Show your work to get credit. An answer with no work will not get credit.

(1) (35 points) Compute the following antiderivatives.

(a)
$$\int (5x^4 - 12x^3 + 6x^2 - 4x + 1) dx$$

(b)
$$\int (2\cos\theta + 3\sin\theta) \, d\theta$$

(c)
$$\int 2\sqrt{v} \, dv$$

(d)
$$\int \frac{3}{t^3} dt$$

(e)
$$\int \frac{5s^2 - 3s}{s^4} ds$$

(f)
$$\int x\sqrt{x^2+4}\,dx$$

(g)
$$\int \frac{\cos \theta}{(4+\sin \theta)^2} d\theta$$

(h)
$$\int (y^2+1)\sqrt{y^3+3y+1}\,dy$$

(2) (20 points) Compute the following definite integrals.

(a)
$$\int_{1}^{2} (6x^2 - 4x + 1) dx$$

(c)
$$\int_0^{\pi} \sin(\theta/2) d\theta$$

(d)
$$\int_{-1}^{2} \frac{3x \, dx}{(x^2 + 4)^2}$$

(3) (5 points) Find the function F(x) such that F'(x) = 1 + 2x and F(3) = 2.

$$F(x) = \underline{\hspace{1cm}}$$

- (4) (5 points)
 - (a) Is y = x + 1 a solution to y' = y x? Show work

(b) Is y = x a solution to y' = x + y? Show work

(5) (5 points) Solve $\frac{dy}{dx} = -\frac{3x}{4y}$, and y(2) = 3.

(6) (5 points) Compute $\sum_{k=2}^{5} (3k-2)$.

- (7) (10 points)
 - (a) State the mean value theorem.
 - (b) Show that $|\sin(3b) \sin(3a)| \le 3|b a|$.

(8) (10 points) Let $f(x) = \begin{cases} x - 1, & 0 \le x \le 3; \\ 2, & 3 < x \le 6. \end{cases}$ (a) Graph y = f(x).

- (b) Find $\int_0^6 f(x) dx$.
- (9) (10 points) Compute the following: (a) $\frac{d}{dx} \int_{1}^{x} \cos(3t^{2}) dt$

(a)
$$\frac{d}{dx} \int_{1}^{x} \cos(3t^2) dt$$

(b)
$$\frac{d}{dx} \int_{3}^{x^2+1} \sqrt{t+1} \, dt$$