Mathematics 700, Test #2

Show your work to get credit. An answer with no work will not get credit.

1. Find the Smith normal form over the integers of the matrix

4 6
A=18 10
14 12

First solution: We reduce the matrix using elmentary row and column operations.
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and this is the Smith normal form.

Second Solution: We know that if C' is an m X n matrix with elements in a Euclidean
domain and fi, ..., f. are the elementary divisors of C, then the product f; - - f is the
greatest common divisor of the k x k sub-determinants of C. In the case at hand if f;
and fo are the elementary divisors of A then

fi = ged{4,6,8,10,14,12} = 2

4 6 4 6 8 10
hify = ged {det [8 10} , det {14 12} , det {14 12]}

— ged{—8,—36,—44} = 4

and



which implies that fo = 2. Therefore the Smith normal form is

fi 0] 2 0
0 fol =10 2
0 0] 0 0

. Find the invariant factors of the following matrices.

10 1 1] a b )
T R P )

Solution: Recall that the invarant factors of a square matrix M over a field F are, by

definition, the invariant factors of matrix 21 — M over the Euclidean domain F[z].
For oI — A = {x 8 1 . 2 1] the ged of the 1 x 1 sub-determinants is x — 1 and

the ged of the 2 x 2 subdeterminants is (z — 1)2. Thus the elmentary divsors satisfy
fi=x—1and fifs = (x — 1)% Therefore f; = f, = (r — 1) are the elmentary divsors
of A.

rz—1

For xI — B = 0 x__l 1} one of the elmentents, —1, is a unit in F[z| so the ged

of the 1 x 1 sub-determinants is f; = 1. Thus fo = f1f> = det(z] — B) = (z — 1)%. So
the fi = 1 and f, = (x — 1)? are the elmentary divsors.

For I — C = x_—ca x_—bd] the elment —b # 0 is a unit in F[z| and so the ged
of the 1 x 1 sub-subdeterminats is f; = 1. Therefore fo = fifo = det(zl — C) =
22 — (a +d)z + (ad — be). O

. Let P; = Span{l, z} be the real polynomials of degree < 1 with real coefficients and
define two linear functionals A, Ay: P1 — R by

1 1
M) = [ pla)ds, Aalp) = [ apla)do
0 0
Find the basis of P; that is dual to {A;, Aq}.

Solution: Let p;(z) = a+ bz and pe(z) = ¢+ dzx be the basis dual to Ay and Ay. Then
by definition of dual basis

Y

N

1
1=A1(p1)=/ (a+bx)dx =a+
0

! a b
0:A2(p1):/ zr(a+bx)dr = = + —.
; 23

Solving for a and b gives a = 4 and b = —6 so that p;(z — 6x. Likewise we have

) =4
! d
0:A1(p2):/ (c+dx)de =c+ 2
0

c

1
1:A2(p2):/ z(c+dx)dx = 5
0

Solving for ¢ and d gives ¢ = —6 and d = 12 so that ps(z) = —6 + 12z. Therefore the
basis dual to {A;, A2} is {4 — 62, —6 + 12z}. O
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4. Let A be an n x n matrix with real entries so that A* = A~!. Then show that det(A) =
+1.

Solution: From I = AA~! we have 1 = det([) = det(AA™!) = det(A4)det(A™!) so
that det(A™') = 1/det(A). Also det(A*) = det(A). Thus
1
~ det(A)’
which yields det(A)? = 1 and therefore det(A) = +1. O

5. If T: V — V is a linear operator on the vector space V that satisfies T? = I, then show
that the only eigenvalues of 7" are 1 and —1.

det(A) = det(A’) = det(A™")

Solution: Let A\ be an eigenvalue and let v # 0 be an eigenvector for 7. Then Tv = \v.
Therefore we have
T>w=1Iv=v
and
T?v =TTv =Tl = \Tv = \v.
Comparing these formulas for T?v gives A\>v = v and therefore A\*> = 1 so that A\ = %1.

Remark: Let p(z) be a polynomial and T': V' — V a linear map such that p(7') = 0.

Then any eigenvalue of T' is a root of p(z) = 0. To see this let A be an eigenvalue of T'.

Then there is a nonzero vector v so that T'v = Av. We have shown in a homework prob-

lem that for any polynomial ¢(x) that g(7)v = q(\)v. Therefore using the polynomial

p(z) we have

p(A)v=p(T)v =0

as p(T) = 0. But v # 0 so this gives p(A\) = 0. The problem here was just the special

case p(z) = 2 — 1. O
6. Let D be an invertible n X n matrix and N a n X n matrix so that DN = ND and

N3 = 0. Show that D + N is invertible.

Solution: There are several natural ways to do this problem. Here is one closely related
to ideas we have either done in class or on homework. Recall that if M is a matrix with
M? = 0 then I + M is invertible with (I + M)~ =T — M + M?. As on one of the
homework assignments, this can be seen directly my noting that if B = I — M + M?
then
BI+M)=I-M+M)I+M)=1, (I+M)B=I+M)(I-M+M?)=1.
Now write
D+ N=D(I+D 'N).
Then DN = ND implies ND~! = D7!N so that if M = D7'N can use N3 = 0 to get
M?* =D 'ND 'ND 'N = (D "N>=0
Therefore I + M = I + D7'N is invertible. Thus D + N = D(I + D~'N) is a product

of invertible matrices and therefore is itself invertible and we are done.
We can go farther and compute the inverse of D + N as follows.

(D+N)'=(DUI+D'N)t=I+D*'N)"'D™
=(I—-D'N+((D'N)»D'=D"'-D2N+ D3N



7. Let A be a real 2 x 2 matrix so that A> — 34 + 21, = 0. Show that A is similar to one
of the following three matrices

1 0 20 10
0O 1| |0 21" |0 2|
Solution: Note that A? — 34 4+ 21 = 0 can be factored into
(A-I)(A—-2I)=0
We will use that fact that for any square matrix B over a field that B — AI is invertible
if and only if X is not an eigenvalue of B.

Case 1: The number 1 is not an eigenvalue of A. Then A — I is invertible and so
we can multiply both sides of (A — I)(A —2I) = 0 by (A — I)"! and conclude that
A—2I=0. Thatis A =2 = g [2) .

Case 2: The number 2 is not an eigenvalue of A. Then A — 21 is invertible and so
we can multiply both sides of (A — I)(A — 2I) = 0 by (A — 2I)! and conclude that
A—I1=0. Thatis A=1= (1) (1) .

Case 3: Both the numbers 1 and 2 are eigenvalues of A. Let vi,v3 € R be the
corresponding eigenvectors. That is Av; = 1lv; and Ave = 2v,. Then v; and vy are
eigenvectors for distinct eigenvalues of A and therefore linearly independent. As R? is
two dimensional this implies that vy, vy is a basis of R%2. But then if P is the matrix

with columns v; and v; (that is P = [vy,v5]) then P71AP = [1 0]. Therefore A is

0 2
.. 10
similar to {0 2] .

So we have shown more than was required. Either A = [g [2)] ,or A= [(1) (1)] or A

D 10
is similar to 0 2l U
8. Let A be an n X n matrix over the reals with det(A) # 0. Show that
det(adj(A)) = det(A4)" .

HINT: Recall that Aadj(A) = det(A)I.
Solution: Recall that if c is a scalar and B is an n xn matrix then det(cB) = ¢" det(B).

As det(A) is a scalar this implies that det(det(A)l) = det(A)™ det(I) = det(A)". Using
this in Aadj(A) = det(A)I gives

det(A) det(adj(A)) = det(Aadj(A)) = det(det(A)I) = det(A)".

As det(A) # 0 we can cancel a det(A) off of each side of this and get det(adj(A)) =
det(A)" 1. O



