
we can derive formulas for sums of powers. This is a theme we will see
repeatedly during the term: Make a problem easier by changing to a
nicer basis. Set

SQ(Z') =1
and for 1 < k <n set
Sp(z) =x(x—1)(x—2)---(z —k+1).

This has k factors and so has degree k. For small values of k£ we have

So(z) =1,

Si(z) =z,

Sa(r) = x(x — 1),

Ss(x) = x(x — 1)(z - 2),

Sy(z) =z(x — 1)(x — 2)(x — 3)

Let
S = {So(x), S1(x),...,Su(z)}.

Then S is an ordered basis of P,. We now define the change of basis
matrices between the usual basis & and the basis S by

k
Sk(x) = Zakixi
i=0
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and

(2.1) k= Zbkisi(x).

So for example
Ss(z) = o(x — 1) (2 — 2) = 2° — 32 + 22 = as32® + a32® + az2 + asl
which implies
asgs =1, azy=-3, az1 =2, az =0.
Likewise
7% = S3(x) + 355 () + 51 () = bs3S3(x) + bspSa(x) + b31.51 () + bsoSo ()

yielding
bss =1, bz =3, b1 =1, byp=0.

Problem 2. Show that AB = BA =1,,1 on P,. O

On P the matrices A = [ax;| and B = [by;] are 7 by 7 matrices given
explicitly by

10 0 0 0 0 0
0 1 0 0 0 0 0
0 -1 1 0 0 0 0
A=la]=10 2 -3 1 0 0 0
o -6 11 -6 1 0 0
0 24 50 35 —10 1 0
0 —120 274 —-225 85 —15 1
and
10 0 0 0 0 O]
01 0 0 0 00
01 1 0 0 00
B=byl=101 3 1 0 0 0
01 7 6 1 00
01 15 25 10 1 0
0 1 31 90 65 15 1
In matrix notation this means
So(z)] 10 0 0 0 0 01717
Si(z) 0 1 0 0 0 0 O0fl=
Sy () 0 -1 1 0 0 0 0|22
Ss(z)| =10 2 -3 1 0o 0 o0f |z
Sy(z) o -6 11 -6 1 0 O0f |«
Ss(x) 0 24 -50 35 —10 1 o0f |2°
| Se(z)] [0 —120 274 —225 85 —15 1] [af
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and

(17 1 0 0 0 0 0 0] [So(x)
x 01 0 0 0 0 0] S
x? 01 1 0 0 0 0] ]Sz
=101 3 1 0 0 0| |S3)
x? 01 7 6 1 0 0] |Sir)
x° 0 1 15 25 10 1 0] |Ss5(2)

| 20 ] [0 1 31 90 65 15 1] LSg(z).

Problem 3. Check that the the values for ai; and by; are correct for
1,k <4. O

There are some obvious patterns in these matrices.

Problem 4. Show the following:

1. Al = bkk =1 for all k& Z 0.

2. @k():bko:OfOI'k21.

3. The signs in the matrix A have a chess board pattern. That is
(—1)i+kaki Z 0.

4. agp—1 = —bgr—1. (Not easy, use that AB =1.)

5. by; > 0 for all 4, k. (Hard.)

6. byy =1 for k > 1. (Hard.) O

From the point of view of summation formulas what makes the Sy (x)
nice is the relation:

S4(2) = T (Skn(e+ 1) = Sia (@)

which holds for &k > 0.

Problem 5. Verify this formula. O
The standard trick with telescoping series shows that
1
Sk(O) + Sk(l) + Sk(Q) + -+ Sk(N) == k——f—l(Sk+1(N + 1) — Sk;+1(0))
1
= ——Sp (N +1).
1 (N +1)
(At the last step we have used Sk41(0) = 0.)
Problem 6. Verify this. O

In summation notation this is

(2.2) > 5i) = %HS,CH(N +1).
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Now we can give formulas for sums of powers of integers. Using equa-
tions (2.1) and (2.2) we have

ij =) ) buSi()

j=0 i=0
k N
= by Si(j)
i=0 Jj=0
F 1
— b, —— N+1
; L 1Sz+1( +1)
For small values of k this gives
N 1
Z] :b11§SQ(N + ]-) + blosl(N + 1)
=0
> i =ba2g S3(V + 1) + b 5 Si(V + 1) + baoSo(NV + 1)
=0
N 1 1 1
ng 2633153(]\[ +1)+ 532551(]\[ +1) + 631550(]\[ +1)
j=0

+ bgoso(N -+ 1)

Problem 7. Use these to derive the familiar formulas for Z;V:O 7,
S g and 2 50, O



