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Abstract

Graph labellings form an important graph theory model for the channel assignment
problem. An optimum labelling usually depends on one or more parameters that
ensure minimum separations between frequencies assigned to nearby transmitters.
The study of spans and of the structure of optimum labellings as functions of such
parameters has attracted substantial attention from researchers, leading to the in-
troduction of real number graph labellings and λ-graphs. We survey recent results
obtained in this area.

The concept of real number graph labellings was introduced a few years ago,
and in the sequel, a more general concept of λ-graphs appeared. Though the
two concepts are quite new, they are so natural that there are already many
results on each. In fact, even some older results fall in this area, but their
authors used a different mathematical language to state their achievements.
Since many of these results are so recent that they are just appearing in various
journals, we would like to offer the reader a single reference for the state of
art as well as to draw attention to some older results that fall in this area.
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1 Graph labellings and the channel assignment problem

Graph theory models for radio frequency assignment problems can be traced
back to the early 1980’s in the paper of Hale [31]. Since then, several different
forms of graph colorings were developed to model such problems, e.g., the
model of T -colorings of graphs, which forbids certain differences between labels
at adjacent vertices [47]. There are several surveys, e.g. [1,11], that provide an
overview of different approaches taken and results obtained in this area.

Based on a transmitter frequency problem related to him by Lanfear, in 1988
Roberts proposed a new assignment problem with two levels of interference [48]
which Griggs adapted to graphs and extended to a more general graph problem
of distance-constrained labellings [30]: For nonnegative integers p1, . . . , pk, an
L(p1, . . . , pk)-labelling of a graph G is a labelling of its vertices by nonnegative
integers such that vertices at distance exactly i receive labels that differ by
at least pi. The maximum label assigned to any vertex is called the span
of the labelling. The goal of the problem is to construct an L(p1, . . . , pk)-
labelling of the smallest span. The smallest span of such a labelling is denoted
by λp1,...,pk

(G). Because of practical applications, the distance constraints are
often considered to decrease with the distance [6], i.e., p1 ≥ p2 ≥ · · · ≥ pk ≥ 1.
However, there also appears in practical applications the case p1 = 0, p2 =
1 [5,33].

The idea behind this model is the following: radio-transmitters are represented
by vertices of a graph and those that are very close are joined by edges. The
highest level of interference appears among transmitters represented by ad-
jacent vertices. However, some interference still appears among transmitters
represented by vertices at distance two, three, etc. In order to assign frequen-
cies efficiently from the available range, we seek an assignment of frequencies
from the shortest possible interval such that the frequencies assigned to very
close transmitters differ a lot (in order to avoid interference), while the fre-
quencies assigned to transmitters that are close but not very close differ less.
This idea directly leads to the distance-constrained labellings of graphs as
introduced in the previous paragraph.

Distance-constrained labellings are closely related to ordinary graph colorings:
If p1 = . . . = pk = 1, then the problem reduces to the coloring of the k-th power
of the graph G. Hence, many results on colorings of graph powers translate to
distance-constrained labellings and vice versa. As an example, the reader is
referred to the work of Molloy and Salavatipour [45,46] on colorings of squares
of planar graphs.

The fundamental case of distance-constrained labelling (based on the problem
of Lanfear and Roberts) is when p1 = 2 and p2 = 1. A major open problem on
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L(2, 1)-labellings of graphs is the conjecture of Griggs and Yeh [30] that asserts
that every graph G with maximum degree ∆ ≥ 2 has an L(2, 1)-labelling of
span at most ∆2. The conjecture is still open almost 15 years after it was
published. In a series of papers [30,15,40,23], the original upper bound ∆2+2∆
on λ2,1(G) of such graphs G has been decreased successively to the current best
bound of Gonçalves [23], ∆2 + ∆ − 2. The conjecture was verified for several
special classes of graphs, including graphs of maximum degree two, chordal
graphs ([50], see also [14,36]), Hamiltonian cubic graphs [34] and planar graphs
with maximum degree ∆ 6= 3 [4]. Because of practical applications of the
distance-constrained labelling, it is not surprising that there is also a growing
body of papers on their algorithmic aspects [2,7,18,19,35,43].

McDiarmid’s survey [42] deals with a general version of the channel assignment
problem, which is described by a graph G in which each edge e is assigned
a positive integer weight (separation) w(e). We consider labellings c of the
vertices of G with positive integers such that the labels of adjacent vertices
u and v differ by at least w(uv). The span of the labelling c is its maximum
label. The goal is to find a labelling of minimum span. When the weights of
all edges equal one, then the minimum span is just the chromatic number of
G.

It is not hard to see that distance-constrained labellings of graphs with con-
straints at distance at most k can be viewed as a special instance of the channel
assignment problem with the underlying graph being the k-th power of the
original graph G.

To capture better some of the properties of distance-constrained labellings as
a function of the separations pi, Griggs was led to introduce the more gen-
eral model of real number labellings with distance constraints [26]. An even
more general model, λ-graphs, was later proposed by Babilon et al. [3], which
is a special case of the channel assignment problem, in which there are only
k possible edge weights, except that the labels and weights are real num-
bers, not integers. Theoretical results for distance-constrained labellings can
be extended to λ-graphs, and several open conjectures on distance-constrained
labellings were proven in the more general λ-graph context.

We introduce these real number labellings in the next section, and survey
the main results about them in the following sections, including the general
theoretical results as well as formulas for specific finite and infinite graphs.
We conclude with some of the prominent open problems.
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2 Labellings with variable weights

Graph labellings with real numbers were first mentioned in the paper of Griggs
and Yeh [30]. They observed that the study of L(2d, d)-labellings of graphs
for a real number d is equivalent to the study of L(2, 1)-labellings by the
Scaling Property that we recall later. Subsequently, people worked out the
optimal L(p, q)-spans of specific graphs as functions of (integers) p and q.
Among these, Georges and Mauro [22] determine spans of optimal L(p, q)-
labellings of infinite d-regular trees, and van den Heuvel et al. [32] and Leese
and Noble [41] provide results for the circular version of the problem. A natural
generalization of distance-constrained labellings based on ideas above is the
notion of real number graph labellings introduced by Griggs and Jin [26].

An L(p1, . . . , pk)-labelling of a (possibly infinite) graph G for real numbers
p1, . . . , pk is a function f : V (G) → R such that |f(v) − f(w)| ≥ pi for any
two vertices v and w at distance exactly i in G. The span of the L(p1, . . . , pk)-
labelling f is equal to the difference of the supremum and the infimum of
the labels, i.e., supv∈V (G) f(v) − infv∈V (G) f(v). The infimum of the span of

all L(p1, . . . , pk)-labellings of G is denoted by λd(G; p1, . . . , pk) (the super-
script d stands for distance constrained labellings). It can be shown that
there always exists an optimum L(p1, . . . , pk)-labelling, i.e., a labelling of span
λd(G; p1, . . . , pk). Let us remark that if all the parameters p1, . . . , pk are inte-
gers, then λp1,...,pk

(G) = λd(G; p1, . . . , pk) by Theorem 3 below.

By the Compactness Principle, if the maximum degree of a graph G is bounded,
there exists a labelling of finite span. On the other hand, if k ≥ 2 and G con-
tains vertices of arbitrarily large degree, then G need not have a labelling of
finite span. Since the labels of an optimum labelling f can be made nonnega-
tive by subtracting infv∈V (G) f(v) from the label of each vertex, there is always
an optimum labelling with nonnegative reals. Hence, we can require the labels
f(v) of the vertices to be nonnegative reals and define the span of the labelling
to be the supremum of the labels used in the labelling. The spans of optimum
labellings with nonnegative reals coincide with λd(G; p1, . . . , pk).

The values of λd(G; p1, . . . , pk) can be viewed as a function of the parameters
p1, . . . , pk. Griggs and Jin [26] showed that λd(G; p1, . . . , pk) is a continuous
piecewise linear function of its parameters on [0,∞)k. We say that a function is
piecewise linear, if there exists a partition of its domain into (possibly infinitely
many) measurable parts such that the function is linear on each of them.

The function λd(G; p1, . . . , pk) also satisfies the so-called Scaling Property [26],
i.e., for every positive real number α:

αλd(G; p1, . . . , pk) = λd(G; αp1, . . . , αpk) .
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In particular, if k = 2, the values of λd(G; p1, p2) are fully determined by the
values of the function for p2 = 1. Hence, we often describe only the values of
λd(G; x, 1) instead of giving the entire description of the function λd(G; x, y).

The instances of the channel assignment problem derived from distance-con-
strained labellings of graphs are of special structure. However, there is no
need to restrict ourselves to the channel assignment problems only of this
type. Similarly, as real number graph labellings generalize distance-constrained
labellings of graphs, we can generalize the notion of the channel assignment
problem. A λ-graph G is a graph with k types of edges. We allow two vertices
to be joined by several edges of different types. A labelling f of the vertices of
the λ-graph G with nonnegative real numbers is said to be proper with respect
to the parameters x1, . . . , xk if the labels of every pair of vertices u and v joined
by an edge of the i-th type differ by at least xi. The span of the labelling is the
supremum of the labels of the vertices. The infimum of the spans of proper
labellings is denoted by λG(x1, . . . , xk). The values of λG(x1, . . . , xk) viewed
as a k-parameter function form the λ-function of G.

It is important to note for the remainder of the paper, we will always implicitly
assume that for every choice of the parameters x1, . . . , xk, the value of the
function λG(x1, . . . , xk) is finite. As we discuss later, this is equivalent to the
statement that G (viewed as an ordinary graph) can be colored (in the ordinary
sense) with a finite number of colors.

The results of [26] on real number graph labellings readily translate to the
more general setting of λ-graphs:

Theorem 1 Let G be a (possibly infinite) λ-graph with k types of edges. The
λ-function of G is a continuous, non-decreasing and piecewise linear function
of x1, . . . , xk on [0,∞)k.

It is not hard to see that the λ-function also satisfies the Scaling Property:

Theorem 2 (Scaling Property) Let G be a (possibly infinite) λ-graph with
k types of edges and α, x1, . . . , xk nonnegative reals. It holds that:

αλG(x1, . . . , xk) = λG(αx1, . . . , αxk) .

Because of the Scaling Property, the function λG(x1, . . . , xk) is finite for all
values of x1, . . . , xk if and only if it is finite for one choice of positive values
of x1, . . . , xk. Since λG(1, . . . , 1) is equal to the chromatic number of (the
underlying graph of) G decreased by one, our assumption that the function
λG is well-defined is equivalent to the assumption that G has a finite chromatic
number.

The notion of λ-graphs provides us with a more general framework for the
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study of real number graph labellings. Consider a graph H and reals p1, . . . , pk.
Let us consider the following λ-graph G with k types of edges: the vertices of
G are the same as those of H and two vertices u and v are joined by an edge
of the i-th type, 1 ≤ i ≤ k, if their distance in H is exactly i. It is easy to see
that the following holds:

λG(x1, . . . , xk) = λd(H; x1, . . . , xk) .

Because of this close connection, we decided to use similar notations for the
functions describing spans of optimum labellings of λ-graphs and optimum
real number graph labellings.

In the rest of this paper, we survey results obtained on real number graph
labellings and λ-graphs. We start with general results obtained in this area
and we then focus on results obtained for specific infinite and finite graphs.

3 General structural results

In this section, we survey general results on λ-graphs and real number graph
labellings. One of the first questions that comes to mind is whether the sets of
labels used in an optimum labelling can be assumed to be of some special form.
The answer to this question was provided in the paper [26]. They define the D-
set D(x1, . . . , xk) of x1, . . . , xk to be the set of all combinations of x1, . . . , xk

with non-negative integer coefficients. Let us remark at this point that N

denotes the set of non-negative integers throughout the paper.

D(x1, . . . , xk) =

{

k
∑

i=1

αixk for some αi ∈ N

}

.

The next theorem of [26] was proved for real number graph labellings, but its
proof readily translates to the setting of λ-graphs (with finite spans):

Theorem 3 (Griggs and Jin [26]) Let G be a (possibly infinite) λ-graph
with k types of edges. For all nonnegative real numbers x1, . . . , xk, there is an
optimal labelling f with respect to x1, . . . , xk, such that f(v) = 0 for some ver-
tex and for all vertices v, f(v) ∈ D(x1, . . . , xk). In particular, λG(x1, . . . , xk) ∈
D(x1, . . . , xk).

Theorem 3 can also be derived from a later theorem of Babilon et al. [3]: they
established an analogue of the classical Gallai-Roy Theorem for the channel
assignment problem for an infinite underlying graph with finitely many edge-
weights. Recall that the Gallai-Roy Theorem [20,49] states that the chromatic
number of a graph G decreased by one is equal to the length (the number of
edges) of a longest oriented path of an orientation of G for which the length of
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a longest path is minimized. We state the result of [3] using the language of λ-
graphs. An orientation of a graph G is said to be finitary if there is a constant
K ≥ 0 such that every oriented walk has length at most K. In particular,
a finitary orientation is acyclic and does not contain infinite oriented paths.
Note that there could be an acyclic orientation without infinite oriented paths
that is not finitary. The weight of a path is the sum of the weights of its
edges. Finally, the weight of an orientation is the supremum of the weights
of its oriented paths. Note that if the orientation of a λ-graph is finitary, the
supremum is always attained and is finite (since G has only finitely many edge
types). Moreover, it can be shown that there exists a finitary orientation of
minimum weight, and its weight is equal to the span of an optimum labelling:

Theorem 4 (Babilon et al. [3]) Let G be a (possibly infinite) λ-graph with
k types of edges. The optimal span of the labelling of G with respect to x1, . . . , xk

is equal to the minimum weight of a finitary orientation of G.

Let us remark that the proof of Theorem 4 involves the Axiom of Choice.

Given a finitary orientation of the minimum weight, it is easy to construct
an optimum labelling of a λ-graph G: let f(v) of a vertex v be the maximum
weight of an oriented path that ends at v. It is straightforward to check that
the labelling f is a proper labelling of G and that its span is equal to the
weight of the orientation. By Theorem 4, the labelling f is optimum.

We already know that the λ-function of any λ-graph is a continuous piecewise
linear function. A natural question is whether the λ-function is always com-
prised of only finitely many linear parts. Griggs and Jin [26] proposed that this
is true for real number graph labellings (the Piecewise Linearity Conjecture).
They verified their conjecture for finite graphs, and got more support for the
conjecture by verifying it for infinite graphs with conditions at distance at
most two. The proof of the conjecture for λ-graphs with two types of edges is
implicitly contained in [3]. The conjecture was eventually proved (for general
k) by Král’ [37] in the more general setting of λ-graphs. Moreover, he proved
it in the following stronger form (we state the result as Theorem 5 later): not
only the λ-function of each λ-graph is a piecewise linear function comprised of
finitely many parts, but, for every fixed k ≥ 1 and χ ≥ 1, there exists a single
finite partition of [0,∞)k such that the λ-function of every λ-graph with k
types of edges and chromatic number at most χ is linear on every part of the
partition.

Griggs and Jin [26] also conjectured that Theorem 3 can be refined in the sense
that it is enough to consider combinations of the parameters with nonnegative
integer coefficients that do not exceed a constant depending only on G and not
the separation parameters xi themselves (the Coefficient Bound Conjecture).
Let us state their conjecture more formally. Let D(A; x1, . . . , xk) to be the
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set of all numbers of the form
∑k

i=1 αixi for some integers αi, 0 ≤ αi ≤ A.
The conjecture asserts that for every graph G and every integer k ≥ 1, there
exists a number A such that for every choice of x1, . . . , xk, there is an optimal
L(x1, . . . , xk)-labelling f of G with labels f(v) ∈ D(A; x1, . . . , xk). Griggs and
Jin [26] made the stronger conjecture that the number A could be chosen
depending only on k and the maximum degree ∆ of G, not on G itself (the
Delta Bound Conjecture).

Both the Coefficient Bound Conjecture and the Delta Bound Conjecture were
proven in [37] in a stronger form: first, the proof works in the more general set-
ting of λ-graphs, and second, it works more generally for graphs with bounded
chromatic number χ, not just for those with bounded maximum degree ∆ (note
that χ ≤ ∆ + 1). Let us now state the result.

Theorem 5 (Král’ [37]) For every k ≥ 1 and χ ≥ 1, there exist constants
Ak,χ and Bk,χ such that the space [0,∞)k can be partitioned into Bk,χ polyhedral
cones, such that the λ-function λG(x1, . . . , xp) of every λ-graph G (possibly
infinite) with k types of edges and chromatic number at most χ is a linear
function of x1, . . . , xp on each of the cones.

Moreover, for each of the cones, there exist linear functions fv(x1, . . . , xk) such
that a vertex labelling of G assigning a vertex v the value of fv(x1, . . . , xk) is
an optimal labelling of G, and fv(x1, . . . , xk) ∈ D(Ak,χ; x1, . . . , xk).

Even more surprising is the following consequence concerning the number of
possible λ-functions of λ-graphs.

Theorem 6 (Král’ [37]) There exist only finitely many (piecewise-linear)
functions that can be the λ-function of a λ-graph with at most k types of edges
and chromatic number at most χ.

The key ingredient of the proofs of Theorem 5 and 6 is Theorem 4. It is shown
that for every fixed k and χ, the length of the longest oriented path of a
minimum-weight finitary orientation of G can be bounded by a constant Ck,χ

depending only on k and χ. However, the constant Ck,χ grows enormously in
k. In particular, it is not even bounded by a tower function of k. We believe
that the bounds obtained in [37] are far from optimal and can be improved. In
particular, we think that Ck,χ can be bounded by a function exponential in k
and χ and maybe even polynomial in one of the parameters (see Problem 24
in Section 6).

Besides Theorems 5 and 6, the technique used in [37] provides the following
generalization of the Compactness Principle to λ-graphs.

Theorem 7 (Král’ [38]) Every λ-graph G with k types of edges and a finite
chromatic number contains a finite subgraph H such that λG(x1, . . . , xk) =
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λH(x1, . . . , xk) for all (x1, . . . , xk) ∈ [0,∞)k.

Note that the Compactness Principle implies the existence of such a finite
subgraph H for every choice of (x1, . . . , xk), but it does not guarantee the
existence of such a universal finite subgraph H. Also note Theorem 7 implies
the Piecewise Linearity Conjecture of Griggs and Jin.

We mentioned that the constants Ak,χ and Bk,χ in Theorem 5 are really huge.
Substantially better bounds than these are known for real number graph la-
bellings with conditions at distance at most two, as well as for λ-graphs with
two types of edges. Here is a refinement of Theorem 5 for real number graph
labellings from [26].

Theorem 8 (Griggs and Jin [26]) Let G be a (possibly infinite) graph G
with maximum degree ∆. For all nonnegative reals x1, . . . , xk, there is an opti-
mal labelling f with respect to x1, . . . , xk such that f(v) ∈ D(2∆5; x1, . . . , xk)
for every vertex v of G. In particular, λG(x1, . . . , xk) ∈ D(2∆5; x1, . . . , xk).

Theorem 5 can be refined for λ-graphs G with two types of edges using the
next lemma:

Lemma 9 (Babilon et al. [3]) Let G be a (possibly infinite) λ-graph G with
two types of edges and let ∆ be the maximum degree of G. The λ-function is
a linear function on the set

[

0, 1
2∆2+2∆+1

]

× {1}.

By the Scaling Property, the number of linear parts of the λ-function on [0,∞)2

is equal to the number of its linear parts on [0,∞) × {1}. Fix a λ-graph G
with maximum degree ∆, and let h(x) = λG(x, 1). By Lemma 9, the function

h is linear on the intervals
[

0, 1
2∆2+2∆+1

]

× {1} and [2∆2 + 2∆ + 1,∞)× {1}.

By the Compactness Principle, h(1) ≤ ∆. An argument used in the proof of
Theorem 4.5 in [3] yields that every linear piece of h starts and ends at a point
of the form α/β where α + β ≤ ∆(2∆2 + 2∆ + 1) = O(∆3). Since there are at
most O(∆6) such points, the following refinement of Theorem 5 holds:

Theorem 10 Let ∆ ≥ 1 be a fixed integer. The space [0,∞)2 can be parti-
tioned into at most s = O(∆6) parts S1, . . . , Ss such the λ-function of every
λ-graph G with maximum degree ∆ is a linear function of x1 and x2 on each
Si, i = 1, . . . , s.

To conclude, we briefly mention bounds on the number of linear parts of finite
λ-graphs in terms of their orders.

Theorem 11 (Babilon et al. [3]) Let G a λ-graph of order n with two types
of edges. The number of linear parts of its λ-function does not exceed O(n2).
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As we discuss in Section 6 before Problem 28, the functions λd(G; x, 1) for
most graphs G have the “up-down” behavior. The opposite type of behavior
is that the λ-function is either convex or concave. In such a case, the bound
of Theorem 11 can be significantly improved.

Theorem 12 (Babilon et al. [3]) Let G a λ-graph of order n that has two
types of edges such that its λ-function is convex. The number of linear parts
of λG does not exceed O(n2/3). Moreover, there exists a λ-graph G of order n
such that λG is a convex function with Ω(n2/3) linear parts.

Babilon et al. [3] conjecture that the bound on the number of parts contained
in Theorem 11 can be improved to a linear function of n (see Problem 25 in
Section 6).

4 Results on specific finite graphs

Determining optimal spans of real number graph labellings for particular
graphs is also important. Though determining the spans even for small graphs
is quite challenging, there is already a large family of graphs for which spans of
their optimal real number labellings are known. For the reader’s convenience,
we include some of them here. For paths and cycles, Georges and Mauro [21]
worked out the values of λd(G; x1, x2) for integers x1 ≥ x2 ≥ 1, which can
be extended by the Scaling Property and continuity to give λd(G; x, 1) for all
reals x ≥ 1. The results of [21] are extended to x < 1 and proven in the real
number model in [27]. The new methods could also be helpful for computing
the optimal spans of real number graph labellings of other graphs.

Theorem 13 (Griggs and Jin [27], cf. Georges and Mauro [21]) The fol-
lowing values are spans of optimal real number graph labellings of the path Pn,
2 ≤ n ≤ 6:

λd(Pn; x, 1) =



































































































x, if n = 2,

1, if n = 3 and 0 ≤ x ≤ 1/2,

2x, if n = 3 and 1/2 ≤ x ≤ 1,

x + 1, if n = 3 and x ≥ 1,

x + 1, if n = 4,

x + 1, if n ∈ {5, 6} and 0 ≤ x ≤ 1,

2x, if n ∈ {5, 6} and 1 ≤ x ≤ 2, and

x + 2, if n ∈ {5, 6} and x ≥ 2.
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Fig. 1. The function λd(Pn;x, 1) for paths Pn with at least seven vertices (n ≥ 7).

For paths Pn with n ≥ 7 vertices, the following values are spans of optimal
labellings:

λd(Pn; x, 1) =























































x + 1, if 0 ≤ x ≤ 1/2,

3x, if 1/2 ≤ x ≤ 2/3,

2, if 2/3 ≤ x ≤ 1,

2x, if 1 ≤ x ≤ 2, and

x + 2, otherwise (x ≥ 2).

The function λd(Pn; x, 1) is depicted in Figure 1.

Similarly as for paths, the values of λd(Cn; x, 1) for cycles Cn can be inferred
for x ≥ 1 from the paper of Georges and Mauro [21]. In [27], the results were
extended to x < 1 and fit in the scenario of the real number graph labellings.
Note that unlike in the case of paths, the optimal span of a cycle depends for
large cycles also on the congruence class of its length modulo twelve.

Theorem 14 (Griggs and Jin [27], cf. Georges and Mauro [21]) The fol-
lowing values are spans of optimal labellings of the cycle C3 and C5:

λd(Cn; x, 1) =























































2x, if n = 3,

2, if n = 5 and 0 ≤ x ≤ 1/2,

4x, if n = 5 and 1/2 ≤ x ≤ 1,

4, if n = 5 and 1 ≤ x ≤ 2, and

2x, otherwise (n = 5 and x ≥ 2).
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The values of spans of optimal labellings of the cycle Cn for n = 4 or n ≥ 6
are given in the following table:

λd(Cn;x, 1) n ≡12 0 n ≡12 1, 5, 7, 11 n ≡12 2, 10 n ≡12 3, 9 n ≡12 4, 8 n ≡12 6

x ∈ [0, 1/2] x + 1 2 2 2 x + 1 2

x ∈ [1/2, 2/3] 3x 2 2 2 3x 2

x ∈ [2/3, 1] 2 3x 3x 2 3x 2

x ∈ [1, 2] 2x x + 2 x + 2 2x x + 2 2x

x ∈ [2, 3] x + 2 2x 2x 2x x + 2 2x

x ∈ [3,∞) x + 2 2x x + 3 2x x + 2 x + 3

Another class of graphs for which the optimal spans of real number labellings
are known is the class of wheels (a wheel Wn is the graph obtained from the
cycle Cn by adding a new vertex adjacent to all the vertices of the cycle).
In this case, the values of optimal spans for large wheels depend only on the
parity of the base cycle.

Theorem 15 (Griggs and Jin [27]) The following values are spans of op-
timal labellings of the wheels W3 and W4:

λd(Wn; x, 1) =







































3x, if n = 3,

x + 1, if n = 4 and 0 ≤ x ≤ 1/3,

4x, if n = 4 and 1/3 ≤ x ≤ 1, and

2x + 2, otherwise (n = 4 and x ≥ 1).

For odd wheels Wn, n ≥ 5, the spans of optimal labellings are given by the
following formula:

λd(Wn; x, 1) =























































n−1
2

, if 0 ≤ x ≤ 1/3,

3x + n−3
2

, if 1/3 ≤ x ≤ 1/2,

nx, if 1/2 ≤ x ≤ 1,

x + n − 1, if 1 ≤ x ≤ n−1
2

, and

3x, otherwise (x ≥ n−1
2

).
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Finally, for even wheels Wn, n ≥ 6, we have:

λd(Wn; x, 1) =























































x + n/2 − 1, if 0 ≤ x ≤ 1/3,

4x + n/2 − 2, if 1/3 ≤ x ≤ 1/2,

nx, if 1/2 ≤ x ≤ 1,

x + n − 1, if 1 ≤ x ≤ n/2 − 1, and

2x + n/2, otherwise (x ≥ n/2 − 1).

Other natural classes of graphs to be considered are complete graphs and com-
plete multipartite graphs. The function λd(Kn; x, 1) = (n − 1)x for complete
graphs is straightforward to determine. A little more complex situation is for
complete bipartite graphs:

Theorem 16 (Griggs and Jin [29]) The following values are spans of op-
timal labellings of the complete bipartite graph Kn1,n2

, n1 ≥ n2:

λd(Kn1,n2
; x, 1) =



























max{n1 − 1, n2 − 1 + x}, if x ∈ [0, 0.5],

(2n2 − 1)x + max{n1 − n2 − 1 + x, 0}, if x ∈ [0.5, 1], and

x + n1 + n2 − 2, otherwise.

There are many other graphs G, e.g., Kneser graphs [17], for which the values
of the function λd(G; x1, . . . , xk) are still not determined. It is also of interest
to compute “maximal” spans for important classes of graphs, such as planar
graphs with bounded degree. More precisely, for a class G of graphs G, let us
define λd(G; x1, . . . , xk) as follows:

λd(G; x1, . . . , xk) = sup
G∈G

λd(G; x1, . . . , xk) .

The problem is then to determine the values of the function λd(G; x1, . . . , xk)
for a given class G of graphs. Unfortunately, it seems that a complete solution
even for planar graphs with a fixed bounded degree ∆ ≥ 3 is completely out
of reach of the present methods.

5 Results on specific infinite graphs

In practical applications, infinite graphs often provide a convenient model
for the underlying topology of the network. Instead of considering a finite
graph, one can model a network as a regular tiling of the plane. Hence, the

13



infinite triangular lattice Γ4, the infinite square lattice Γ� and the infinite
hexagonal lattice ΓH naturally appear in such applications. However, let us
start with the “simplest” infinite regular graph, an infinite regular tree. Real
number graph labellings of infinite d-regular trees have already been studied
in the framework of distance-constrained labellings of graphs: Georges and
Mauro [22] determined optimum spans of infinite d-regular trees Td for x ≥
1 and Calamoneri et al. [13] completed the characterization for x ∈ [0, 1].
Though infinite trees seem to be very simple graphs, the characterization of
their optimum spans, in particular for x ∈ (3/2, d − 1), is very complex.

Theorem 17 (Calamoneri et al. [13], Georges and Mauro [22]) The fol-
lowing values are spans of optimal labellings of the infinite d-regular tree Td,
d ≥ 2:

λd(Td; x, 1) =



















































































x + d − 1, if 0 ≤ x ≤ 1/2,

(2d − 1)x, if 1/2 ≤ x ≤ d/(2d − 1),

d, if d/(2d − 1) ≤ x ≤ 1,

d · x, if 1 ≤ x ≤ d/(d − 1),

x + d, if d/(d − 1) ≤ x ≤ 3/2,

2x + d − 2, if d − 1 ≤ x ≤ d, and

x + 2d − 2, if d ≤ x.

If x ∈ (3/2, d
2
) and x − bxc > 1/2, then the optimal span is given by the

following:

λd(Td; x, 1) =











(2s + 1)(x − bxc) + 2x + d − 2 − s, if x − bxc ≤ s+2
2s+3

, and

2bxc + d, otherwise,

where s =
⌊

d−bxc−2
2bxc+1

⌋

.

Finally, if either x ∈ [2, d
2
) and x − bxc ≤ 1/2 or x ∈ [ d

2
, d − 1), then the

optimal span is given by the following:

λd(Td; x, 1) =







































d+bxc
bxc

x + bxc − 2, if x ≤ bxcd+1
d

and d ≡bxc 0,

d+bxc−1
bxc

x + bxc − 1, if x ≤ bxc d
d−1

and d ≡bxc 1,

d+2bxc−r
bxc

x + r − 2, if x ≤ bxcd+bxc−r+1
d+bxc−r

and d ≡bxc r 6= 0, 1,

x + bxc + d − 1, otherwise.

Since the values of λd(Td; x, 1) can be quite hard to read out from Theorem 17
even for a small fixed integer d, let us state as its corollaries the values of
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spans of optimal labellings of the infinite path (the infinite 2-regular tree)
and the infinite 3-regular and 4-regular trees (the functions are depicted in
Figures 1, 2 and 3). Note that the values of optimal labellings of the infinite
path coincide with the values of optimal labellings of long paths (this follows
from the Compactness Principle).

Corollary 18 The following values are spans of optimal labellings of the in-
finite path T2:

λd(T2; x, 1) =























































x + 1, if 0 ≤ x ≤ 1/2,

3x, if 1/2 ≤ x ≤ 2/3,

2, if 2/3 ≤ x ≤ 1,

2x, if 1 ≤ x ≤ 2, and

x + 2, otherwise (x ≥ 2).

Corollary 19 The following values are spans of optimal labellings of the in-
finite 3-regular tree T3:

λd(T3; x, 1) =



















































































x + 2, if 0 ≤ x ≤ 1/2,

5x, if 1/2 ≤ x ≤ 3/5,

3, if 3/5 ≤ x ≤ 1,

3x, if 1 ≤ x ≤ 3/2,

x + 3, if 3/2 ≤ x ≤ 2,

2x + 1, if 2 ≤ x ≤ 3, and

x + 4, otherwise (x ≥ 3).

Corollary 20 The following values are spans of optimal labellings of the in-
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Fig. 2. The function λd(T3;x, 1).

finite 4-regular tree T4:

λd(T4; x, 1) =















































































































































x + 3, if 0 ≤ x ≤ 1/2,

7x, if 1/2 ≤ x ≤ 4/7,

4, if 4/7 ≤ x ≤ 1,

4x, if 1 ≤ x ≤ 4/3,

x + 4, if 4/3 ≤ x ≤ 3/2,

3x + 1, if 3/2 ≤ x ≤ 5/3,

6, if 5/3 ≤ x ≤ 2,

3x, if 2 ≤ x ≤ 2.5, and

x + 5, if 2.5 ≤ x ≤ 3, and

2x + 2, if 3 ≤ x ≤ 4, and

x + 6, otherwise (x ≥ 4).

Let us turn our attention to infinite plane lattices. The problem for the trian-
gular lattice Γ4 has a rich history. Griggs [25] posed an integer version of the
problem in the 2000 International Math Contest in Modeling (MCM). Among
271 teams which participated in the contest, five teams [8,16,24,44,51] obtained
new results for particular choices of parameters. In particular, Goodwin, John-
ston and Marcus [24] determined λd(Γ4; x, 1) for x ≥ 4. Several other choices
of x ≥ 1 were later settled by Jin and Yeh [33] and by Zhu and Shi [52]. Cala-
moneri [10] determined the function for x ≥ 3 and gave bounds for x ∈ [1, 3].
Griggs and Jin [28] determined the values of λd(Γ4; x, 1) for all x 6∈ (1/3, 1)
and Král’ and Škoda [39] completed the missing cases.
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Fig. 3. The function λd(T4;x, 1).
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Fig. 4. The function λd(Γ4;x, 1). Note that some of the parts of the functions are
enlarged to display the behavior of the function in those parts.

Theorem 21 (Král’ et al. [39], cf. Calamoneri [10], Griggs et al. [28])
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The following values are spans of optimal labellings of the triangular lattice Γ4:

λd(Γ4; x, 1) =



































































































































































































































2x + 3, if 0 ≤ x ≤ 1/3,

11x, if 1/3 ≤ x ≤ 3/8,

3x + 3, if 3/8 ≤ x ≤ 2/5,

8x + 1, if 2/5 ≤ x ≤ 3/7,

x + 4, if 3/7 ≤ x ≤ 1/2,

9x, if 1/2 ≤ x ≤ 4/7,

2x + 4, if 4/7 ≤ x ≤ 2/3,

8x, if 2/3 ≤ x ≤ 5/7,

x + 5, if 5/7 ≤ x ≤ 3/4,

5x + 2, if 3/4 ≤ x ≤ 4/5,

6, if 4/5 ≤ x ≤ 1,

6x, if 1 ≤ x ≤ 4/3,

8, if 4/3 ≤ x ≤ 2,

4x, if 2 ≤ x ≤ 11/4,

11, if 11/4 ≤ x ≤ 3,

3x + 2, if 3 ≤ x ≤ 4, and

2x + 6, otherwise (x ≥ 4).

A Manhattan cellular system [6] related to the square lattice finds its ap-
plications in the cellular networks in cities. The values of λd(Γ�; x, 1) for all
x ∈ [0,∞) were determined in [28]. Independently, Calamoneri [9,10] deter-
mined the function λd(Γ�; x, 1) for x ≥ 3 (let us remark that some bounds
in [9] are not completely correct and were fixed in the journal version [10] of
the paper). Let us point out the following interesting fact (that as we will
see also holds for the hexagonal lattice): since the infinite 4-regular tree T4

is homomorphic to Γ�, the function λd(T4; x, 1) is bounded from above by
λd(Γ�; x, 1). Surprisingly, the values of λd(Γ�; x, 1) and λd(T4; x, 1) agree for
x 6∈ (2.5, 3). The reader can compare the functions λd(Γ�; x, 1) and λd(T4; x, 1)
depicted in Figures 5 and 3.

Theorem 22 (Griggs and Jin [28], cf. Calamoneri [10]) The following
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Fig. 5. The function λd(Γ�;x, 1).

values are spans of optimal labellings of the square lattice Γ�:

λd(Γ�; x, 1) =















































































































































2x + 3, if 0 ≤ x ≤ 1/2,

7x, if 1/2 ≤ x ≤ 4/7,

4, if 4/7 ≤ x ≤ 1,

4x, if 1 ≤ x ≤ 4/3,

x + 4, if 4/3 ≤ x ≤ 3/2,

3x + 1, if 3/2 ≤ x ≤ 5/3,

6, if 5/3 ≤ x ≤ 2,

3x, if 2 ≤ x ≤ 8/3,

8, if 8/3 ≤ x ≤ 3,

2x + 2, if 3 ≤ x ≤ 4, and

x + 6, otherwise (x ≥ 4).

Besides the triangular and square lattices, the plane can also be tiled by
hexagons. Calamoneri [10] determined the values of λd(ΓH ; x, 1) for x ∈ [2,∞)
and provided lower and upper bounds for x ∈ [1, 2]. The function λd(ΓH ; x, 1)
was completely determined in [28]. As in the case of the square lattice, the
functions λd(ΓH ; x, 1) and λd(T3; x, 1) agree for most of the values of x—see
Figures 6 and 2. Let us emphasize that this is not the case for the trian-
gular lattice Γ∆ and the infinite tree T6 since the function λd(Γ∆; x, 1) and
λd(T6; x, 1) agree only for few values of x (see Figures 4 and 7). We suspect
that the reason for this different behavior could be the presence of a lot of
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Fig. 6. The function λd(ΓH ;x, 1).
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Fig. 7. The function λd(T6;x, 1).

small cycles in the lattice Γ∆ unlike in the lattices Γ� and ΓH .

Theorem 23 (Griggs and Jin [28], cf. Calamoneri [10]) The following
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Fig. 8. The function λd(ΓS ;x, 1). In the parts of the function that are not deter-
mined, the lower and upper bounds are drawn.

values are spans of optimal labellings of the hexagonal lattice ΓH :

λd(ΓH ; x, 1) =



















































































x + 2, if 0 ≤ x ≤ 1/2,

5x, if 1/2 ≤ x ≤ 3/5,

3, if 3/5 ≤ x ≤ 1,

3x, if 1 ≤ x ≤ 5/3,

5, if 5/3 ≤ x ≤ 2,

2x + 1, if 2 ≤ x ≤ 3, and

x + 4, otherwise (x ≥ 3).

There is also a variant of distance constrained labeling in which vertices joined
by a path of length i (instead of vertices at distance exactly i) are required
to have labels that differ by at least pi. Note that in this scenario, e.g., two
vertices u and v can be required to have labels that differ by max{p2, p3, p5} if
u and v are joined by paths of length two, three and five. The optimal spans
of this type of labeling for d = 2 are denoted by λd(G; x, 1).

Calamoneri et al. [12] gave bounds for this type of labeling for infinite lattices
Γ∆, Γ� and ΓH and the infinite lattice that is obtained as the strong product
of two infinite paths (this lattice can be viewed as obtained from Γ� by adding
non-crossing diagonals inside each face). Let ΓS be this 8-regular lattice.

Since this variant of the problem coincide with the original scenario for triangle-
free graphs, we have λd(Γ�) = λd(Γ�) and λd(ΓH) = λd(ΓH). Moreover, since
λd(G; x, 1) ≤ λd(G; x, 1) for every x ≥ 0 and λd(G; x, 1) = λd(G; x, 1) for
x ≥ 1, the lower bounds and some of the results obtained in the original
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scenario extend to this setting. In particular, the function λd(Γ4; x, 1) is com-
pletely known and is equal to max{6, λd(Γ4; x, 1)}. The known bounds on the
values of λd(ΓS; x, 1) are then depicted in Figures 8.

6 Open problems

We conclude the paper with suggesting several problems for further research on
real number graph labellings. The proof of Theorem 5 is based on an inductive
argument that yields enormous bounds on the values Ak,χ and Bk,χ. It seems
that such huge bounds are not necessary and it could be possible to establish
better bounds on Ak,χ and Bk,χ.

Problem 24 Determine whether the constants Ak,χ and Bk,χ from Theorem 5
can be bounded by a function exponential in k and χ, or even by a function
polynomial in one of the parameters k and χ.

Another problem is to provide a bound on the number of linear parts of the
λ-function of small finite λ-graphs G. It was conjectured [3] that the quadratic
bound provided in Theorem 11 can be decreased to a linear one.

Problem 25 Prove that the number of linear parts of the λ-function of a
finite λ-graph G of order n is at most O(n).

The construction of optimal labellings of infinite regular lattices, for instance
in [10,28], are based on repeating the same pattern of the labels throughout
the lattice. It seems natural to ask whether all optimal labellings of regular
lattices must be of such a type:

Problem 26 Investigate the structure, in particular the symmetry properties,
of optimal labellings of the infinite regular lattices G4, G� and GH .

Research of the dependence of the circular analogue of the channel assignment
problem on its parameters preceded the real number graph labellings, see, e.g.,
[32,41]. It seems natural to ask whether Theorem 5 in particular can be proven
in the setting of circular labellings.

Problem 27 Explore circular labelling analogues of the real number graph
labellings and determine which of the general structural results translate to
this setting.

Finally, it is apparent that the functions λd(G; x, 1) are neither concave-up nor
concave-down. Indeed, they seem quite the opposite. In the examples shown
in this paper, starting from x = 0, the graph sections alternately increase and
decrease in slope. We know that this kind of behavior is not common to all
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functions λd(G; x, 1) (an example is the function associated with wheels Wn

described in Theorem 15) but we think that there should be a reason for this
type of behavior common to most of the functions λd(G; x, 1).

Problem 28 What is the explanation for the “up-down” behavior of the func-
tions λd(G; x, 1) for most graphs G?
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