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Abstract

We survey results concerning the maximum size of a family F
of subsets of an n-element set such that a certain configuration is
avoided. When F avoids a chain of size two, this is just Sperner’s
Theorem. Here we give bounds on how large F can be such that no
four distinct sets A, B, C, D ∈ F satisfy A ⊂ B, C ⊂ B, C ⊂ D.
In this case, the maximum size satisfies

(

n
bn

2
c

) (

1 + 1
n + Ω

(

1
n2

))

≤

|F| ≤
(

n
bn

2
c

) (

1 + 2
n + O

(

1
n2

))

, which is very similar to the best-known

bounds for the more restrictive problem of F avoiding three sets
B, C, D such that C ⊂ B, C ⊂ D.

1 Introduction

Let [n] = {1, 2, . . . , n} be a finite set, F ⊂ 2[n] a family of its subsets. In
the present paper max |F| will be investigated under certain conditions on
the family F . The well-known Sperner’s Theorem ([7]) was the first such
discovery.
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Theorem 1.1 If F is a family of subsets of [n] without inclusion (F,G ∈ F
implies F 6⊂ G) then

|F| ≤

(

n

bn
2
c

)

holds, and this estimate is sharp as the family of all bn
2
c-element subsets

shows.

There is a very large number of generalizations and analogues of this
theorem. Here we will mention only some results when the condition on F
excludes certain configurations that can be expressed by inclusion only. That
is, no intersections, unions, etc. are involved. The first such generalization
was obtained by Erdős [3]. The family of k distinct sets with mutual inclu-
sions, F1 ⊂ F2 ⊂ · · · ⊂ Fk is called a chain of length k, which we denote
simply by Pk. For any family of sets F , with specified inclusions between
pairs of sets, let La(n, F ) denote the size of the largest family F of subsets
of [n] without any subfamily having the inclusions specified by F . Erdős
extended Sperner’s Theorem as follows:

Theorem 1.2 [3] La(n, Pk+1) is equal to the sum of the k largest binomial
coefficients of order n.

Now consider families other than chains. Let Vr denote the r-fork, which
is a family of r + 1 distinct sets: F ⊂ G1, F ⊂ G2, . . . , F ⊂ Gr. The quantity
La(n, Vr) was first (asymptotically) determined for r = 2.

Theorem 1.3 [5]

(

n

bn
2
c

)(

1 +
1

n
+ Ω

(

1

n2

))

≤ La(n, V2) ≤

(

n

bn
2
c

)(

1 +
2

n

)

.

This was recently generalized:

Theorem 1.4 [1], cf. [8]

(

n

bn
2
c

)(

1 +
r

n
+ Ω

(

1

n2

))

≤ La(n, Vr+1) ≤

(

n

bn
2
c

)(

1 + 2
r

n
+ O

(

1

n2

))

.

Four distinct subsets satisfying A ⊂ C,A ⊂ D,B ⊂ C,B ⊂ D are called
a butterfly and are denoted by B.
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Theorem 1.5 [2] Let n ≥ 3. Then La(n,B) =
(

n
bn/2c

)

+
(

n
bn/2c+1

)

.

Let us compare Theorems 1.3 and 1.5. When V2 is excluded, then the
largest family has size equal to that of the largest level plus between 1

n
and 2

n

times the next level. On the other hand, if the butterfly is excluded then the
size of two levels can be achieved. It is a natural question, what happens if a
configuration between these two is excluded. Namely, let the configuration of
four distinct subsets satisfying A ⊂ C,A ⊂ D,B ⊂ C be called and denoted
by N . It is somewhat surprising that the result is basically the same (at least
in the first two terms) as in the case of V2. The total “jump” is between N
and B. The goal of the present paper is to prove the following theorem.

Theorem 1.6

(

n

bn
2
c

)(

1 +
1

n
+ Ω

(

1

n2

))

≤ La(n,N) ≤

(

n

bn
2
c

)(

1 +
2

n
+ O

(

1

n2

))

holds.

2 Notation and definitions

A partially ordered set (or poset) P is a pair P = (X,≤) where X is a set (in
our case always finite) and ≤ is a relation on X which is reflexive (x ≤ x holds
for every x ∈ X), antisymmetric (if both x ≤ y and x ≥ y hold for x, y ∈ X
then x = y) and transitive (x ≤ y and y ≤ z always implies x ≤ z). It is
easy to see that if X = 2[n] and the ≤ is defined as ⊆, then these conditions
are satisfied, that is, the family of all subsets of an n-element set ordered by
inclusion form a poset. We will call this poset the Boolean lattice and denote
it by Bn.

The definition of a subposet is obvious: R = (Y,≤2) is a subposet of
P = (X,≤1) if and only if there is an injection α of Y into X in such a way
that y1, y2 ∈ Y, y1 ≤2 y2 implies α(y1) ≤1 α(y2). On the other hand, R is
an induced subposet of P when α(y1) ≤1 α(y2) holds if and only if y1 ≤2 y2.
If P = (X,≤) is a poset and Y ⊂ X then the poset spanned by Y in P
is defined as (Y,≤∗) where ≤∗ agrees with ≤, for all the pairs taken from
Y . Given a “small” poset R, let La(n,R) denote the maximum size |Y | for
Y ⊂ 2[n] (that is, the maximum number of subsets of [n]) such that R is not
a subposet of the poset spanned by Y in Bn.
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Redefine our “small” configurations in terms of posets. The chain Pk

contains k elements: a1, . . . , ak where a1 < . . . < ak. The r-fork contains
r + 1 elements: a, b1, . . . , br where a < b1, . . . , a < br. The butterfly B
contains 4 elements: a, b, c, d with a < c, a < d, b < c, b < d. Finally, we have
the following relations in N : a < c, a < d, b < c. It is easy to see that the
definitions of La(n, Pk), La(n, Vr), La(n,B) and La(n,N) in Sections 1 and
2 agree. In the rest of the paper we will use both sets of terminology.

A poset is connected if for any pair (z0, zk) of its elements there is a
sequence z1, . . . , zk−1 such that either zi < zi+1 or zi > zi+1 holds for 0 ≤ i <
k. If the poset is not connected, maximal connected subposets are called its
connected components. Given a family F of subsets of [n], it spans a poset in
Bn. We will consider its connected components in two different ways. First
as posets themselves, secondly as they are represented in Bn. In the latter
case the sizes of the sets are also indicated. A full chain in Bn is a family of
sets A0 ⊂ A1 ⊂ . . . ⊂ An where |Ai| = i. Let us mention that the number
of full chains in Bn is n!. We say that a (full) chain goes through a family
(subposet) F if they intersect, that is, if the chain “goes through” at least
one member of the family.

3 Proof of Theorem 1.6

The lower estimate is obtained from Theorem 1.3, since La(n, V2) ≤ La(n,N).
The upper estimate uses an idea generalizing the proof of Sperner’s Theo-

rem given by Lubell [6], which is based on counting the number of full chains
passing through a family. Let F be a family of subsets of [n] containing no
four distinct members forming an N . Consider the poset P (F) spanned by
F in Bn. Its connected components are denoted by F1, . . . ,FK . Let c(Fi)
denote the number of full chains going through Fi. Observe that a full chain
cannot go through two distinct components. Otherwise, they would be the
same component. Therefore, the following inequality holds:

K
∑

i=1

c(Fi) ≤ n!. (1)

What can these components be? A component might be a P3, but one can
check by cases that no component can contain a P3 as a proper subposet,
since adding one more element to P3 creates an N , no matter which element
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of P3 is related to the new element. Hence, if a < b are two elements of a
component of size at least four, then a and b cannot be both comparable with
the same other element of the component (which would create P3), though
one of a, b can be comparable with many other elements in the component.
Therefore, the only possible components are these:

a < b < c, (2)

a < bi(1 ≤ i ≤ r) where r ≥ 0, (3)

a > bi(1 ≤ i ≤ r) where r ≥ 2. (4)

These are denoted by P (3), V (r), Λ(r) in this order. (The elements bi are
unrelated here.) Notice that the number of full chains going through a poset
of these types depends only on the sizes of the elements of the poset, that is,
the sizes of the members of the family Fi. To indicate this size information,
we introduce the notation P (3; u, v, w) for posets of type P (3) where |a| =
u < |b| = v < |c| = w. The analogous notations for the other poset types
above are are V (r; u, u1, . . . , ur) (u < u1, . . . , ur) and Λ(r; v, v1, . . . , vr) (v >
v1, . . . , vr). All components Fi in (1) are of this form.

Plan of the proof. A good upper bound is sought for

|F| =
K
∑

i=1

|Fi| (5)

where |P (3)| = 3, |V (r)| = |Λ(r)| = r + 1 are obvious. This upper bound
will be determined entirely on the basis of (1). Denote the numbers of Fis of
types P (3), V (r), Λ(r) by φ, ν(r), λ(r) respectively. Then (5) can be written
in the form

3φ +
∞
∑

r=0

(r + 1)ν(r) +
∞
∑

r=2

(r + 1)λ(r). (6)

If the minima (or good lower bounds)

min
u,v,w

c(P (3; u, v, w)), min
u,u1,...,ur

c(V (r; u, u1, . . . , ur)), min
v,v1,...,vr

c(Λ(r; v, v1, . . . , vr))

are determined then (1) leads to a linear combination of φ, ν(r), and λ(r).
That is, one linear combination, namely (5), has to be maximized under the
condition that another combination is bounded from above. This will be an
easy task. Therefore, our main problem now is to determine the minima in
the display above. This will be done in the following two lemmas.
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Lemma 3.1 c(P (3; u, v, w)) (u < v < w) takes its minimum for the values
u = bn

2
c − 1, v = bn

2
c, w = bn

2
c + 1, that is,

(⌊n

2

⌋

− 1
)

!
(⌈n

2

⌉

− 1
)

!

(

⌊n

2

⌋2

− n
⌊n

2

⌋

+ n2 − 1

)

≤ c(P (3; u, v, w)).

Proof. The number of full chains going through P (3; u, v, w) is

c(P (3; u, v, w)) = u!(n − u)! + v!(n − v)! + w!(n − w)!

−u!(v − u)!(n − v)! − v!(w − v)!(n − w)! − u!(w − u)!(n − w)! (7)

+u!(v − u)!(w − v)!(n − w)!

by the ordinary sieve. Since this expression has the same value when we
replace u, v, w by n − w, n − v, n − u, respectively, n

2
≤ v can be supposed.

Another useful form of (7) is

c(P (3; u, v, w))

n!
=

1
(

n
u

) +
1
(

n
v

) +
1
(

n
w

) −
1

(

n
v

)(

v
u

) −
1

(

n
w

)(

w
v

) −
1

(

n
w

)(

w
u

) +
1

(

n
w

)(

w
v

)(

v
u

)

=
1
(

n
u

) +
1
(

n
v

) −
1

(

n
v

)(

v
u

) +
1
(

n
w

)

(

1 −
1
(

w
u

) −
1
(

w
v

)

(

1 −
1
(

v
u

)

))

. (8)

Here
(

n
w

)

is a decreasing function of w in the interval [v, n] (with fixed u, v).
On the other hand,

(

w
u

)

and
(

w
v

)

are increasing functions. Therefore, (8) is
smallest for w = v + 1: One has to see that the coefficients of 1/

(

n
w

)

and
1/
(

w
v

)

are nonnegative, but this is an easy task if 0 < u, and, otherwise, (8)
is equal to 1, since every full chain goes through the empty set.

Replacing w by v + 1 in (7):

c(P (3; u, v, v+1)) = u!(n−u)!+nv!(n−v−1)!−u!(v−u)!(n−v−1)!(n−u).
(9)

Another useful form of (9) is

c(P (3; u, v, v + 1))

n!
=

1
(

n
u

) +
1

(

n−1
v

)

(

1 −
n − u

n
·

1
(

v
u

)

)

. (10)

Here
(

n−1
v

)

is a decreasing function of v in the interval [bn−1
2
c, n − 1], while

(

v
u

)

is increasing. Therefore, if we want to minimize (10), v can be chosen
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as the smallest integer ≥ bn
2
c with v > u. Two cases will be distinguished:

v = u + 1 and v = bn
2
c.

Case 1. v = u + 1. In this case (9) becomes

c(P (3; v − 1, v, v + 1))

= (v − 1)!(n − v + 1)! + nv!(n − v − 1)! − (v − 1)!(n − v − 1)!(n − v + 1)

= (v − 1)!(n − v − 1)!(v2 − nv + n2 − 1) =
(n − 2)!
(

n−2
v−1

) (v2 − nv + n2 − 1).

It is easy to see that both factors attain their respective minima at v = bn
2
c.

The lemma is proved for this case.
Case 2. v = bn

2
c. Rewrite (10):

c(P (3; u, v, v + 1))

n!
=

1
(

n−1
v

) +
1
(

n
u

)

(

1 −
1

(

n−u−1
n−v−1

)

)

.

(

n
u

)

is an increasing function of u in the interval [0, bn
2
c] while

(

n−u−1
n−v−1

)

is
decreasing. The best choice for u is bn

2
c − 1. ¤L

Lemma 3.2 Suppose n ≥ 6, r ≥ 1. Then

u∗!(n − u∗)! + ru∗!u∗(n − u∗ − 1)! ≤ c(V (r; u, u1, . . . ,ur))

(u < u1, . . . ,ur)

holds where u∗ = u∗(n) = n
2
− 1 if n is even, u∗ = n−1

2
if n is odd and

r − 1 ≤ n, while u∗ = n−3
2

if n is odd and n < r − 1.

Proof.

1. One can easily show by using the sieve that

c(V (r; u, u1, . . . , ur)) =

u!(n − u)! +
r
∑

i=1

ui!(n − ui)! −
r
∑

i=1

u!(ui − u)!(n − ui)!.

This will actually be used in the form

c(V (r; u, u1, . . . , ur)) =
r
∑

i=1

(1

r
u!(n − u)! + ui!(n − ui)! − u!(ui − u)!(n − ui)!

)

.
(11)

7



Dividing one term by n!, two useful forms are obtained for the summand
in (11):

1

r
(

n
u

) +
1
(

n
ui

) −
1

(

n
ui

)(

ui

u

) =
1

r
(

n
u

) +
1
(

n
ui

)

(

1 −
1
(

ui

u

)

)

(12)

and
1

r
(

n
u

) +
1
(

n
ui

) −
1

(

n
u

)(

n−u
n−ui

) =
1
(

n
ui

) +
1
(

n
u

)

(

1

r
−

1
(

n−u
n−ui

)

)

. (13)

2. First we will show that (12)-(13) attains its minimum for some pair
u, ui = u + 1.

If n
2
− 1 ≤ u, fix u and consider changing ui in (12). Here,

(

n
ui

)

is a

decreasing function of ui in the interval [bn
2
c, n], while

(

ui

u

)

is increasing.
Therefore, one can suppose that ui = u + 1, and we are done.

Else, n
2
− 1 > u and the method in (12) above leads to ui ≤ bn

2
c. Fix

this value and increase u using (13). It will not increase by moving u to
u = bn

2
c − 1.

Hence, we obtained the lower estimate

min
u

(1

r
u!(n − u)! + (u + 1)!(n − u − 1)! − u!1!(n − u − 1)!

)

=

min
u

(1

r
u!(n − u)! + u!u(n − u − 1)!

)

for (12)-(13) and therefore we have

min
u

(

u!(n − u)! + ru!u(n − u − 1)!
)

≤ c(V (r; u, u1, . . . , ur)) (14)

This minimum will be determined in the rest of the proof.

3. Suppose now that 2 ≤ r. Take the “derivative” of fr(u) = u!(n−u)! +
ru!u(n−u−1)!, that is, compare fr(u) at two consecutive values of u. When
does the inequality

fr(u − 1) = (u − 1)!(n − u + 1)! + r(u − 1)!(u − 1)(n − u)! <

fr(u) = u!(n − u)! + ru!u(n − u − 1)!
(15)

hold? It is equivalent to

0 < 2(r − 1)u2 −
(

n(r − 3) + r − 1
)

u − n2 + (r − 1)n.
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The discriminant of the corresponding quadratic equation in u is

(

n(r−3)+r−1
)2

+8(r−1)
(

n2−(r−1)n
)

= (r+1)2n2−2(r−1)(3r−1)n+(r−1)2.

The latter expression can be strictly upperestimated by

((r + 1)n − (r − 1))2 ,

if r + 1 < 3r − 1 holds, that is, if r > 1. Hence, the larger root α2 of the
quadratic equation is less than

n(r − 3) + r − 1 + (r + 1)n − (r − 1)

4(r − 1)
=

n

2
.

On the other hand, as it is easy to see, (n(r + 1) − 3(r − 1))2 is a lower
bound for the discriminant if r−1 ≤ n holds. Using this estimate, we obtain
that n−1

2
≤ α2 in this case. Substituting this lower estimate into the formula

for the smaller root α1, we obtain α1 ≤ 0 when n ≥ r − 1. Since (15) holds
exactly below α1 and above α2, we can state that fr(u) attains its minimum
at u = bα2c. By the inequalities above we can conclude that this is at n

2
− 1

if n is even and n−1
2

if n is odd. The statement of the lemma is proved in the
case of n ≥ r − 1.

Else suppose n < r − 1. The inequality α2 < n−1
2

can be proved in the
same way as in the previous case. On the other hand, 6 ≤ n implies that
(n(r + 1)− 5(r− 1))2 is a lower estimate on the discriminant, hence we have
n
2
− 1 < α2. This gives that α1 < 3

2
. If n is even, bα2c is again n

2
− 1,

while bα2c = n−3
2

when n is odd. Although fr(0) < fr(1) is allowed by this
estimate, it is easy to check that fr(0) > fr(1) holds in reality. By (14) the
proof is finished for r ≥ 2.

The case r = 1 is much easier. The comparison (15) leads to a linear
inequality which is an equality for u = n

2
. The formula f1(u) also has its

minimum at
⌊

n−1
2

⌋

. (But it has the same value at n
2
− 1 and n

2
.) ¤L

The case r = 0 has to be treated differently. Then the number of full
chains going through the only (u-element) set is u!(n − u)!. Its minimum is
bn

2
c!dn

2
e!.

Proof of the Theorem. We will need the following inequalities in the
proof:

u∗!u∗(n − u∗ − 1)! <
u∗!(n − u∗)! + ru∗!u∗(n − u∗ − 1)!

r + 1
(16)
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holds for each of the 3 possible values of u∗. They easily reduce to n
2
− 1 <

n
2

+ 1, n−1
2

< n+1
2

and n−3
2

< n+3
2

when u∗ = n
2
− 1, n−1

2
and n−3

2
, respectively.

A different inequality is needed in the case r = 0:

u∗!u∗(n − u∗ − 1)! <
⌊n

2

⌋

!
⌈n

2

⌉

!. (17)

One can verify it separating the 3 cases.
Similarly

u∗!u∗(n − u∗ − 1)! ≤

1

3

(⌊n

2

⌋

− 1
)

!
(⌈n

2

⌉

− 1
)

!

(

⌊n

2

⌋2

− n
⌊n

2

⌋

+ n2 − 1

)

(18)

can be obtained for each case.
Start the proof by (1):

n! ≥
K
∑

i=1

c(Fi) =
K
∑

i=1

c(Fi)

|Fi|
|Fi| (19)

If Fi is a P (3), then Lemma 3.1 and (18) give

c(Fi)

|Fi|
=

c(Fi)

3
≥ u∗!u∗(n − u∗ − 1)!.

If Fi is a V (r) then Lemma 3.2 and (16) prove

c(Fi)

|Fi|
=

c(Fi)

r + 1
≥ u∗!u∗(n − u∗ − 1)!

for 1 ≤ r and (17) shows its validity when r = 0. By symmetry one can say
the same about Λ(r). Display (19) results in

n! ≥
K
∑

i=1

c(Fi) =
K
∑

i=1

c(Fi)

|Fi|
|Fi| ≥

u∗!u∗(n − u∗ − 1)!
K
∑

i=1

|Fi| = u∗!u∗(n − u∗ − 1)!|F|.

Hence we obtained

|F| ≤
n!

u∗!u∗(n − u∗ − 1)!
,

10



and this is equal to

(

n
⌊

n
2

⌋

) n
2

n
2
− 1

,

(

n
⌊

n
2

⌋

) n+1
2

n−1
2

,

(

n
⌊

n
2

⌋

) n−1
2

n−3
2

in the cases u∗ = n
2
− 1, n−1

2
and n−3

2
, respectively. These are all equal to

=

(

n
⌊

n
2

⌋

)

(

1 +
2

n
+ O

( 1

n2

))

.

¤T

4 Remark

It is somewhat disturbing that the constant in the second term in Theorem
1.6 (and (1.3)) is not fully determined. Is it 1 or 2? Let us make the situation
clear.

The construction of a family avoiding V2 is the following: Take all the
sets of size bn

2
c and a family A1, . . . , Am of bn

2
c + 1-element sets satisfying

the condition |Ai ∩ Aj| < bn
2
c for every pair i < j. It is easy to see that this

family contains no V2. We only have to maximize m. Denote this maximum
by m(n). Since the bn

2
c-element subsets of the Ai’s are all distinct, we have

m
(⌊n

2

⌋

+ 1
)

≤

(

n

bn
2
c

)

.

This gives the upper estimate

m(n) ≤

(

n

bn
2
c

)

2

n
.

There is a very nice construction (see [4]) of such sets Ai with

m =

(

n

bn
2
c + 1

)

1

n
.

We obtained
(

n

bn
2
c

)(

1

n
+ Ω

(

1

n2

))

≤ m(n) ≤

(

n

bn
2
c

)(

2

n

)

. (20)
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It is a longstanding conjecture of coding theory what the right constant is
here, 1 or 2. Does this limit exist at all?

It is easy to see that

(

n

bn
2
c

)

+ m(n) ≤ La(n,N).

The upper estimate of our Theorem 1.6 is a (far-reaching) generalization (up
to the second term) of the upper estimate in (20). Replacing the constant 2
in the upper estimate in Theorem 1.6 by 1 would improve the upper estimate
in (20), too, solving the old coding problem. On the other hand, if one could
construct a family with a constant 2 rather than 1, this would improve the
lower estimate in Theorem 1.6. Summarizing, there is a strong connection
between the two problems. Of course, it is possible that the proper constant
in m(n) is 1, while the one in La(n,N) is 2.
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