- 1. Compute, if possible, the following integrals.
 - a. $\int_{1}^{\infty} \frac{1}{x^{1.01}} dx$.
 - b. $\int_{1}^{\infty} \frac{1}{x^{0.99}} dx$.
 - c. $\int_0^\infty \cos(x) \, dx \, .$
 - $d. \quad \int_{-\infty}^{0} e^{3x} \, dx \, .$
 - e. $\int_{2}^{\infty} \frac{x}{(1+x^2)^2} dx$.
 - f. $\int_{1}^{\infty} \frac{\ln x}{x} dx.$
 - $g. \int_{-\infty}^{-1} x e^{-x^2} dx.$
 - h. $\int_{\sqrt{3}}^{\infty} \frac{1}{1+x^2} dx$.
- 2. Compute, if possible, $\int_1^\infty \frac{1}{x^p} dx$, where:
 - a. p > 1.
 - b. p = 1.
 - c. p < 1.
- 3. Find the area of the region under the curve $y = \frac{2}{4x^2 1}$ to the right of x = 1.

- 4. Compute, if possible, the following integrals.
 - a. $\int_3^4 \frac{1}{\sqrt{4-x}} dx$.
 - b. $\int_0^1 \ln x \, dx.$
 - c. $\int_0^2 \frac{1}{x^4} dx$.
 - d. $\int_{-3}^{2} \frac{1}{x^4} dx$.
 - e. $\int_{1}^{2} \frac{1}{(x-1)^{1/3}} \, dx \, .$
 - f. $\int_2^4 \frac{1}{(3-x)^{2/3}} \, dx \, .$
 - g. $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$.
 - h. $\int_{-3}^{0} \frac{x}{(x^2 4)^{2/3}} \, dx \, .$
 - i. $\int_0^{\pi/4} \tan(2x) \, dx$.
 - j. $\int_0^1 \frac{\ln x}{x} dx.$
- 5. The Paradox of Gabriel's Horn: Let the curve $y = \frac{1}{x}$ on $[1, \infty)$ be revolved about the x-axis, thereby generating a surface called Gabriel's Horn.
 - a. Graph this surface.
 - b. Show that the volume of this horn is finite.
 - c. Show that the surface area of this horn is infinite.
 - d. Parts a. and b. seem to say that the horn can be filled with a finite amount of paint, and yet there is not enough to paint its inside surface! Is this possible?