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Abstract

We consider the problem of assigning a numerical channel to each transmitter
in a large regular array such that multiple levels of interference, which depend
on the distance between transmitters, are avoided by sufficiently separating the
channels. The goal is to find assignments that minimize the span of the labels used.
A previous paper of the authors introduced a model for this problem using real
number labellings of (possibly infinite) graphs G. Given reals k1, k2, . . . , kp ≥ 0, one
denotes by λ(G; k1, k2, · · · , kp) the infimum of the spans of the labellings f of the
vertices v of G, such that for any two vertices v and w, the difference in their labels is
at least ki, where i is the distance between v and w in G. When p = 2, it is enough
to determine λ(G; k, 1) for reals k ≥ 0; for G of bounded maximum degree, this
will be a continuous, piecewise linear function of k. Here we consider this function
for infinite regular lattices that model large planar networks, building on earlier
efforts by other researchers. For the triangular lattice, we determine the function
for k ≥ 1, which had previously been found for rational k ≥ 3 by Calamoneri. We
also give bounds for 0 ≤ k ≤ 1. For the square lattice and the hexagonal lattice,
we completely determine the function for k ≥ 0, which had been given for rational
k ≥ 3 and k ≥ 2, respectively, by Calamoneri.

Portions of it have been obtained by other researchers for infinite regular lattices
that model large planar networks. Here we present the complete function λ(G; k, 1),
for k ≥ 1 when G is the triangular, square, or hexagonal lattice.

∗Research supported in part by NSF grants DMS-0072187 and DMS-0302307. The principal results
here were announced in an extended abstract for the International Workshop on Wireless, Mobile, and
Ad Hoc Networks in the Proceedings of the 2005 IEEE International Parallel and Distributed Computing
Symposium [16]. This research was also described in part in the second author’s dissertation [24].
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1 Introduction

Efficient channel assignment algorithms in wireless networks are increasingly important.
There is usually a large network of transmitters in the plane, and a numerical channel
must be assigned to each transmitter, where channels for nearby vertices must be assigned
so as to avoid interference. The goal is to minimize the portion of the frequency spectrum
that must be allocated to the problem, so it is desired to minimize the span of a feasible
labelling.

Hale [22] (1980) formulated such channel assignment problems in network engineering
as graph labelling problems: each transmitter is represented by a vertex, and any pair of
vertices that may interfere is represented by an edge in the graph. All labels are integers.

In 1988 Lanfear proposed to Roberts [34] a new 2-level channel assignment problem of
interest to NATO, in which integer labels are assigned to transmitters in the plane, with
two levels of interference, depending on the distance between transmitters, say labels
differ by at least two (respectively, one) when the transmitters are within some fixed
distance A (resp., 2A). Griggs introduced the analogous “lambda-labeling” problem for
graphs, and made the initial investigation of this graph theory problem with Yeh [21].
They extended the problem in the natural way, by specifying separations k1, . . . , kp for
vertices at distances 1, . . . , p, defining an L(k1, k2, · · · , kp)-labelling of a graph G to be
an assignment of nonnegative numbers f(v) to the vertices v of G, such that |f(u) −
f(v)| ≥ ki if u and v are at distance i in G. The labelling f is said to belong to the set
L(k1, k2, · · · , kp)(G). One denotes by λ(G; k1, k2, · · · , kp) the minimum span over such f ,
where the span is the difference between the largest and smallest labels f(v). Griggs and
Yeh concentrated on the fundamental case of L(2, 1)-labellings, and many authors have
subsequently contributed to the literature on these L(2, 1) and more general labellings.
For an online survey and annotated bibliography of work with conditions at distance
p = 2, see [7]. For an overview of the recent progress and state of the general theory, refer
to the recent survey [20].

In applications the frequency channel separations ki for two transmitters are often
taken to be inversely proportional to the physical distance i between them [3]. Most
articles assume that the separations are nonincreasing, k1 ≥ k2 ≥ . . . ≥ kp. But this is
not required in the theory. Since in applications one can in principle use any frequen-
cies (channels) in the available continuous frequency spectrum, not only from a discrete
set, Griggs [17] proposed extending integer graph labellings to allow the labels and sep-
arations ki to be nonnegative real numbers. They used the same notation as before,
L(k1, . . . , kp)(G) and λ(G; k1, . . . , kp), but now the span of a real labelling is the differ-
ence between the supremum and the infimum of the labels used, and λ is the infimum
of the spans of such labellings. The authors [19] first explored this concept for simple
graphs, such as paths and cycles, and then began to study optimal labellings for the
lattices considered in this paper. Their early results led to the discovery of properties
for general graphs, which were included in the first, foundational paper [17]. The new
insights and tools developed in that project are applied to lattices in this paper. The
methods described here for lattices in turn are potentially applicable to other classes of

2



graphs.
For graphs of bounded maximum degree, the authors proved the existence of an op-

timal labelling of a nice form, in which all labels belong to a discrete set, denoted by
D(k1, k2, . . . , kp), of linear combinations

∑

i aiki, with nonnegative integer coefficients ai.

Theorem 1.1 (The D-Set Theorem [17]). Let G be a graph, possibly infinite, with finite
maximum degree. Let p be a positive integer, and let ki, 1 ≤ i ≤ p be real numbers
≥ 0. Then there exists a finite optimal L(k1, k2, . . . , kp)-labelling f ∗ : V (G) → [0,∞)
in which the smallest label is 0 and all labels belong to the set D(k1, k2, . . . , kp). Hence,
λ(G; k1, k2, . . . , kp) belongs to D(k1, k2, . . . , kp).

Due to the D-set Theorem, previous optimal integer labelling results are compatible
with new optimal real number labelling results. Some natural properties of distance-
constrained labellings become more evident in the setting of real number labellings. In
particular, the authors made the following observation, which was evident already in
earlier work of Georges and Mauro on integer labellings.

Lemma 1.2 (Scaling). For real numbers d, ki ≥ 0, i = 1, 2, . . . , p,

λ(G; d · k1, d · k2, . . . , d · kp) = d · λ(G; k1, k2, . . . , kp).

More subtle is the result of the authors [17, 24] that λ(G; k1, k2, . . . , kp) is a continuous
function of the separations ki for any graph G (possibly infinite) with finite maximum
degree. Hence, results about the minimum spans λ(G; k1, k2, . . . , kp) for ki being rational
numbers can often be extended into the results for ki being real numbers. Indeed, by
the Scaling Lemma, it is usually enough to obtain results for integer ki. The analysis is
often more clear when considering real number labellings. For any fixed p and any graph
G with finite maximum degree, the authors conjectured [17] that λ(G; k1, k2, . . . , kp) is a
piecewise linear function of real numbers ki, where the pieces have nonnegative integer
coefficients and where there are only finitely many pieces. The authors proved this if G
is finite or if p = 2 [17]. Subsequently, Král’ proved the full conjecture [26].

For the p = 2 case, the Scaling Lemma implies that for k2 > 0, λ(G, k1, k2) =
k2λ(G; k, 1), where k = k1/k2. This reduces the two-parameter function to a one pa-
rameter function, λ(G; k, 1), k ≥ 0. As just discussed, it is a continuous, nondecreasing,
piecewise linear function with finitely many pieces. Further, each piece has the form ak+b
for some nonnegative integers a, b ≥ 0. This paper concerns the function λ(G; k, 1), k ≥ 0,
for the most natural infinite regular planar lattices (also called grid graphs), which are the
triangular (6-regular), square (4-regular), and hexagonal (3-regular) lattices. The optimal
span function is completely determined in the range of natural application, k ≥ 1. It is
solved as well for 0 ≤ k ≤ 1 for the square and hexagonal lattice. For the triangular
lattice, the problem appears to be much tougher for 0 ≤ k ≤ 1, but here portions of it
are solved and bounds are given in the remaining intervals. (See the last section for an
update on this work.) Despite their nice properties, the optimal span function turns out
to be surprisingly complicated for these three regular lattices.
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Section 2 introduces some of the general methods used to obtain optimal lattice la-
bellings. It also reviews some of the known results for labelling infinite trees with con-
ditions at distance two, which are closely related to the lattice results. Sections 3,4 and
5 contain the results for the triangular, square, and hexagonal lattices, respectively. The
detailed proofs, which make up most of the paper, are presented in Sections 5, 6, and 7,
respectively. The paper concludes with ideas for future research directions.

2 Methods

Upper bounds on λ(G; k1, k2, . . . , kp) are generally achieved by constructing an efficient
labelling, sometimes discovered by computer search. Typically this can be achieved by
coordinatizing the vertices of the lattice, giving an explicit labelling for a small piece, and
repeating the pattern, tiling the whole lattice with congruent pieces. Lower bound proofs
are generally more difficult. For these we identify crucial particular values of k where we
need to prove a lower bound on λ(G; k, 1). Such k are rational, say k = a/b for some
integers a, b > 0. By Scaling, it is then equivalent to bound λ(G; a, b) below, which has
the advantage that we need only consider integer L(a, b)-labellings, which have integer
spans. We then seek to prove an integer bound, say λ(G; a, b) ≥ c, by contradiction: If it
is not true, then λ(G; a, b) ≤ c − 1, and there must exist a labelling f of G using labels
from the set {0, 1, . . . , c − 1}. We restrict f to an appropriate finite induced subgraph of
G, and argue that some label, call it L, must be avoided by f . We continue to eliminate
possible labels, until there remains a set of labels for which it can be shown that in fact
no feasible labelling exists. In some cases we had to write a computer program to check
all possible labellings from a specified label set of a particular induced subgraph.

We begin by recording a simple way to expand the set of avoided labels by using
symmetry (which was introduced for the triangular lattice in [4, 14]):

Lemma 2.1 (Symmetry). Let S, L, and k1, k2, . . . , kp be nonnegative integers, and let G
be a graph. If every L(k1, k2, . . . , kp)(G)-labelling f into {0, . . . , S} avoids (respectively,
uses) label L, then every such labelling f avoids (respectively, uses) label S − L.

We next describe a simple method for general graphs G that is surprisingly useful, for
it permits us to extend a bound at some particular value to general values of k:

Lemma 2.2. Let a, b be reals with a > 0.

If λ(G; a, 1) ≤ b, then λ(G; k, 1) ≤

{

b if 0 ≤ k ≤ a
b
a
k if k ≥ a

.

If λ(G; a, 1) ≥ b, then λ(G; k, 1) ≥

{

b
a
k if 0 ≤ k ≤ a

b if k ≥ a
.

In particular, if λ(G; a, 1) = b, then
For 0 ≤ k ≤ a, b

a
k ≤ λ(G; k, 1) ≤ b;

For k ≥ a, b ≤ λ(G; k, 1) ≤ b
a
k.

Proof: If λ(G; a, 1) ≤ b, we have:
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• For 0 ≤ k ≤ a, the result follows from the fact that λ(G; k, 1) is nondecreasing.

• For k ≥ a, we also use the Scaling Lemma to obtain λ(G; k, 1) ≤ λ(G; k, k
a
) =

k
a
λ(G; a, 1) ≤ b

a
k.

The proof is similar, if λ(G; a, 1) ≥ b. �

(a,b) (a,b)

ka 00

(a,b)
(b/a)k

(b/a)k (b/a)k

a k

bb b

0 a k

Figure 1: The bound on λ(G; k, 1)

4

3

2

1

k+2

2

k543210

k+1

3k

2k

Pn, n>=7

5

6

Figure 2: The minimum span λ(Pn; k, 1) for path Pn, n ≥ 7.

It is interesting to compare the lattice problems to those for infinite trees. For integer
d > 0, let Td denote the tree that is regular of degree d. Note that Td is infinite for
d ≥ 2 and T2 is an infinite path. For the path Pn on n vertices, n ≥ 7, the authors [19]
determined the minimum span λ(Pn; k, 1), n ≥ 7 (see Figure 2).

Georges and Mauro [12] obtained the values of λ(Td; k1, k2) for integers k1 ≥ k2 ≥ 0.
In a subsequent paper (with the same title!) Calamoneri, Pelc and Petreschi [8] gave the
values for integers 0 ≤ k1 ≤ k2. By continuity and scaling, these can be restated in terms
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of λ(Td; k, 1) for reals k ≥ 0, which is neater, so we use this format here. For k ≥ 1 the
functions get increasingly complicated as d grows, so we only state formulas for the values
required here, d = 3, 4:

Theorem 2.3 ([12]). For real k ≥ 1 we have

λ(T3; k, 1) =















3k if 1 ≤ k ≤ 3
2

k + 3 if 3
2

< k ≤ 2
2k + 1 if 2 ≤ k ≤ 3
k + 4 if k ≥ 3

Theorem 2.4 ([12]). For real k ≥ 1, we have

λ(T4; k, 1) =















































4k if 1 ≤ k ≤ 4
3

k + 4 if 4
3

< k ≤ 3
2

3k + 1 if 3
2
≤ k ≤ 5

3

6 if 5
3
≤ k ≤ 2

3k if 2 ≤ k ≤ 5
2

k + 5 if 5
2
≤ k ≤ 3

2k + 2 if 3 ≤ k ≤ 4
k + 6 if k ≥ 4

Theorem 2.5 ([8]). For real k, 0 ≤ k ≤ 1, and integer d ≥ 2, we have

λ(Td; k, 1) =







k + (d − 1) if 0 ≤ k ≤ 1
2

(2d − 1)k if 1
2

< k ≤ d
2d−1

d if d
2d−1

≤ k ≤ 1

Next we give two results that relate the optimal spans of regular trees Td to that of
general d-regular graphs G.

Theorem 2.6 ([13]). Let G be a regular graph of degree d ≥ 2. Then for all real k ≥ 1,
we have λ(G; k, 1) ≥ λ(Td; k, 1).

The idea of the proof is that Td is a universal cover of G, so that we can easily define
a graph homomorphism h from Td to G. Then if f is an optimal L(k, 1)-labelling of G,
f ◦ h is an L(k, 1)-labelling of Td, so that

λ(Td; k, 1) ≤ span(f) ≤ span(f ′) = λ(G; k, 1).

The condition k ≥ 1 above is certainly necessary, since it could be for vertices s and
t at distance two that h(s) and h(t) are adjacent, and we would only be certain that
|f(s) − f(t)| ≥ k, which is not strong enough, if k < 1. For instance, let k < 1. If d = 2,
then Td is an infinite path, and we may consider the 2-regular graph G = C3. It is easily
seen (by examining the two neighbors of a vertex with label 0) that λ(T2; k, 1) ≥ 1 + k,
which exceeds λ(C3; k, 1) = 2k.

However, if G is triangle-free, then it cannot be that h(s) and h(t) are adjacent in the
problematic case above.

Theorem 2.7. Let G be a triangle-free regular graph of degree d ≥ 2. Then for all real
k ≥ 0, we have λ(G; k, 1) ≥ λ(Td; k, 1). �
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3 The Triangular Lattice

In a radio mobile network, the large service areas are often covered by a network of nearly
congruent polygonal cells, with each transmitter at the center of a cell that it covers. A
honeycomb of hexagonal cells provides the most economic covering of the whole plane [11]
(i.e., covers the plane with smallest possible transmitter density), where the transmitters
are placed in the triangular lattice Γ∆ (see Figure 3). We fix a point to be the original
point o and impose an xoy coordinate system so that we can name each point by its xoy
coordinate.

xo

y

Figure 3: The Hexagonal Cell Covering and the Triangular Lattice Γ∆

This problem has some history, owing to the fundamental nature of the triangular lat-
tice for channel assignment problems. Griggs [15] formulated an integer L(k, 1)-labelling
problem on the triangular lattice Γ∆ for the 2000 International Math Contest in Modeling
(MCM). Among 271 teams which worked on this problem for four days and wrote papers,
five teams [4, 10, 14, 30, 35] won the contest and got their papers published. As pointed
out in the last section, two student teams observed what became the Symmetry Lemma
2.1. All winners found λ(Γ∆; k, 1) for k = 2, 3, and some gave labellings for k = 1 or for
integers k ≥ 4 that turn out to be optimal, but without proving the lower bound. The
team of Goodwin, Johnston and Marcus [14] proved the optimality for integers k ≥ 4
(quite an achievement in such a short time) and considered the more general problem of
λ(Γ∆; k1, k2) for integers k1, k2. Subsequently, researchers Yeh [25] and Zhu and Shi [36]
took over, each solving some special cases for integers k1 ≥ k2. Calamoneri [6] gave the
minimum span for integers k1 ≥ 3k2, and she gave bounds for k2 ≤ k1 ≤ 3k2.

Here we describe the solution of the L(k, 1)-labelling problem for the triangular lattice
for real numbers k ≥ 1, and we give bounds for 0 ≤ k ≤ 1 (see Figure 3), where
considerable effort has not yet led to a full solution.
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Theorem 3.1. For k ≥ 0 the minimum span of any L(k, 1)-labelling of the triangular
lattice is given by:

λ(Γ∆; k, 1)































































































= 2k + 3 if 0 ≤ k ≤ 1
3

∈ [2k + 3, 11k] if 1
3
≤ k ≤ 9

22

∈ [2k + 3, 9
2
] if 9

22
≤ k ≤ 3

7

∈ [9k, 9
2
] if 3

7
≤ k ≤ 1

2

∈ [9
2
, 16

3
] if 1

2
≤ k ≤ 2

3

∈ [16
3
, 23

4
] if 2

3
≤ k ≤ 3

4

∈ [23
4
, 6] if 3

4
≤ k ≤ 4

5

= 6 if 4
5
≤ k ≤ 1

= 6k if 1 ≤ k ≤ 4
3

= 8 if 4
3
≤ k ≤ 2

= 4k if 2 ≤ k ≤ 11
4

= 11 if 11
4
≤ k ≤ 3

= 3k + 2 if 3 ≤ k ≤ 4
= 2k + 6 if k ≥ 4

.

(1,6)

k

2k+6

(4,14)

(2,8)

(4/3,8)

4/31/2 54321

6k

(3/4,23/4)
(2/3,16/3)

0

2

4

6

8

10

12

16

14

(1/2,9/2)

9k

(4/5,6)

(9/22,9/2)

(1/3,11/3)
(3/7,27/7)

2k+3

(3,11)

3k+2

(11/4,11)

4k

11k

1/3

Figure 4: λ(Γ∆; k, 1) for k ≥ 0.

For the proof of this theorem, go to Section 6. We can use Lemma 2.2 to give a slight
improvement to the stated bounds in the interval that is not yet resolved, 1/3 ≤ k ≤ 4/5:
having the exact values of lambda at k = 2/3, 3/4, 4/5 means that there is a linear lower
bound for k just below these values, of 8k, if k ∈ [ 9

16
, 2

3
]; of 23k

3
, if k ∈ [16

23
, 3

4
]; and of 15k

2
,
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if k ∈ [23
30

, 4
5
]. Similarly, there is a linear upper bound for k just above these values, of 9k,

if k ∈ [1
2
, 16

27
]; of 8k, if k ∈ [2

3
, 23

32
]; and of 23k

3
, if k ∈ [3

4
, 18

23
]. We conjecture that the upper

bound on λ(Γ∆; k, 1) is the actual value for 1
3
≤ k ≤ 1

2
. For 1

2
≤ k ≤ 4

5
, we conjecture that

λ(Γ∆; k, 1) = 5k + 2, a formula which works already in this interval at k = 1
2
, 2

3
, 3

4
and 4

5
.

Incidentally, we compared the formulas for the triangular lattice (which is 6-regular) to
that of the regular infinite tree, T6, and found they are quite different, not worth stating
explicitly here.

4 The Square Lattice

Inside cities the high buildings can be obstacles in the signal path and limit the range
of a cell. A Manhattan cellular system [3] can be used that is modeled by the square
lattice Γ� (see Figure 4). Many graphs corresponding to cellular systems are the induced
subgraphs of the square lattice and the triangular lattice.

Theorem 4.1 is the complete determination of λ(Γ�; k, 1) for real numbers k ≥ 0 (see
Figure 6). Previously, Calamoneri [6] independently gave the minimum (integer) span
λ(Γ�; k1, k2) for integers k1 ≥ 3k2, as well as bounds when k2 ≤ k1 ≤ 3k2. (It should be
noted that the stated bounds in the earlier extended abstract [5] are not entirely correct,
such as the claim that λ(Γ�; 3, 2) = 12, which is contradicted by the L(3, 2)-labelling of
span only 11 from [23]. However, the bounds in the subsequent preprint [6] appear to be
correct.)

xo

y

Figure 5: A Manhattan Network and the Square Lattice Γ�
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Theorem 4.1. For k ≥ 0 the minimum span of any L(k, 1)-labelling of the square lattice
is given by:

λ(Γ�; k, 1) =







































































k + 3 if 0 ≤ k ≤ 1
2

7k if 1
2

< k ≤ 4
7

4 if 4
7
≤ k < 1

4k if 1 ≤ k ≤ 4
3

k + 4 if 4
3

< k ≤ 3
2

3k + 1 if 3
2

< k ≤ 5
3

6 if 5
3
≤ k ≤ 2

3k if 2 < k ≤ 8
3

8 if 8
3
≤ k ≤ 3

2k + 2 if 3 ≤ k ≤ 4
k + 6 if k ≥ 4

.

3

5

7

9

1/2

8

6

4

2

k543210

1

11k/3

(5/3,6)

(4,10)

3k

(8/3,8)

(4/3,16/3) (3/2,11/2)k+4

4k

3k+1

2k+2

k+6

(4/7,4)

(3,8)

(2,6)

(1,4)

(1/2,7/2)

7k

k+3

10

Figure 6: The Minimum Span λ(Γ�; k, 1)

This Theorem, which is proven in Section 7, allows us to answer a question posed by
Georges and Mauro (private communication): does λ(Γ�; k, 1) agree with λ(T4; k, 1) for
all k ≥ 0, as stated in Theorems 2.4 and 2.5? Since Γ� is a triangle-free regular graph
of degree 4, Theorem 2.7 is applicable, and tells us that λ(Γ�; k, 1) ≥ λ(T4; k, 1) for all
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k ≥ 0. Indeed, they almost always agree. However, there is one interval in which they
differ: when 5

2
< k < 3, λ(Γ�; k, 1) = min{3k, 8} is strictly larger than λ(T4; k, 1) = k +5.

5 The Hexagonal Lattice

Another interesting fundamental planar array is the hexagonal lattice ΓH (see Figure 7),
which is the dual of the triangular lattice. We are not aware of its being used in real life
for wireless networks, but it is mentioned in the engineering literature.

We designate a point o to be the origin, and we impose an xoy coordinate system so
that we can name each point by its xoy coordinate, where (i, j) are vertices (see Figure 7).
Vertices (i, j) and (i + 1, j) are always adjacent, while vertices (i, j) and (i, j + 1) are
adjacent if and only if i ≡ j( mod 2). Calamoneri [6] gives the minimum span for the
hexagonal lattice for integers k1 ≥ 2k2 and bounds for k2 ≤ k1 ≤ 2k2. Here we resolve
the remaining open cases and completely determine the span ΓH ; k, 1) for real numbers
k ≥ 0 (see Figure 5).

o

y

x

Figure 7: The Equilateral Triangle Cell Covering and the Hexagonal Lattice ΓH

Theorem 5.1. For k ≥ 0 the minimum span of any L(k, 1)-labelling of the hexagonal
lattice is given by:

λ(ΓH ; k, 1) =







































k + 2 if 0 ≤ k ≤ 1
2

5k if 1
2
≤ k ≤ 3

5

3 if 3
5
≤ k ≤ 1

3k if 1 ≤ k ≤ 5
3

5 if 5
3
≤ k ≤ 2

2k + 1 if 2 ≤ k ≤ 3
k + 4 if k ≥ 3

.

The proof is given in Section 8. We may now compare the spans of the hexagonal
lattice and the regular tree of the same degree, T3. As before, the fact that ΓH is triangle-
free allows us to apply Theorem 2.7 to see that λ(ΓH ; k, 1) ≥ λ(T3; k, 1) for all k ≥ 0.
Comparing the formula above for ΓH to those from Theorems 2.3 and 2.5, we see that
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3

2

1

0

5k

k+2

(1,3)

(1/2,5/2)

(3/5,3)

3k

2k+1

k+4

(3,7)

(2,5)

4

(5/3,5)

k543211/2

10

9

8

7

6

5

Figure 8: The Minimum Span λ(ΓH ; k, 1) for k ≥ 0.

ΓH agrees with T3 except in the range 3
2

< k < 2, where ΓH ; k, 1) = min{3k, 5} is strictly
larger than λ(T3; k, 1) = k + 3.

6 The Proof of the Triangular Lattice Theorem 3.1

Generally, we get upper bounds by constructing feasible labellings. For lower bounds we
derive contradictions on induced subgraphs for labellings of smaller span. Especially, we
denote by B7 (resp., B19, B37) the induced subgraph of Γ∆ on all 7 (resp., 19, 37) vertices
at distance at most one (resp., two, three) from a fixed vertex. Lemma 2.2 is particularly
useful for obtaining lower and upper bounds.

To find an upper bound on λ(Γ∆; k, 1), one construction method is to tile the whole
lattice by a labelled parallelogram described by a matrix of labels. We define a doubly
periodic labelling of the triangular lattice by an m × n labelling matrix A := [ai,j], such
that we label point (i, j) by am−(j mod m), (i mod n)+1, where i, j are integers.For example,
the following labelling (see Figure 9) is defined by the labelling matrix A:
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A =





a11 a12 a13

a21 a22 a23

a31 a32 a33





Then Figure 9 shows how the labels are assigned, where a3,1 is at the vertex with
coordinates (0, 0) in the triangular lattice. The whole lattice is tiled with copies of the
3 × 3 tile as shown.

a12a11

a21 a22 a23

a13

a33a32a31

13

aaa

a a a

aaa11 12

31 3332

21 22 23

Figure 9: The Matrix Labelling

A special case of matrix labelling is defined simply by “arithmetic progressions”: For
positive integers k1, k2, we construct a labelling f ∈ L(k1, k2) by taking f(i, j) = (ai +
bj) mod l, for positive integers a, b, l, When such f is feasible, we obtain λ(Γ∆; k1, k2) ≤
l−1. Some labellings of this kind were given for the triangular and square lattices in [23].
We found some new arithmetic progression labellings by computer search. We begin our
constructions at k = 0:

Proposition 6.1. For 0 ≤ k ≤ 1
3
, we have λ(Γ∆; k, 1) ≤ 2k + 3. For 1

3
≤ k ≤ 9

22
, we

have λ(Γ∆; k, 1) ≤ 11k.

Proof: We get the upper bound λ(Γ∆; k, 1) ≤ 2k + 3 for 0 ≤ k ≤ 1
3

by defining the
labelling matrix

A =

















k + 1 2k 0 k + 3 2k + 2 2
2k + 1 1 k 2k + 3 3 k + 2

0 k + 3 2k + 2 2 k + 1 2k
k 2k + 3 3 k + 2 2k + 1 1

2k + 2 2 k + 1 2k 0 k + 3
3 k + 2 2k + 1 1 k 2k + 3

















.

In particular, λ(Γ∆; 1
3
, 1) ≤ 11

3
, and Lemma 2.2 implies that λ(Γ∆; k, 1) ≤ 11k for k ≥ 1

3
.

�

Next, we can improve upon the 11k upper bound for k between 9/22 and 1/2:
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Proposition 6.2. For 9
22

≤ k ≤ 1
2
, we have λ(Γ∆; k, 1) ≤ 9

2
.

Proof: The upper bound λ(1, 2) ≤ 9 is given in [25] by an arithmetic progression labelling
in L(1, 2): Label point (i, j) by (i + 4j) mod 10. By scaling, this gives the bound on
λ(Γ∆; 1

2
, 1), which then extends to k ≤ 1

2
by Lemma 2.2. �

The upper bound for k between 1
2

and 3
4

follows from the bounds at k = 2
3

and 3
4

by
the fact that λ(Γ∆; k, 1) is nondecreasing (Lemma 2.2):

Proposition 6.3. 1. We have λ(Γ∆; 2, 3) ≤ 16. Hence, λ(Γ∆; 2
3
, 1) ≤ 16

3
.

2. We have λ(Γ∆; 3, 4) ≤ 23. Hence, λ(Γ∆; 3
4
, 1) ≤ 23

4
.

Proof: By computer search of arithmetic progression labellings, we discovered f1 ∈
L(2, 3)(Γ∆) given by f1(i, j) = (2i + 7j) mod 17 and f2 ∈ L(3, 4)(Γ∆) given by f2(i, j) =
(3i + 10j) mod 24. Hence, λ(Γ∆; 2, 3) ≤ 16 and λ(Γ∆; 3, 4) ≤ 23. �

Next we extend the upper bound out to k = 4
3

by applying Lemma 2.2 with the upper
bound on λ(Γ∆; 1, 1). Note that the upper bounds we are giving here for k = 1

2
, 2

3
, 3

4
, and

1 are matched by the lower bounds, so give the correct values of λ(Γ∆; k, 1) for these k.

Proposition 6.4 ([4, 14]). We have λ(Γ∆; 1, 1) = 6.

Hence, λ(G; k, 1) ≤

{

6 if 3
4
≤ k ≤ 1

6k if 1 ≤ k ≤ 4
3

.

Proof: We get the upper bound, λ(B7; 1, 1) ≤ 6, from the arithmetic progression labelling
f(i, j) = (i + 3j) mod 7. The rest follows from Lemma 2.2. �

We now use the construction of numerous MCM teams at k = 2 to extend our upper
bound out to k = 11

4
, and another construction out to k = 4:

Proposition 6.5 ([4, 10, 14, 30, 35]). We have λ(Γ∆; 2, 1) ≤ 8.

Hence, λ(G; k, 1) ≤

{

8 if 4
3
≤ k ≤ 2

4k if 2 ≤ k ≤ 11
4

.

Proof: Label point (i, j) by (2i + 5j) mod 9. �

Proposition 6.6 ([14, 30]). For 3 ≤ k ≤ 4, we have λ(Γ∆; k, 1) ≤ 3k + 2.

Proof: We get the bound by defining the labelling matrix

A =





3k 0 k 2k
1 k + 1 2k + 1 3k + 1

k + 2 2k + 2 3k + 2 2



 . �

Using λ(Γ∆; 3, 1) ≤ 11, this bound of 11 extends down to k = 11
4

by Lemma 2.2 A
construction from the winning MCM papers takes care of all large k:

Proposition 6.7 ([4, 10, 14, 30, 35]). For k ≥ 4, we have λ(Γ∆; k, 1) ≤ 2k + 6.
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Proof We get the labelling from the matrix

A =





2k + 5 0 k + 4
1 k + 2 2k + 6

k + 3 2k + 4 2



 . �

We verify the lower bounds using proofs by contradiction (which can be rather com-
plicated) and Lemma 2.2. We shall postpone the small values, k ≤ 3

4
. We demonstrate

two main methods of proof. The first method, for integers k1, k2, involves the successive
elimination of possible labels, until a contradiction is reached. This method was used
in the contest paper of Goodwin et al. to handle the case of integers k ≥ 4 (see our
comments before Proposition 6.11). We also drew ideas from [36] for the proof of the
following important case.

Proposition 6.8. We have λ(Γ∆; 4, 3) ≥ 24.

Hence, λ(Γ∆; k, 1) =

{

6k if 3
4
≤ k ≤ 4

3

8 if 4
3
≤ k ≤ 2

Proof: The first statement implies the second by Lemma 2.2. It suffices to prove that
λ(Γ∆; 4, 3) ≥ 24. Assume to the contrary that there exists a labelling f ∈ L(4, 3)(Γ∆)
with its labels in {0, 1, . . . , 23}. The series of claims that follows restricts the labels f one
can use until we find that no such f can exist at all, proving the proposition.
Claim 1. The labelling f cannot use label 3 or 20.
Proof: Assume f uses label 3 at v. By the separation conditions, the six labels around
v belong to {7, 8, . . . , 23}, and the difference between any pair of them is at least 3.

v4

v3

v2v1

v

v5 v4

v3

v2v1

v

v5

v6

u1 u2 u3

v1 v2 u4

v6 v v3 u5

v5 v4 u6

u9 u8

u10

u11

u12

u7

Figure 10: The Subgraphs B7 and B19 of the Triangular Lattice.

Among all 49 possible labellings of B7 with central label 0 by symmetry, we found
by computer that there are just five feasible labellings of subgraph B19 that use 3 at
the center (B7, B19 are shown in Figure 10), and none of these can be extended to B37.
Full details are in [24]. By the Symmetry Lemma 2.1, f is also excluded from using the
complementary label 23 − 3 = 20, and the Claim follows.
Claim 2. The labelling f cannot use label 7 or 16.
Proof: Assume f uses label 7 at v ∈ V (Γ∆). Denote the six labels around v by x1 <
x2 · · · < x6. By the separation conditions, xi+1 ≥ xi + 3 for i = 1, 2, . . . , 5, and each
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xi ∈ {0, 1, 2, 11, 12, . . . , 19, 21, 22, 23} (recall we cannot use 3 or 20). Then, even if x1 ≤ 2,
we must have x2 ≥ 11, x3 ≥ 14, x4 ≥ 17, x5 ≥ 21, x6 ≥ 24, a contradiction proving the
Claim.

Now f has no label 3, 7, 16, 20. The proofs of Claims 3, 4, and 5 are similar to the
proof of Claim 2, so we omit the details.
Claim 3. The labelling f cannot use label 6 or 17.
Claim 4. The labelling f cannot use label 10 or 13.
Claim 5. The labelling f cannot use label 11 or 12.

Now the set of all possible labels is {0, 1, 2, 4, 5, 8, 9, 14, 15, 18, 19, 21, 22, 23}. We can-
not find seven distinct labels, such that the difference between any two of them is at least
3. So we cannot label B7, which is a contradiction. Thus, λ(Γ∆; 4, 3) ≥ 24. �

By similar proofs, we have the following bounds (see [24] for full details).

Proposition 6.9. 1. We have λ(Γ∆; 11, 4) ≥ 44.

Hence, λ(Γ∆; k, 1) ≥

{

4k if 2 ≤ k ≤ 11
4

11 if 11
4
≤ k ≤ 3

.

2. We have λ(Γ∆; 1, 2) ≥ 9.

Hence, λ(Γ∆; k, 1) ≥

{

9k if 3
7
≤ k ≤ 1

2
9
2

if k ≥ 1
2

3. We have λ(Γ∆; 2, 3) ≥ 16. Hence, λ(Γ∆; k, 1) ≥ 16
3

for k ≥ 2
3
.

4. We have λ(Γ∆; 3, 4) ≥ 23. Hence, λ(Γ∆; x, 1) ≥ 21
4

for k ≥ 3
4
.

5. We have λ(Γ∆; 4, 5) ≥ 30. Hence, λ(Γ∆; x, 1) ≥ 6 for k ≥ 4
5
.

The next result takes care of all k in the interval (3, 4). It can be derived by continuity
and scaling from the corresponding result by Calamoneri [6] for integer labellings that give
λ(Γ∆; k1, k2) for integers k1, k2 with 3k2 ≤ k1 ≤ 4k2. Her lower bound method involves
looking at a small induced subgraph of the lattice and checking cases according to the
numerical order of the labels. This is similar to the method devised independently by
Georges and Mauro for labelling trees [12]. We discovered the result independently (but
waited on the rest of this project before writing it up here). Because our proof illustrates
a different method with some potential for future value, we include it here. It involves
the successive removal of intervals of possible labels until there is a contradiction.

Proposition 6.10. For 3 < k < 4, we have λ(Γ∆; k, 1) = 3k + 2.

Proof: The upper bound comes from Proposition 6.6. We prove the lower bound by
contradiction: Assume λ(Γ∆; k, 1) = l < 3k + 2. By the D-Set Theorem, there is an
optimal labelling f ∈ L(k, 1)(Γ∆) with span(f) = l < 3k + 2 and f(u) = 0 for some
u ∈ V (Γ∆).
Claim 1. The labelling f cannot use labels in [k − 1, k) ∪ (l − k, l − k + 1].
Proof: Assume f(v) ∈ [k − 1, k) for some v ∈ V (Γ∆). The neighbors of v induce a C6

subgraph, and their labels are all ≥ f(v)+k. Hence, λ(Γ∆; k, 1) ≥ f(v)+k+λ(C6; k, 1) ≥
(k − 1) + k + (k + 3) = 3k + 2 (because λ(C6; k, 1) = k + 3 for k ≥ 3, see [24] ). It gives
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a contradiction. Thus f(v) /∈ [k − 1, k) for all v ∈ V (Γ∆). By symmetry of the labels,
f(v) /∈ (l − k, l − k + 1] for all v ∈ V (Γ∆), which proves the claim.

Now, f(v) ∈ I1 ∪ I2 ∪ I3 for all v ∈ V (Γ∆), where I1 = [0, k − 1), I2 = [k, l − k], I3 =
(l − k + 1, l]. Then |I1| = k − 1 < k, |I2| = l − 2k < k + 2, |I3| = k − 1 < k.
Claim 2. The labelling f cannot use labels in [k, k + 1) ∪ (l − k − 1, l − k].
Proof: Assume f(v) ∈ [k, k + 1) for some v ∈ V (Γ∆). Among the six distinct labels
around v, at most one label is in I1 = [0, k − 1) (because this label is ≤ f(v) − k < 1),
at most two labels are in I2 = [k, l − k] (because these two labels are ≥ f(v) + k ≥ 2k
and |[2k, l − k]| = l − 3k < 2), and at most three labels are in I3 = (l − k + 1, l] (because
|I3| < k, these labels cannot be adjacent). Thus, one label is in I1, two labels are in I2,
and three labels are in I3. The three labels in I3 are for vertices that aren’t adjacent. The
smallest of the three labels then must be next to at least one of the labels in I2. This
smallest label in I3 is ≤ l− 2 < 3k. But the two labels in I2 are ≥ f(v)+ k ≥ 2k, and the
smallest label in I3, being next to one of these, must then be at least 3k, a contradiction.

Thus, f(v) /∈ [k, k + 1) for all v ∈ V (Γ∆). By symmetry of the labels, f(v) /∈
(l − k − 1, l − k], proving the claim.

Now, f(v) ∈ I1 ∪ I ′

2 ∪ I3 = [0, k − 1) ∪ [k + 1, l − k − 1] ∪ (l − k + 1, l], where
I ′

2 = [k + 1, l − k − 1]. Then |I ′

2| ≤ l − 2k − 2 < k.
Claim 3. The labelling f cannot use labels in [k + 1, k + 2) ∪ (l − k − 2, l − k − 1].
Proof: Assume f(v) ∈ [k +1, k+2) for some v ∈ V (Γ∆). Among the six labels around v,
at most two labels are in I1 = [0, k− 1) (because these two labels are ≤ f(v)− k < 2), no
label is in I ′

2 = [k+1, l−k−1] (because if it exists, it would be ≥ f(v)+k ≥ 2k+1 > l−k−1,
a contradiction), and at most three labels are in I3 = (l − 2, l]. We cannot label all six
vertices.

Thus f(v) /∈ [k + 1, k + 2) for all v ∈ V (Γ∆). By symmetry of the labels, f(v) /∈
(l − k − 2, l − k − 1], proving the claim.

Now, f(v) ∈ I1 ∪ I ′′

2 ∪ I3 = [0, k− 1)∪ [k +2, l−k− 2]∪ (l−k +1, l] for all v ∈ V (Γ∆),
where I ′′

2 = [k + 2, l − k − 2]. Then |I ′′

2 | = l − 2k − 4 < k − 2 < 2 for k < 4.
Since f(u) = 0, among the six distinct labels around u (the difference between any

pair of them is at least 1 ), no label is in I1, at most two labels are in I ′′

2 (because |I ′′

2 | < 2),
and at most three labels are in I3 = (l − 2, l] (because |I3| < k means no two of its labels
are for adjacent vertices). So we cannot label all six neighbors of u, a contradiction. �

We next address k ≥ 4. The modelling team of Goodwin, Johnston and Marcus [14],
obtained the correct values for the integer cases, that is, for integers k ≥ 4. It is a pity
that, due to space limitations, the elegant proof in their contest paper was omitted from
the published version! It is the same method we used to prove Proposition 6.8 above.

Moreover, Goodwin et al. gave what is equivalent to the correct formula, λ(Γ∆; k1, k2) =
2k1 + 6k2, for arbitrary integers k1, k2 with k1 > 6k2 + 1. By scaling and continuity, this
implies λ(Γ∆; k, 1) = 2k + 6, for all real k ≥ 6. There appear to be some technical errors
in their lower bound proof (quite understandable, since they had just four days to pro-
duce their entire paper from scratch!). However, we discovered that if one uses the D-Set
Theorem, some small changes will fix their proof. We present below our own verification
of the lower bound, which we need more generally for all real k ≥ 4. We follow this with
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the much shorter proof for k ≥ 6 based on the method of Goodwin et al. that does not
depend on the structure of the triangular lattice, so that it can be used on other graphs,
for sufficiently large real k, provided that there is a linear bound for all large integers k.

Proposition 6.11. For k ≥ 4 we have λ(Γ∆; k, 1) ≥ 2k + 6.

Proof: Assume for contradiction that λ(Γ∆; k, 1) = l < 2k + 6 for some k ≥ 4. By the
D-Set Theorem, there is an optimal labelling f ∈ L(k, 1)(Γ∆) with span and largest label
l and smallest label 0.
Claim 1. The labelling f cannot use labels in [3, k).
Proof: If some f(v) ∈ [3, k), then the labels on the vertices of the C6 neighboring v are
all at least f(v) + k. The largest of these labels is then at least f(v) + k + λ(C6; , k, 1) ≥
3 + k + (k + 3) = 2k + 6 > l, a contradiction since λ(C6; , k, 1) = k + 3 [24, 19]), proving
the Claim.

By symmetry, none of the labels in f belongs to (l − k, l − 3]. So all labels belong to
the union I1 ∪ I2 ∪ I3, where I1 = [0, 3), I2 = [k, l − k], and I3 = (l − 3, l].
Claim 2. The labelling f cannot use labels in [k, k + 1).
Proof: Assume some label f(v) ∈ [k, k +1). At most one of the six vertices next to v has
a label in I1 because any such label is ≤ f(v) − k < 1. At most three of the six vertices
have labels in I3 as any two must be at least one apart.

First suppose three of these labels are in I3. They cannot be at adjacent vertices, so
suppose they are at vertices v1, v3, and v5, with reference to the graph B7 in Figure 10.
Two of the other labels next to v must belong to [f(v)+k, l−k], so the larger of the two,
say it is at v2, must be at least f(v) + k + 1 ≥ 2k + 1. Then both f(v1) and f(v3) are at
least f(v2) + k, and the larger of the two is at least f(v2) + k + 1 ≥ 3k + 2 ≥ 2k + 6 > l,
a contradiction with k ≥ 4.

Next suppose just two of these labels next to v lie in I3. The two vertices are not
adjacent. There must be at least three labels next to v in [f(v) + k, l − k], and, because
this interval has length < k, no two of the three are adjacent–say they are at v1, v3, v5.
The largest of the three labels is at least f(v) + k + 2, and its neighbor with label in I3

has label at least f(v) + k + 2 + k ≥ 3k + 2, which is again a contradiction.
Finally, suppose at most one label next to v lies in I3. Then at least four labels next

to v are in [f(v) + k, l − k], so some two are adjacent–but this is impossible since they
must differ by at least k (as (l−k)− (f(v)+k) ≤ l−3k < 2 < k). This proves the Claim.

Hence, f has no labels in [k, k + 1) nor, by symmetry, in (l− k − 1, l− k]. So all of its
labels belong to I1 ∪ I ′

2 ∪ I3, where here I ′

2 = [k + 1, l − k − 1].
Claim 3. The labelling f cannot use labels in [k + 1, k + 2).
Proof: Suppose some f(v) ∈ [k + 1, k + 2). Then labels used next to v in I1 are at most
f(v) − k < 2, so there can be at most two such labels. On the other hand, at most three
labels next to v can come from I3. Then some label used next to v lies in I ′

2. But such
a label must be at most l − k − 1 and at least f(v) + k ≥ 2k + 1 ≥ k + 5 > l − k − 1, a
contradiction proving the Claim.

By symmetry, no label of f belongs to (l − k − 2, l − k − 1]. Then all of its labels
belong to I1 ∪ I ′′

2 ∪ I3, where I ′′

2 = [k + 2, l − k − 2]. Let u be a vertex with f(u) = 0.
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Then its six neighbors all have labels in I ′′

2 ∪ I3. But I3 can contain at most three of the
labels, as they must be at least one apart from each other. So some three of the labels
are in I ′′

2 . However, (l − k − 2)− (k + 2) = l − 2k − 4 < 2, so I ′′

2 can contain at most two
of the labels, a contradiction, so no such f exists. �

Here is the shorter proof of the restriction of the Proposition above to k ≥ 6.

Proposition 6.12. For k ≥ 6 we have λ(Γ∆; k, 1) ≥ 2k + 6.

Proof: Let us assume the result of Goodwin et al. that λ(Γ∆; k, 1) ≥ 2k + 6 for integers
k ≥ 4. Now consider any non-integer k > 6. Let m = dke − k, so that m ∈ (0, 1) and
k + m = dke ≥ 7. Hence, λ(Γ∆; k + m, 1) ≥ 2k + 2m + 6.

Assume for contradiction that λ(Γ∆; k, 1) < 2k + 6. Let f be an optimal labelling
in L(k, 1)(Γ∆) as in the D-Set Theorem, with minimum value 0 at some vertex u and
maximum value span(f) at some vertex w. Define a labelling f1 by f1(v) = f(v) +
m bf(v)/kc. We can check that f1 ∈ L(k + m, 1)(Γ∆). Further, the minimum value of
f1 is 0, which occurs at u, and its maximum occurs at v, which thus has value f1(v) =
span(f1) < (2k + 6) + m b(2k + 6)/kc = 2k + 6 + 2m (since k > 6 by assumption). This
contradicts the lower bound in the previous paragraph. �

We cannot see how to extend the argument in the last proof to work for k between 4 and
6. It remains to do the lower bound for small k. Similar to the proof of Proposition 6.10,
we can show (see [24]):

Proposition 6.13. For 0 < k ≤ 1
2
, we have λ(Γ∆; k, 1) ≥ 2k + 3. Hence λ(Γ∆; k, 1) =

2k + 3 for 0 ≤ k ≤ 3
7
. �

This completes the proof of Theorem 3.1.

7 The Proof of the Square Lattice Theorem 4.1

We begin by establishing the claimed upper bounds on λ(Γ�; k, 1) for reals k ≥ 0. In
many cases, there is an explicit construction based on a modular construction, in which a
particular matrix of labels is used for a rectangle of lattice points and then repeated over
and over. We define a doubly periodic labelling of the square lattice by an m×n labelling
matrix A := [ai,j], such that we label point (i, j) by am−(j mod m), (i mod n)+1, where i, j
are integers.

Proposition 7.1. For 0 ≤ k ≤ 1
2
, we have λ(Γ�; k, 1) ≤ k + 3.

Proof: Starting from an optimal L(0, 1)-labelling and shifting up some labels by k, in
order to satisfy the L(k, 1) conditions, we constructed with the following labelling matrix
that attains the upper bound:

A =









0 k 1 k + 1
k + 3 2 k + 2 3

1 k + 1 0 k
k + 2 3 k + 3 2









. �
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Next, applying the result above at k = 1/2, Lemma 2.2 yields this upper bound for
larger k:

Proposition 7.2. For 1
2
≤ k ≤ 4

7
, we have λ(Γ�; k, 1) ≤ 7k. �

Van den Heuvel, Leese and Shepherd [23] gave a circular integer labelling result which is
helpful for our real number labellings, as it suggests some arithmetic progression labellings
that turn out to be optimal for our problem:

Proposition 7.3. We have
λ(Γ�; 1, 1) = 4,
λ(Γ�; 2, 1) ≤ 6,
λ(Γ�; 3, 1) ≤ 8, and
λ(Γ�; 3, 2) ≤ 11.

Proof: From [23], we have these labellings:
λ(Γ�; 1, 1) ≤ 4 by labelling f with f(i, j) = (i + 2j) mod 5
λ(Γ�; 2, 1) ≤ 6 by labelling f with f(i, j) = (2i + 3j) mod 7
λ(Γ�; 3, 1) ≤ 8 by labelling f with f(i, j) = (3i + 4j) mod 9
λ(Γ�; 3, 2) ≤ 11 by labelling f with f(i, j) = (3i + 5j) mod 12.
It is easy to show λ(Γ�; 1, 1) ≥ 4. �

Applying the preceding two propositions and Lemma 2.2, we have the following upper
bounds.

Proposition 7.4. We have λ(Γ�; k, 1) ≤























4 if 4
7
≤ k ≤ 1

4k if 1 ≤ k ≤ 5
3

6 if 5
3
≤ k ≤ 2

3k if 2 ≤ k ≤ 8
3

8 if 8
3
≤ k ≤ 3

. �

The upper bounds in the proposition above are weaker than the known lower bounds
for 4

3
< k < 5

3
. Let us consider one value in this gap, k = 11/8. By Proposition 7.4, we

get the upper bound λ(Γ�; 11
8
, 1) ≤ 11

2
, so by the Scaling Lemma, λ(Γ�; 11, 8) ≤ 44. To

determine whether this is best-possible, we searched for a better labelling: We managed
to construct a L(11, 8)-labelling based on a matrix A in which the entries are elements
of the D-set in [0, 43]. Since 43 can be expressed in terms of 11 and 8 in just one way,
43 = 11 + 4 × 8, we were able to extend this matrix labelling to cases in the range
4
3
≤ k ≤ 3

2
, as given in the following proposition. We next took the resulting labelling at

k = 3
2
, and found a way to extend it to the range 3

2
≤ k ≤ 5

3
in a way that maintains the

order of the labels, while expanding their pairwise differences, to maintain feasibility as k
grows, giving Proposition 7.6. Notice that these formulas for λ(Γ�; k, 1) around k = 11/8
are not of the simple form ck for some c, so we could not simply apply Lemma 2.2.

Proposition 7.5. For 4
3
≤ k ≤ 3

2
, we have λ(Γ�; k, 1) ≤ k + 4.
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Proof: The upper bound is attained by the following labelling matrix:









5 k 4 0 3 k+4 2 k+3 1 k+2 0 k+1
0 3 k+4 2 k+3 1 k+2 0 k+1 5 k 4
2 k+3 1 k+2 0 k+1 5 k 4 0 3 k+4

k+2 0 k+1 5 k 4 0 3 k+4 2 k+3 1









. �

Proposition 7.6. For 3
2
≤ k ≤ 5

3
, we have λ(Γ�; k, 1) ≤ 3k + 1.

Proof: The upper bound is attained by the following labelling matrix:









2k + 2 k 2k + 1 0 2k 3k + 1 2 3k 1 k + 2 0 k + 1
0 2k 3k + 1 2 3k 1 k + 2 0 k + 1 2k + 2 k 2k + 1
2 3k 1 k + 2 0 k + 1 2k + 2 k 2k + 1 0 2k 3k + 1

k + 2 0 k + 1 2k + 2 k 2k + 1 0 2k 3k + 1 2 3k 1









. �

For larger k, we first adapt the construction given by Calamoneri for integers k1, k2

with 3k2 ≤ k1 ≤ 4k2. We then present a simple matrix L(k, 1)-labelling that is optimal
for all k ≥ 4.

Proposition 7.7. For 3 ≤ k ≤ 4 we have λ(Γ�; k, 1) ≤ 2k + 2.

Proof: Adapting the construction in [6], the upper bound is attained by the L(k, 1)-
labelling matrix:

A =





2k + 2 k 2k + 1 2 2k 1 k + 2 0 k + 1
k + 2 0 k + 1 2k + 2 k 2k + 1 2 2k 1

2 2k 1 k + 2 0 k + 1 2k + 2 k 2k + 1



 . �

Proposition 7.8. For k ≥ 0 we have λ(Γ�; k, 1) ≤ k + 6.

Proof: The upper bound is attained by the following labelling matrix:

A =









0 k + 3 1 k + 4
k + 6 2 k + 5 3

1 k + 4 0 k + 3
k + 5 3 k + 6 2









. �

We now consider the lower bounds to complete the proof of the formulas. It is helpful
to compare our graph to T4, the regular infinite tree of degree 4 discussed in Section 2
By Theorem 2.7 we get that for all k ≥ 0, λ(Γ�; k, 1) ≥ λ(T4; k, 1). From the values of
λ(T4; k, 1) presented in Theorems 2.4 and 2.5, we obtain the claimed values of λ(Γ�; k, 1)
for all k outside the interval [ 5

2
, 3]. In this remaining interval, we must improve the lower

bound on λ(Γ�; k, 1). In view of Lemma 2.2, all that remains to prove the theorem is to
establish the lower bound at k = 8/3:
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Figure 11: The Subgraph B12 of the Square Lattice

Proposition 7.9. We have λ(Γ�; 8, 3) ≥ 24. Consequently, for 2 ≤ k ≤ 3, we have

λ(Γ�; k, 1) ≥

{

3k if 2 ≤ k ≤ 8
3

8 if 8
3
≤ k ≤ 3

.

Proof: The second statement follows from the first by Lemma 2.2.
Assume for contradiction that the first statement fails. Then there exists a labelling

f ∈ L(8, 3)(Γ�) with all labels in {0, . . . , 23}. The series of claims that follows restricts the
labels f one can use until we find that no such f can exist at all, proving the proposition.

Let v0 = (i0, j0) ∈ V (Γ�). Let B12 be the induced subgraph as in Figure 11.
Claim 1. The labelling f cannot use label 7 or 16.
Proof: Assume f(v0) = 16. Since no label can exceed 23, the four distinct labels around
v0 are each ≤ f(v0) − 8 = 8, which is impossible since any two must be at least 3 apart.
By the Symmetry Lemma, labelling f does not use the complementary label 23− 16 = 7,
and the Claim follows.
Claim 2. The labelling f cannot use label 8 or 15.
Proof: Assume some f(v0) = 8. The four labels around v0 are each ≥ f(v0) + 8 = 16 or
≤ f(v0) − 8 = 0, hence are 0 or ≥ 17 (because by Claim 1, f cannot use 16). Suppose
they are labels x < y < z < w. Since the difference between any pair of the four labels
is ≥ 3, it must be that x = 0, y = 17, z = 20, w = 23. Suppose without loss of generality
that f(v7) = y = 17. Since f(v7) + 8 = 25 is too large, it must be that the neighboring
labels f(v6), f(v8), f(v10) are all ≤ f(v7)− 8 = 9, and hence, all ≤ f(v0)− 3 = 8− 3 = 5.
But this is impossible since the difference between any pair of the three labels must be at
least 3. By symmetry, we can also exclude 15. This proves the Claim.

Now f has no label 7, 8, 15, 16. The proofs of Claims 3 and 4 are similar to the proof
of Claim 2, so we omit the details.
Claim 3. The labelling f cannot use label 9 or 14.
Claim 4. The labelling f cannot use label 11 or 12.

By the D-Set Theorem, there exists optimal labelling f ∗ ∈ L(8, 3)(Γ�) with smallest
label 0 and all labels in D8,3∩[0, 23] = {0, 3, 6, 8, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}.
Applying the Claims above to f ∗, we find that f ∗(v) ∈ {0, 3, 6, 17, 18, 19, 20, 21, 22, 23}
for all v ∈ V (Γ�).

Let f(v0) = 0. The four labels around v0 are each ≥ f(v0) + 8 = 8. Their labels
belong to {17, 18, 19, 20, 21, 22, 23}, a contradiction since the difference between any pair
of them is ≥ 3. Thus, it must be that λ(Γ�; 8, 3) ≥ 24. �
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This completes the proof of the formulas for the square lattice, Theorem 4.1.

8 The Proof of the Hexagonal Lattice Theorem 5.1

We will find the upper bound on λ(ΓH ; k, 1), k ≥ 0, by constructions and Lemma 2.2.
One construction method is to tile the whole lattice by a labelled parallelogram described
by a matrix of labels. We define a doubly periodic labelling of the Hexagonal Lattice
by an m × n labelling matrix A := [ai,j], for m, n even, such that we label point (i, j)
by We define a doubly periodic labelling of the square lattice by an m × n labelling
matrix A := [ai,j], such that we label point (i, j) by am−(j mod m), (i mod n)+1, where i, j are
integers. For example, the following labelling (see Figure 12) is defined by the labelling
matrix A, where

A =









a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46









Then Figure 12 shows how the labels are assigned, where a4,1 is at the vertex with
coordinates (0, 0) in the hexagonal lattice. The whole lattice is tiled with copies of the
4 × 6 tile as shown:

34

a26

a36

a 31

a 41

33

43

a
a

45

a35
a

a42 a44 46a

a

a12 a14 a16

a11

a 21

a
a23

13 a15
a25

a22

a32

a24

22

16

26

a

a

14

a34

a 44

a15

a25

a45 a46

a3635a

a 42

a 24

aa 11

a21

a 31

a41

a12

a

a32

a13

a 23

a 33

a43

Figure 12: The Doubly Periodic Labelling by Matrix A

Proposition 8.1. For 0 ≤ k ≤ 1
2
, we have λ(ΓH ; k, 1) ≤ k + 2.

Proof: We use the labelling matrix below, also shown in Figure 13, with the values a, b, c
taken to be k, k + 1, k + 2, respectively:

A =

[

0 a 1 b 2 c
b 2 c 0 a 1

]

Incidentally, this labelling was obtained by doing a first-fit labelling on one row, then
on the next row, and so on. �

We have λ(ΓH ; 1
2
, 1) ≤ 5

2
. By Lemma 2.2, it follows that:
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Figure 13: Optimal L(k, 1)-labelling of ΓH for 0 ≤ k ≤ 1
2

or k ≥ 3.

Proposition 8.2. For 1
2
≤ k ≤ 3

5
, we have λ(ΓH ; k, 1) ≤ 5k. �

Next we consider k = 1:

Proposition 8.3. We have λ(ΓH ; 1, 1) ≤ 3. Hence, λ(ΓH ; k, 1) ≤

{

3 if 3
5
≤ k ≤ 1

3k if 1 ≤ k ≤ 5
3

Proof: Because of Lemma 2.2, it is enough to prove the upper bound at k = 1.
We will prove λ(ΓH ; 1, 1) ≤ 3 by using either of the following labelling matrices. Each

was obtained by a first-fit labelling process, doing one row at a time. (See Figure 14.)

A =









0 2 1 3
1 2 0 3
1 3 0 2
0 3 1 2









or A =

[

0 2 1 3
1 3 0 2

]

�
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Figure 14: Optimal L(1, 1)-labelling of ΓH

Proposition 8.4. For 2 ≤ k ≤ 3, we have λ(ΓH ; k, 1) ≤ 2k + 1. For 5
3
≤ k ≤ 2, we have

λ(ΓH ; k, 1) ≤ 5.
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Figure 15: Optimal L(k, 1)-labellings of ΓH for 2 ≤ k ≤ 3.

Proof: The second statement follows immediately from the first at k = 2. For 2 ≤ k ≤ 3,
one can prove λ(ΓH ; k, 1) ≤ 2k+1 by the matrix labelling with entries shown in Figure 15
(left). A simpler construction can be obtained by adapting a construction of Calamoneri
[6], originally given for the corresponding integer labelling. This gives the following matrix
labelling, shown in Figure 15 (right):

A =

[

1 k + 1 2k + 1 1 k + 1 2k + 1
2k 0 k 2k 0 k

]

. �

Next we treat large k:

Proposition 8.5. For k ≥ 3, we have λ(ΓH ; k, 1) ≤ k + 4.

Proof: Following the construction in [6] for the corresponding integer labelling, we again
have the matrix labelling as in Figure 13, where this time a = k + 4, b = k + 3, c = k + 2:

A =

[

0 a 1 b 2 c
b 2 c 0 a 1

]

. �

We next verify the lower bounds. By Theorem 2.7 we get that for all k ≥ 0,
λ(Γ�; k, 1) ≥ λ(T3; k, 1). From the values of λ(T3; k, 1) presented in Theorems 2.3 and 2.5,
we obtain the claimed values of λ(Γ�; k, 1) for all k outside the interval ( 3

2
, 2). In this re-

maining interval, we must improve the lower bound on λ(Γ�; k, 1). In view of Lemma 2.2,
all that is needed to complete the proof is to establish the lower bound at k = 5/3:

Proposition 8.6. We have λ(ΓH ; 5, 3) ≥ 15. Hence, λ(ΓH ; k, 1) ≤

{

3k if 1 ≤ k ≤ 5
3

5 if 5
3
≤ k ≤ 2

Proof: It suffices to prove the first statement, due to Lemma 2.2. We will show
λ(ΓH ; 5, 3) ≥ 15.

Assume otherwise, λ(ΓH ; 5, 3) < 15. Then there exists a L(5, 3)-labelling f with all
labels in the set {0, . . . , 14}.
Claim 1. The labelling f cannot use labels 4 or 10.
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Proof: Assume f(v) = 4 for some v ∈ V (ΓH). The three distinct labels around v are
≥ f(v) + 5 = 9. Suppose they are labels x1 < x2 < x3. Since any pair of the three labels
differ by at least 3 (because they are at distance two each other), one of them is ≥ 15, a
contradiction. By the Symmetry Lemma, f cannot use label 14 − 4 = 10. This proves
the Claim.
Claim 2. The labelling f cannot use labels 5 or 9.
Proof: Assume f(v) = 5 for some v ∈ V (ΓH). The three labels around v are ≤ f(v)−5 =
0 or ≥ f(v) + 5 = 10. But 10 is excluded by the previous Claim. Since any pair of the
three labels differ by at least 3 it must be that the three labels used are 0, 11, 14. Then
the three neighbors of the label 11 are each ≤ 11−5 = 6 and any two are at least 3 apart,
so they need to be 0, 3, and 6. But this is a contradiction since one of them is f(v) = 5.
By symmetry, we must also exclude label 9, and the Claim follows.

Now f has no label 4, 5, 9, 10. The proofs of Claims 3 and 4 are similar to the proof
of Claim 2, so we omit the details.
Claim 3. The labelling f cannot use label 7.
Claim 4. The labelling f cannot use labels 1, 2, 12, or 13.

Now all labels of f belong to {0, 3, 6, 8, 11, 14}, call this set L.
Claim 5. The labelling f cannot use labels 3 or 11.
Proof: Assume f(v) = 3 for some v ∈ V (ΓH). The three labels around v are ≥ f(v)+5 =
3+5 = 8. They are 8, 11, 14 as in Figure 16. The three neighbors of the label 11 are ≤ 6,
with one of them f(v) = 3 and the others are 0, 6. By the separation conditions and set
L, we have c, d ∈ {0, 14}. We have two cases.

Case 1. a = 0, b = 6. Since a = 0, then c = 14. We cannot find a feasible label g in
L, a contradiction.

Case 2. a = 6, b = 0. Since b = 0, then e ∈ {6, 8}, f = 0, so that d = 14. We cannot
find a feasible label h in L, a contradiction proving the Claim.

f(v)=3

e

11

dc

h8g

a f

14

b

f
f(v)=3

14

8 d

a 11

b e

g c h

Figure 16: The L(5, 3)-labelling of a Subgraph of ΓH

Now all labels of f belong to {0, 6, 8, 14}. We cannot label the induced subgraph K1,3,
a contradiction. �

This completes the proof of the span formulas for ΓH .
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9 Concluding Remarks

Despite considerable effort, we failed to complete the determination of all values λ(Γ∆; k, 1)
for 1

3
< k < 4

5
. We believed that our upper bounds would be the correct values for

k ∈ [1/3, 1/2], while the line 5k + 2 would be correct for k ∈ [1/2, 4/5]. However, while
preparing our revision of this manuscript, Král’ and Škoda (building on our earlier version
in circulation) found this is not entirely the case [27]. They completed the determination
of λ(Γ∆; k, 1). Altogether, the graph has eleven linear pieces in the interval [0, 1].

As with the graphs of λ(Γ�; k, 1) and λ(ΓH ; k, 1), the graph of λ(Γ∆; k, 1) has the
property that successive linear pieces alternately turn up and down, that is, though con-
tinuous and nondecreasing in k, the concavity keeps alternating between up and down.
We continue to be puzzled why this is so.

It is natural now to extend this investigation to conditions at distance three, where
very little is known. One definite result in this direction is given by Bertossi, Pinotti, and
Tan [3], who determined that λ(Γ∆; 2, 1, 1) = 11. Their construction that achieves the
optimal value, 11, can be described by a labelling matrix:

A =

















0 10 2 6 1 9
4 8 5 11 3 7
2 6 1 9 0 10
5 11 3 7 4 8
1 9 0 10 2 6
3 7 4 8 5 11

















.

On the other hand, it is easy to find 12 vertices in Γ∆ such that the maximum distance
is three, and so λ(Γ∆; 1, 1, 1) ≥ 11. It follows that λ(Γ∆; k, 1, 1) = 11 for 1 ≤ k ≤ 2.

Several papers in engineering consider labellings with conditions at distance at most
p with k1 = k ≥ k2 = k3 = · · · = kp = 1. Bertossi et al. [3] and then Panda et al. [31]

independently obtained a lower bound for the square lattice, λ(Γ�; 1, 1, . . . , 1) ≥ bp2+2p

2
c.

This problem corresponds to integer channel assignments such that identical channels
must be at least distance p+1 apart in the lattice. Investigating graph models of wireless
networks, Dubhashi et al. [9] present bounds on the minimum span for L(2, 1, 1, · · · , 1)-
labelling of the p-dimensional square lattice (grid), in which V (G) = Z

p, and two vertices,
say (x1, x2, . . . , xp) and (y1, y2, . . . , yp), are joined by an edge whenever

∑p

i=1 |xi − yi| = 1.
We are continuing this project by seeking to describe all optimal L(k, 1)-labellings

of the three regular lattices, and by searching for optimal labellings with nice symmetry
properties, such as being periodic or doubly periodic.

For further progress on the general theory of real-number graph labellings, the reader
is recommended to check the paper of Král’ [26]. For an overview of the recent progress
and state of the theory, refer to the recent survey [20].

The authors need to acknowledge the encouragement and sharing of ideas by their
international research colleagues during this long-running project. Particular thanks go
to Tiziana Calamoneri, Gerard Chang, John Georges, Dan Král’, Jan Kratochv́ıl, Daphne
Liu, David Mauro, Fred Roberts, and Roger Yeh. We are indebted to the dedicated and
diligent referees for their many thoughtful editorial suggestions.
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