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Abstract

We survey the state of research to determine the maximum size of a nonspanning
subset of a finite abelian group G of order n. The smallest prime factor of n, denote
it here by p, plays a crucial role. For prime order, G = Z,, this is essentially an old
problem of Erdés and Heilbronn, which can be solved using a result of Dias da Silva
and Hamidoune. We provide a simple new proof for the solution when n is even (p = 2).
For composite odd n, we deduce the solution, for n > 2p?, from results obtained years
ago by Diderrich and, recently, by Gao and Hamidoune. Only a small family of cases
remains unsettled.
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Section 1. Overview

Let G = (G,+) be a finite abelian group. We let G* := G\{0}. Z,, denotes the
group Z/nZ of integers mod n under addition. For S = {s1,...,sx} C G, we say that

S spans G if every g € G is a sum of distinct elements of S, i.e., g = Zle €;S;, where
each ¢; is 0 or 1. We say that S spans G nontrivially if each g € G is a sum of one or
more elements of S, so that, in particular, there is such a sum equalling zero with not
all ¢; equal to zero. Note that we consider only sums with distinct elements.

We consider here the maximum size of nonspanning subsets S of G. For instance,
S =40,2,4,6} fails to span G = Zg, while inserting any additional element from G to S
now gives a set that spans G (nontrivially). However, it is perhaps surprising that there
is a nonspanning set of size 5 that fails to span the element 4 in Zg: {—2,—1,0,1,2}
is one; another is {—3,—2,0,2,3}. Any six elements span Zg nontrivially. Indeed, any
five nonzero elements do it.

There are slightly different flavors of this problem, depending on whether we
permit 0 € S and whether we require S to span G nontrivially. We shall concentrate
on two versions. We define w(G) to be the maximum size of a nonspanning subset S
of G, while e¢(G) denotes the maximum size of a subset S C G* that fails to span G
nontrivially.

We now give the values of w and e for nontrivial abelian groups of order n < 10.
We include a set S achieving w(G). We also present a set T achieving e(G), unless (as
is usually the case) it is enough to just take S with its zero element removed.

n G w S e T
2 Zs 1 {0} 1 1
3 Zs 2 {0,1} 1
4 7 3 {0,1,3} 9
Zy; ®Zy 2 {(0’0)7(07 1)} 2 {(07 1)’(1’0)}
5 Zs 3 {0,1,2} 2
6 Ze 4 {0,1,2,5}) 3
7 7, 4 {0,1,2,6} 3
8 Zg 5 {0,1,2,6,7} 4
Zs ® Zo 5 | {(0,0),(1,0),(1,1),(3,0),(3,1)} | 4
2,072,017y 4 {(0,0,0),(0,0, 1)5(051a0)a(0a1a1)} 3
9 Zo 5 {0,1,2,7,8} 4
Z3@Z3 D {(an)a(oa 1)3(1a )7(171)3(1a2)} 4
10 Z10 5 {0,2,4,6,8) 4

This problem of spanning subsets was brought to our attention by colleagues at the
time, Jared Wunsch and Barbara Flinn, who were investigating sums of elements in the
cyclic 2-groups G = Zx; in our notation, they asked for w(G). Trivially, w(G) > 2F~1,
but no good general upper bound was apparent. Examples showing that w(G) > 2F~1
for £ = 2,3 suggested that the problem could be difficult. We managed to solve this
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problem and extend the result to detetermine w(@G) for arbitrary abelian 2-groups (i.e.,
of order 2*). Related work was brought to our attention, especially a famous closely-
related problem of Erdds and Heilbronn [5, ¢f. 7], which asks, in our notation, for e(Z,)
when p is a prime. It was then natural to formulate the problems of determining w(G)
and e(G) for general finite abelian groups G.

In the next section, we provide some general bounds on our parameters. We show
that w(G) and e(G) agree to within one. An additivity result is derived that implies an
upper bound of (n/2)+1 (resp., n/2) on w(G) (resp., e(G)) for G of order n. For even
n, this is just one above the easy lower bounds obtained by taking S to be a subgroup
of G of index 2. Groups of prime order behave rather differently for this problem than
groups of composite order. If n is a prime p, so that G = Z,,, the possible values of the
parameters w and e were narrowed down years ago to a range of just 3 values, each
around 2p'/2.

In contrast, we present in Theorem 3 of Section 2 the following general lower bound
for all G of composite order n: If p denotes the smallest prime factor of composite n,
then a lower bound of (n/p) +p — 2 (resp., (n/p) +p — 3) is obtained on w(G) (resp.,
e(G)). In Theorem 4 we present a family of groups G for which this lower bound in
NOT sharp.

In Section 3 we present the complete solution of our problems for groups of even
order. We show that the lower bounds of Section 2 are sharp for all sufficiently large
even n.

Groups of odd order are discussed in Section 4. From rather recent work of Dias
da Silva and Hamidoune [2] we derive in Section 4 the complete solution to the Erd&s-
Heilbronn problem above for G = Z,. The rest of the paper concerns the remaining
values of n, which are the odd composites. Consider composite n with smallest prime
divisor p > 2. Our earlier drafts included the conjecture that the lower bounds of The-
orem 3 above must be sharp for all n > ng(p). We then received a paper independently
addressing this problem by Gao and Hamidoune [6]. It cites fundamental work in this
same area performed years ago.

Diderrich and Mann [4] formulated another version of our problem in the early
70’s, when they asked, for any finite group (G,+) (not necessarily abelian), for the
critical number ¢(G), which they define to be the minimum ¢ € Z* such that for every
S C G* of size at least ¢, every element of G can be expressed as a nontrivial sum
over some subset of S. Thus, for abelian groups G of order n > 3, we have the general
relation

e(G) =¢(G) — 1.

We continue to use the w, e notation we introduced here, however: Besides making
sense even when n < 2, our notation has the advantage that it is natural to ask
for a characterization of the extremal sets S, which achieve e(G) yet do not span G
nontrivially (and similarly for w(G)). While it appears that w(G) = e(G) + 1 for all
G of order n > 5 (i.e., w(G) = ¢(G)), it is not obviously true, and it remains open in
one family of cases. So we shall work with both w and e throughout the paper.
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Diderrich and Mann determined e(G) when n = |G| is even, so they essentially
obtained our Even Groups Theorem 5. However, we still include our proof here, since
it is shorter, simpler, and (unlike the earlier proof) self-contained. Their theorem is
more general though, as it is not restricted to abelian groups; It concerns e(G) for
groups G of even order n that contain a maximal subgroup of order n/2.

In Diderrich’s paper [3] of the same period, what is essentially our general lower
bound above for composite n, Theorem 3, is obtained. We include our proof here,
which is very similar, only for completeness. Diderrich’s main work in [3] is to consider
abelian G of order n = pq, where primes p < g, so that G = Z,,. He proves that the
general lower bound n/p+p— 3 on e(G) is sharp for ¢ > 2p. It follows that the bounds
of Theorem 3 are sharp for n = pq, g > 2p.

For arbitrary even n > 10, the bounds of Theorem 3 are sharp by the Even Groups
Theorem. Diderrich conjectured that his lower bound on e(G) would also be sharp for
any abelian group G of order n, with smallest prime divisor p > 2, provided that
n/p is composite. Gao and Hamidoune’s new work [6] establishes this result, and our
conjecture above for n > ng(p) now follows (Theorem 8).

A 1986 paper of Mann and Wou [8] takes care of the case that G = Z, @ Z,, p
odd, where again the general lower bound on e(G) is sharp. The proofs of [3,8,6] are
difficult and dependent on various earlier results in the theory.

In Section 5 we discuss what is left to determine. It remains to deal with the cyclic
groups G = Z,, where p, q are odd primes with p < g < 2p. Here, we can narrow the
gap somewhat using Theorem 4 and an upper bound of Diderrich (Theorem 12). The
open cases for determining w(G) and e(G) are where p+ [2/p — 2| +1 < ¢ < 2p. We
suspect that the lower bounds of Theorem 4 are sharp for these cases.

Section 2. General Bounds

We begin by noting the close relationship between our two parameters, e(G) and

w(G).
Theorem 1. Let G be a finite abelian group. Then e(G) < w(G) < e(G) + 1.

Proof. If a set S C G fails to span G, then removing 0 from S (if it is there) gives a
nonspanning, nonzero subset. Thus, e(G) > w(G) — 1.

If w(G) = |G| — 1, then e(G) < |G*| = |G| — 1 = w(G). Else, if w(G) < |G| — 1,
consider any S C G* with |S| = w(G) + 1. Let z € S. By definition of w, S\{z} U
{0} spans G. In particular, it spans —z. Thus, S spans z + (—z) = 0 nontrivially.
Consequently S spans all of G nontrivially, so e(G) < w(G) + 1, or ¢(G) < w(G). 1

We now give upper bounds on w(G) and e(G) based on expressing elements of
G as sums of at most three elements of a spanning set. For even GG, these bounds are
never off of the actual values by more than one, in view of the general lower bound for
groups of composite order that we provide.
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Theorem 2. Let G be a finite abelian group of order n. If n is even (resp., odd) then
for every subset S C G* of size > n/2, every g € G can be written as a nontrivial sum
of at most three (resp., two) distinct elements of S. Hence,

w(G@) <1+ g and e(G) <

|3

Proof. We first establish that whenever R is a subset of G of size greater than n/2,
then each g € G may be written as the sum of two elements of R. To see this, note that
the sets R and g — R cannot be disjoint, since the sum of their sizes is greater than n.
Thus, there are elements x1,z2 € R such that g = z14+x5. If g ¢ 2G = {h+h: h € G},
these two elements are distinct.

Now fix S C G* of size > n/2, and fix g € G. If n is even, then 2G # G, so
2G has at most n/2 elements. Consequently, the set S’ := g — 2G also has at most
n/2 elements, so there exists an element s € S\S’. Set R = (S\{s}) U {0}, so that
|R| = |S| > n/2. By the argument in the last paragraph, there exist 1,22 € R such
that g — s = @1 + zo. Since g — s ¢ 2G, we have x1 # xo. Thus, g = s + x1 + =2 is
the sum of three distinct elements. If either of the x; is 0, then we delete it from the
expression, and we have that g is the sum of two or three distinct elements of S.

On the other hand, if n is odd, set R = SU{0}. Then 2|R| > n+2,s0 Rand g—R
intersect in at least 2 elements, i.e., we may write g = x1 + z3, with 1,22 € R, in at
least two different ways. But g can be written  + z in only one way (the map z — 2z
is a bijection since n is odd), so we can write g = x1 + z2 with distinct z1,z2 € R.
Thus, g is the sum of one or two distinct elements of S, depending on whether one of
the z; is 0. 1

Here are the general lower bounds, which are essentially the same as the one for
e(G) found by Diderrich [3].

Theorem 3. Let G be an abelian group of order n, a composite number. Let p be
the smallest prime divisor of n. Then

+p—2 and e(G)> E-I—p—3-

w(G) > .

SRS

Proof. By Theorem 1, it suffices to show the first inequality. It suffices to exhibit a
nonspanning S C G with |S| = (n/p) +p— 2. We may write G = Z,,, ®--- ® Z,,, with
p | n1. Then G has the subgroup H of index p, H = Z,,, /p, ®Z,, - -+ ® Zy,. The map
#(x) := H + z projects G onto its quotient G/H = Z,. Let S contain H = ¢~!(0) and
any p — 2 elements of ¢~1(1). Then S fails to span any elements of ¢~ 1(p—1). 1

The lower bounds in Theorem 3 are not sharp in general, by a variation of the
Erdés-Heilbronn example (cf. Section 4).
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Theorem 4. Let p,q be primes such that 2 < p < ¢ < p+ [24/p—2] + 1, and let
n =pq and G = Z,,. Then

w(G)2|S|:g+p—1 and e(G)Zg—{—p—Z

Proof. For a = 1% — 1, take S = {—a,—a +1,...,a}. Then S does not span the
element %_1. To show this, we need to check that

2
a“+a —1
<Pq

1494 ...4q=
+2+ o= — 5

which reduces after some manipulation to

(q—p)* —2(q—p)+ (4—4p) < 0.

Since each term is divisible by 4, this becomes

(g—p)>—2(q—p)+ (8—4p) < 0.

By the quadratic formula, this holds if and only if

g—p< |WVaAp—T]+1,

or, equivalently (see the proof of Theorem 7),

g—p<|2¢/p—2]+1. 1

Note that such q exist for infinitely many p.

Section 3. Even Groups Theorem

Theorems 2 and 3 in the previous section determine e(G) and w(G) to within 1
for groups G of even order n. Values for n < 10 were listed in Section 1. That the
lower bounds are the actual values for all larger n is a principal result of the paper.

As noted in the Introduction, this theorem can also be deduced from earlier work of
Diderrich and Mann [4].

Theorem 5 (Even Groups Theorem). If G is an abelian group of even order
n > 10, then

w(G) = g and e(G) = g —1.
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Proof. The groups of even order n, 10 < n < 18, were checked by computer, as well
as directly by hand. We omit the lengthy, but routine, details.

Now assume n > 18 is even, and G is an abelian group of order n. In view of
Theorems 1 and 3, it suffices to prove that e(G) < (n/2) — 1. Let S be a subset of G*
of size n/2. Let T = S U {0}.

Now fix a subgroup H of index 2. Then, for any g € G, H + 29 = H, so that
2g € H. Also, the sets T' and g — T cannot be disjoint, because of their sizes, so g has
a representation as t +t with t; € T. If g ¢ H, since 2g € H, it means that ¢1 # t2 in
its representation g = t1 + 2. Tossing away 0, if it is one of the ¢;’s, we have expressed
g as a subset sum in S.

So from now on, we assume g € H, and split the proof into three cases according
to k:=|TNH|.

Case 1. k > (n/4) + 3.
By Theorem 2, S N H spans H, so in particular, g is a subset sum.

Case 2. 3 <k < (n/4) + 3.

Consider the collection of sums h+ j with h € TN H and j € TN (G\H). These
E(|T| — k) sums belong to G\H, so some element v occurs in this collection with
multiplicity at least

In other words, we can write v = h; + j;, for ¢ = 1,2, 3, such that the h; (resp., j;) are
distinct elements of TN H (resp., T N (G\H)). Since g — v ¢ H, and since as above
T and (g —v) — T are not disjoint, we can write g — v = h+ j with h € TN H and
j € TN(G\H). Pick i so that h; # h and j; # j (which is possible since there are three
choices for 7). Then we have g = h + j + h; + j;, which is a sum of distinct elements
of T'. Omitting 0 as one of the terms, if present, gives a subset sum from S.

Case 3. k < 2.

Now T contains G\H, with the possible exception of a single element r. Fix
v € TN(G\H). The (n/2)? sums z1 + z2 + 3 with each z; € G\ H assume each value
in G\H with equal multiplicity. In particular, g — v can be represented (n/2)? ways
as such a sum. Exactly n/2 of these sums have z1 = z3, since for any z € G\H we
get a unique such representation using £ = 1 = x5 by choosing z3 =g —v — x — .
Similarly, n/2 of these sums have 1 = z3, and n/2 have xo = x3. Also, n/2 of these
sums have z; = v, since for any x5 € G\ H we have a unique choice for z3. Similarly,
n/2 sums have x9 = v, and n/2 have 3 = v. The same holds with v replaced by 7.
Thus, there remain at least

(n/2)® —9(n/2) =n(n —18)/4 > 0
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sums x1 + 3 + 3 equalling g — v with distinct z; € G\ H not equal to either v or 7.
So there exists a subset sum representation g = 1 + 2 + 3 +v. 1

Section 4. Groups of Odd Order

The case of prime order p, G = Z,, is exceptional for our spanning set problem.
Erdos and Heilbronn [5] observed that the residues

ar=1, aa=-1, ...,ap= ()1 |(k+1)/2]

fail to span the element (p — 1)/2 if k < 2(p/2 — 1). On the other hand, they proved
that any set of > 3(6p)'/2 nonzero residues span Z,.

Olson [9] gave an upper bound that left a range of at most three possible values
each for e(Z,) and w(Z,). About 25 years later, Dias da Silva and Hamidoune [2]
applied very different methods to obtain the following remarkable result:

Theorem 6. [2] Let S C Z, with cardinality c, + 1, where ¢, = |(4p — 7)'/2]. Then
every element of Z,, can be written as a sum of |(c, + 1)/2]| elements of S.

Dias da Silva and Hamidoune observed that for infinitely many primes p, the
bound implied by their theorem for the Erdés-Heilbronn problem (e(Z,)) is sharp.
They used the Erdés-Heilbronn construction above (for even k). But, in fact, Theo-
rem 6 leads to a complete solution of the Erdés-Heilbronn problem. This was pointed
out to us by Barbara Flinn. We also provide a slightly nicer formula for c,.

Theorem 7. For primes p > 3,

w(Zp) =cp, and e(Z,) =c,—1, where c,= {2\/p — 2J .

Proof. Careful application of Theorem 6 yields that the stated formulas are upper
bounds on w(Z,) and e(Z,). Now to achieve these bounds, let ¢ be the maximum
integer such that the set

A={—i,—i+1,...,i—1,i}

fails to span all of Z,. Let S = A, unless the larger set AU{i+ 1} also fails to span Z,,
in which case we take the larger set for S. (For instance, we take S = {—2,-1,0,1,2,3}
when p = 11. Although it does span (p — 1)/2 = 5, it fails to span 7.) One can check
this construction gives |S| = ¢, so that S achieves w(Z,). Deleting 0 gives a set that
achieves e(Zy).

Regarding c,, since

2(p—2)Y2 = (4p — 8)/2 < (4p — 7)*/2,
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we have

12(p—2)"/2] < [(dp—7)'/?] = cp.

Further, equality holds here, unless 2(p — 2)/2 < ¢p, which means that
4p—8<c12,§4p—7,

which is impossible, since modulo 8, 4p — 7 = 5 is not a quadratic residue. 1

The proof of Dias da Silva and Hamidoune of Theorem 6 employed exterior algebra
(Grassmann derivatives) and the representation theory of the symmetric group. We
found a simpler proof that avoids representation theory, but we do not include it here,
since a paper of Alon, Nathanson, and Ruzsa [1] already appeared that includes a
proof avoiding representation theory.

Then what can we say about groups of composite odd order? The previous version
of the paper contained the conjecture that equality holds in Theorem 3 for n > ng(p).
This we now confirm in light of the evidence recently brought to our attention by Gao
and Hamidoune:

Theorem 8. Let p be a prime. If n > 2p? has smallest prime divisor p, then for any
abelian group G of order n,

w(G) = g—l—p— 2 and e(G)=w(q)-1.

Further, these bounds are exceeded by at most one for smaller values of n.

Proof. We now go through the earlier results on the critical number and apply them
to w(G) and e(G) to derive Theorem 8.

Besides obtaining the general lower bound that corresponds to our Theorem 3,
Diderrich determined e(G) to within one for groups of order a product of two primes:

Theorem 9. [3] Let G be an abelian group of order pq, where p,q are primes with
p < q. Then

pt+q—3<e(G)<p+q-—2.
Moreover, if ¢ > 2p, then e(G) =p+ q — 3.

For n = pq and q > p, the only possibility for G' here is Z,,. For ¢ > 2p, we
see that e(G) achieves its lower bound; The lower bound on w(G) in Theorem 3 is
one higher, so by Theorem 1, w(G) also achieves its lower bound for these values. For
n = pq and p < q < 2p, Theorems 1, 3, and 9 imply that e and w are within one of
their lower bounds.

For p = g, besides the cyclic group Z,2, there is the group G = Z, ® Z,, which
Mann and Wou took care of for p > 2:
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Theorem 10. [8] Let p be an odd prime. Then
e(Z, ®Zy) =2p—3.

Applying this result, we find that for Z, ® Z,, it again holds that w and e equal
their lower bounds.

Gao and Hamidoune made a major breakthrough on this problem in 1998 by
resolving the case (conjectured by Diderrich) that n has three or more prime factors
> 2:

Theorem 11. [6] Let G be an abelian group of odd order n. Let p be the smallest
prime divisor of n. Suppose n/p is composite. Then

e(G) = (n/p) +p—3.

Once again, the lower bounds on w and e are sharp for these groups. Theorem 8
now follows. 1

Section 5. Further Research

To complete the determination of w(G) and e(G), it remains to consider the case
G = Z,,, where primes p, q satisfy p < ¢ < 2p. The Even Groups Theorem 5 takes
care of p = 2. Our lower bounds in Theorem 4, which exceed the bounds of Theorem 3
by one, are sharp, in view of Diderrich’s upper bound in Theorem 9.

Theorem 12. Let p,q be primes such that 2 < p < ¢ < p+ [2¢/p—2] + 1, and let
G = Z,,. Then
w(G)=p+q—1 and e(G)=p+qg—2. 1

For g above the threshold in Theorem 12, we still cannot pin down the exact
values of w and e:

Theorem 13. Let p,q be odd primes such that p+ |2y/p — 2| +1 < q < 2p, and let
G = Zp,. Then

p+q—2<w(@)<p+q—1 and p+q¢—3<e(G)<p+q—2. 1

Only for the groups described in Theorem 13 do we not yet know the precise values
of w(G) and e(G). In view of the relationship between w(G) and e(G) in Theorem 2,
there are three possibilities left for each n in Theorem 13: Both parameters equal their
lower bounds, both equal their upper bounds, or both equal p + ¢ — 2. We suspect
that the lower bounds are again sharp here, since the simple construction for small q
that forces both to reach their upper bounds no longer works in the range described
in Theorem 13.

Besides closing this gap, work is needed to determine the nonspanning sets S C G
which achieve w(G) or e(G).
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