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Abstract

Consider the permutation 7 = (7y,...,7,) of 1,2,...,n as being placed on
a circle with indices taken modulo n. For given k < n there are n sums of
k consecutive entries. We say the maximum difference of any consecutive
k-sum from the average k-sum is the discrepancy of the permutation. We
seek a permutation of minimum discrepancy. We find that in general the
discrepancy is small, never more than k£ + 6, independent of n. For g =
ged(n, k) > 1, we show that the discrepancy is < 7/2. For g = 1 it is more
complicated. Our constructions show that the discrepancy never exceeds k /2
by more than 9 for large n, while it is at least k/2 for infinitely many n.
We also give an analysis for the easier case of linear permutations, where we
view the permutation as written on a line. The analogous discrepancy is at
most 2 for all n, k.
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1 Introduction

Is it possible to arrange the integers 1 through n on a circle so that, for
a given k, any sum of k consecutive integers on the circle is close to the
expected value of k(n + 1)/27 We can do remarkably well.

An exercise in the discrete math text by C.L.Liu [2] gives the following
problem for a modified roulette wheel: Show that if numbers 1 through 36
are placed on a wheel in any order, some three consecutive numbers add up
to at least 56.

The average of the 36 numbers is 37/2, so the average of the sums of the
36 consecutive triples is 111/2 = 55.5 for any ordering. Since the sums are
all integer, some triple sum is at least 56.

Not as obvious is whether this value, 56, is best possible. When Liu’s
problem was assigned by one of the authors to a class several years ago,
students were asked to construct a circular permutation of 1 through 36 with
the maximum of the sums of consecutive triples as small as possible. Keith
Morris produced one with maximum just 57. This is optimal, since a more
in-depth analysis shows that 56 is not possible.

The natural extension of the problem is to investigate the minimum, over
all circular permutations of 1 through n, of the maximum sum of any k& con-
secutive terms. This was the subject of a Master’s thesis by Morris [3], who
determined exact values of the minimum maximum consecutive k-sum for
small n, k, and obtained various bounds [3]. Note that the minimum maxi-
mum consecutive k-sum will always be at least the average k-sum, k(n+1)/2.
On the other hand, a permutation that achieves the minimum maximum con-
secutive k-sum may have k-sums far below the average. Indeed, this is the
case with some of the constructions of Morris.

Here we investigate permutations where all consecutive k-sums are close
to the average. This seemed the correct measure of evenness and is in line
with most discrepancy measures

Let S, denote the set of permutations 7 = (m,...,7,) of {1,...,n},
viewed circularly, so that indices are always evaluated modulo n. For k < n
we define the discrepancy of m € S,, by

k
1
disc(m, k) := max | Y miyj — w :
i=1

i<i<n

The discrepancy is the minimum absolute difference of the k-sums from their
average. We are here interested in minimizing the discrepancy, so we wish
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to compute
disc(n, k) := min disc(m, k).

WESTL

We have succeeded in constructing m with small discrepancy, so that the
consecutive k-sums are all quite close to the average. This is in contrast
to most discrepancy problems where a very non trivial lower bound on dis-
crepancy often arises. In fact, for Liu’s roulette case, Theorem 4 shows that
disc(36,3) = 3/2.

Let us begin with a few simple observations. First, the complement of the
terms in a consecutive k-sum form a complementary consecutive (n—k)-sum,
so it suffices to analyze the case that n > 2k, and this is assumed throughout
the paper unless stated otherwise. Second, the discrepancy is strictly positive
for n > k. Third, by looking at the average sum, k(n+ 1)/2, we see that the
discrepancy is integer, when k is even or n is odd, while it is a half-integer
(an integer plus 1/2) when k is odd and n is even.

To analyze the rise and fall of k-sums for a given permutation 7, we define
the n-tuple

d = (dy,ds,...,d,),

where
di =Tiyp — 7

is the difference between consecutive k-sums:
di = (Tig1 + - Tigk) — (T + -+ Tigr1)-

Adopting notation for strings, we use a’ to mean the string a is repeated j
times, such as (2, (1,—1)3,—2) for the string (2,1,—1,1,—1,1,—1, —2).
The d;’s give us the following bounds on the discrepancy of 7:

Proposition 1

t
sakxz < disc(m, k) < made (1)

Proof: Observe that !_ d; = = Yk mi — X w4 is the difference be-
tween two k-sums. The ﬁrst inequality follows, since, at best, the average
k-sum, k(n + 1)/2, lies halfway in between.

The difference between the maximum and minimum consecutive k-sums
is the sum on the right, because we maximize over the choices of s,t¢. The
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average k-sum lies strictly between the minimum and the maximum, which
yields the strict inequality. [ |

For example with 7 = (1,6,3,2,5,4,7) with n = 7 and k = 3 we find
that 3 = } max,,>"_, d; < 4 = disc(m, k) < 6 = max,,; Y%, d;

Consider a permutation 7 € S,. It is now natural to look at the se-
quence T;, ik, Tit2k, - - - Since in this order the values of d; are made more
obvious. When the indices are reduced modulo n, what happens depends on
ged(n, k) = g. We obtain g finite loops of length n/g:

loop(i) = (i, Titky - - - » Witk (n/g—1)k), 1<:1<g.

Note that loop() occupies the n/g positions m;, Titg, Titag, - - - Tit(n/g—1)g, DUt
we wish to use the order above. To describe 7, we need to specify the g loops
loop(7).

The results we obtain can be summarized by saying that, apart from the
number theoretic conditions of Theorem 11, we can achieve unexpectedly
small discrepancy. Section 2 contains a number of special constructions. We
show that disc(n,2) = 1 and disc(n, 3) < 2. Section 3 provides upper bounds
when n and k£ have a common factor. For even k, we find disc(mk, k) = 1, and
for odd k, disc(mk, k) < 2. If g := ged(n, k) is even, we have disc(n, k) < 2,
while for odd g > 1, we have disc(n, k) < 7/2. This section also contains a
pretty number-theoretical lemma that is interesting on its own (Lemma 8).

Section 4 contains the main general results when g := ged(n, k) =
Lower bounds are provided in Theorem 11: Let n = ak + r, where a > 1,
ged(k,r) =1, and 1 <7 < n; Let s,b be the smallest positive integers such
that rs = bk £ 1; Then disc(n, k) > 3%. A special case yielding the largest
lower bound is when n = +1(mod k), in which case disc(n, k) > k/2. Using
the result disc(n,2) = 1, it follows that disc(n, k) = £ for such n when & is
even. For g = 1 and odd k, we show that disc(n, k) < k+6. In fact, for fixed
odd k and sufficiently large n, disc(n, k) < k/2 + 9. We offer the conjecture
that the lower bound in Theorem 11 may be essentially exact.

In Section 5, we consider the simpler problem of linear discrepancy, re-
stricting to linear permutations (not reducing indices modulo n). As before,
we can define the linear discrepancy of 7 € S,, by

k(n+1)
ldisc(r, k) = Jnax Zmﬂ —5 |




We must impose the restriction £ < n for this to make sense. The definition
can be a little suspect since the average of these restricted consecutive k-
sums may not be w In continuous versions of these k-sums, there can
be interesting counterintuitive examples [1]. We define 1disc(n, k) in analogy
to disc(n, k)

Idisc(n, k) := ne%n Idisc (7, k).

We are able to show that for any n, k, the linear discrepancy can be made
extremely small, ldisc(n, k) < 2.

2 Some Special Cases

The following are some special cases with exact or nearly exact bounds.

Theorem 2 Let k be odd. Then disc(2k, k) = 1/2 and disc(3k, k) = 1.

Proof: Note that ¢ = k. First consider the case n = 2k. There will be k
loops loop(i), 1 < i < k, depending on the parity of ¢, as follows:

loop(2j — 1) = (2j — 1,25)  loop(25) = (2k — 2j + 2,2k — 2j + 1).

That is,
m=(1,2k3,2k—2,...,2,2k—1,4,2k — 3,..., k +1).

We verify that d = (1,-1,1,—-1,1,...), so max,; >;_,d; = 1 and so, by
Proposition 1, disc(7, k) = 1/2. Thus disc(2k, k) = 1/2.

For the case n = 3k, we again have k loops, with
loop(2j—1) = (3j-2,3j—1,3j)  loop(2j) = (3k—3j+3, 3k—3j+2, 3k—3j-+1).
We verify that d = ((1,-1)¥2 1, (1, -1)*/2 1 (-2,2)*/2], —2), and so
max,; > _, d; = 2 and as above disc(m, k) = 1. Since n is odd, disc(3k, k) is
an integer and so, by Proposition 1, disc(3k, k) = 1. ||

Theorem 3 For n > 3, disc(n,2) = 1.



Proof: For n =2t + 1, let
m=(1,2t,3,2t —2,5,2t —4,...,2,2t + 1).

Thus, d = ((2, —2)"/21=1 2, —1, —1), and we get disc(n, 2) = 1, since disc(n, k) >
0 for n > k.
Similarly, for n = 4t, let m be given by the loops

loop(1) = (1,3,5,7,...,2t — 1,2, 2t — 2,...,4,2)

loop(2) = (4t — 1,4t — 3,4t — 5,4t —7,..., 2t + 1,2t + 2,2t +4,... 4t — 2, 4t).

Thus, d = ((2, —2)/9~1 1,1, (=2,2)™4=1 —1,-1).
For n = 4t + 2 let 7 be given by the two loops

loop(1) = (1,3,5,7,...,2t — 1,2t + 1,2, 2t — 2,...,4,2)

loop(2) = (4t+1,4t—1,4t—3,4t—5, ..., 2t+3,2t+2, 2t +4, 2t +6. .., 4t, 4t+2).
Thus, d = ((2, —2)"/4-1 2 —1, -1, (2, —2)%/4-1 2 1, —1). |

The following theorem nearly solves all cases with £ = 3. It gives a
remarkably small upper bound, just 2, on disc(n,3). For even n, it shows
that the discrepancy is either 1/2 or 3/2, since the average triple sum is a half-
integer. But a simple argument shows that it cannot be 1/2 for n > 8, and
we get that disc(n,3) = 3/2 for all even n > 8. We find that disc(6,3) = 1/2
thanks to the (unique up to dihedral group) permutation 7 = (1,6, 3, 2, 5, 4).
For odd n, the situation is a little more complicated. The discrepancy is
integral, and it must be either 1 or 2 but Theorem 2 yields disc(9,3) = 1 and
Theorem 11 yields disc(7,3) = 2.

The roulette wheel example can now be solved! We obtain disc(36,3) =
3/2 from the permutation, obtained from Case 1 (3 divides n) of the proof
below. The permutation is:

(1,18,35,4,16,34,7,15,32, 10, 13,31,12,14,29, 11,17, 28,
9,20,26,8,23,25,6,24,27,5,22,30,3,21, 33,2, 19, 36)

Theorem 4 Let n > 6. Then disc(n,3) < 2.



Proof: First consider the case ged(n,3) = 1. There will be a single loop
which, informally, starts at 1, rises by 3’s until it reaches the top, and then
falls back to 2 picking up the missing entries:For n = 1(mod 3),

loop = (1,4,7,...,n,n—1,n—2,n—4,...,3,2), n=1(mod 3)

loop = (1,4,7,...,n—1,n,n—2,n—3...,3,2), n=2(mod 3).

After placing loop into 7 and computing d we obtain 4 cases:
n=1(mod 6): 7= (1,(n—1)/2,n—1,...)

d=((3,-1,-1,3,—-2,-2)"D/6 3 _1 13 —1,-2,—-1),
n=2(mod 6): m=(1,n,n/2—1,...)
d=((3,-2,-1)" 5733 1 -1,1,-2),
n=4(mod 6): m=(1,n/2,n—1,...)
d=((3,-2,-1,3,—1,-2)4/6 3 _1 1 1),
n=5(mod 6): m=(1,n,(n—1)/2,...)
d=((3,-2,-2,3,-1,-1)»%/6 3 _9 11 -1).

We can check that for even n, disc(n, 3) < 3/2 and for odd n, disc(n, 3) <
2. (Note that Theorem 11 shows that these are tight). Let us give as an exam-
ple the first case, withd = ((3, -1, 1,3, -2, —2)»=0/6 3 1 —1,3,—1,-2,—1).
Let my +mo+---+m,=2. Withd; =3 weget mo+mo+ -+ + 71 =+ 3.
Thus using d, the successive k-sums are (z + 3,z + 2,2z + 1,z + 4,z +
2,2)""1/6 £43 £4+2,2+1,2+4,2+3,2+1,z. The sum of all k-sums is now
(4x+8)(n — 7)/6+(2z+4)(n — 7)/6+Tz+14. We compute z+2 = (n+1)k/2
and all k-sums are in {z,z + 1,2+ 2,2 + 3,2 + 4} and so disc(m, k) = 2.

For the remainder, suppose 3 divides n. We split this into six cases
modulo 18. In each case we must specify 3 loops loop(i) = o®, where
o) = (a?), aéi), ...), 1 <14 <3, isbuilt from the sets {1,2,...,n/3}, {n/3+
1,n/3+4+2,...,2n/3}, {2n/3+1,2n/3+2,...,n}, for 1 < i < 3, respec-
tively. Each ¢ starts near the bottom, rises by 3’s to near the top and then
returns to the bottom using the remaining symbols. However, for the loops,
we rotate the starting points of the o(9’s to reduce the discrepancy when the
three loops are interwoven. In each case, loop(1) starts at the bottom of its
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range, with 1, loop(2) starts at the middle of its range, |n/2|, and loop(3)

starts near its top, at n — 1. As an example for n = 18, we have
m=(1,9,17,4,7,16,6,8,14,5,11,13, 3, 12,15, 2,10, 18). Let f(z1,zs, 23, ...)

denote the vector of successive differences for (z1, 29, 23, . ..), namely f(xy, z2, z3,...) =
(xe — 1,23 — Xa,...). We give only these vectors since they determine

disc(m, k). For our particular m we have f(loop(1)) = (3,2,—-1,—2,—1,—1),
#(loop(2)) = (=2,1,3,1, -2, —1) and f(loop(3)) = (=1, -2, —1,2,3, —1))

Case 1. n = 18p. We have

f(]OOp(l)) = (321)_1)27 (_1,_2)211—1’_1’_1)
f(lOOp(Q)) = ((_2,_1)?—1,_2,1,321)—1,1,(_2,_1)1)—1,_2,_1)
f(oop(3)) = ((—1,-2)%71 —1,2,3%"1 —1).

Our choice yields d = ((3,—-2,—1,3,—1,-2)P"1.3,-2,-1,2,1,-2, -1,
(37 _17 _27 37 _27 _1)17*1, 37 _17 _27 17 27 _17 _27 (37 _27 _17 37 _17 _2)p71, 37 (_1)3)7
and we can check disc(r,3) = 3/2.

Case 2. n = 18p + 3. We have

f(oop(1)) = (3%,—1,(-1,-2)*"' —1,-1)
f(oop(2)) = ((-1,-2) ' —1,-1,3% —1,(-1,-2)7)
f(oop(3)) = ((—1,—2)*7' —1,-1,3% —1).

Our choice yields d = ((3,—1,—1,3,—2,—-2)? 1,3, —1,-1, 3,

_17 _27 _17 (37 _17 _17 37 _27 _2)p71’ 37 _17 _17 37 _17 2) _1a
3,—1,-1,(3,-2,-2,3,—1,—1)P7' 3, -1, -2, —1), and we can check disc(7, 3) =
2.

Case 3. n = 18p + 6. We have

f(loop(1)) = (3%,1,(-2,-1),—1)
f(loop(2)) = ((_27 _1)p’ 27 32p—1’ 27 (_L _2)p’ _1)
f(lOOp(3)) = ((_1,_2)2;0,1,3211,_1)‘

Our choice yields d = ((3,—-2,-1,3,—1,—-2)",1,2,—1, -2

Y )Y

(35 _25 _]-a 37 _]-7 _2)12—1, 37 _27 _]-7 2a 1a _2a _1a

(3,-1,-2,3,—-2,—1)»71 3 —1,—-2,3,(—1)%) and we can check disc(,3) =
3/2.
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Case 4. n = 18p+ 9. We have

f(oop(1)) = (3%,2,(-1,—-2)*,—1,-1)
f(oop(2)) = ((-1,-2)?,1,3%,1,(-2,—1)?,-2)
f(oop(3)) = ((~1,-2)%,—1,3%,2,-1).

Our choice yields d = ((3,—-1,-1,3,—-2,—-2)?,2,1,—1, -1,
(3,-2,-2,3,—-1,—-1)*,1, (—2,—2,3,—1,—1,3)1’,—1,—2,—1) and we can check
disc(m, 3) = 2.

Case 5. n = 18p + 12. We have

f(loop(1)) = (32”+1 -1,(-1,-2)*,~1,-1)
f(lOOp(2)) = (( ) 1 32p+1 _1’(_1’_2)17’_1)
f(loop(3)) ((~1,—2)%, —1,—1,8%+, 1),

Our choice yields d = ((3,-2,-1,3,—-1,-2)?,3,—-1,—1, -1,
(3,-2,—-1,3,—1,-2)7,3,—1,—1,—1,(3,-2,—1,3,—1,—2)?,3, (—1)?) and we
can check disc(r, 3) = 3/2.

Case 6. n = 18p + 15. We have

f(lOOp(l)) = (32p—|—1, 17 (_2a _1)2p+1, _1)
f(]oop(?)) - (_17 (_Za _1)p’ 2a 32p’ 2a (_17 _2)p+1)
f(lOOp(3)) = ((_L _2)2p+1, 1a 32p+1, _1)'

Our choice yields d = ((3,—-1,-1,3,—-2,—-2)?,3,—1,—1,1,2,
-2,-2,(3,-1,-1,3,-2 —2)”,2,1, -1,-1,(3,-2,-2,3,-1,-1)?,3,-1,-2,—1)
and we can check dlsc(7r, 3) =2. u

Here is a simple upper bound when £ is factored:
Proposition 5 disc(n,pq) < p - disc(n, q).
Proof: A permutation with disc(7, ¢) = t will have disc(7, pq) < pt. |
Corollary 6 For even k, disc(n, k) < k/2.

Proof: For p = k/2 and ¢ = 2, simply use the permutations 7 given in
Theorem 3. u



3 Bounds When n and £ Have a Common
Factor

As a warm up for the construction in Theorem 9 consider the following.

Theorem 7 Ifk is even, thendisc(mk, k) = 1. Ifk is odd, then disc(mk, k) <
2.

Proof: To construct = we need k loops.

First consider even k. Let o(1),0(2) be loop(1),loop(2) from the con-
structions in Theorem 3, with n replaced by 2m, depending on the parity
of m. Then, o(1) has the symbols 1,2,...,m, while ¢(2) has the symbols
m+1,m+2,...,2m. Use the notation 1 = (1)™. We define

loop(1) = o(1), loop(2) =o(2),
loop(3) = (4m +1) -1 —0(2), loop(4) =2m -1+ o(2),
loop(5) = (6m +1) - T —0(2), loop(6) =4m -1+ o(2),

For the resulting 7, compute d by using the vector d computed in The-
orem 3 which combines the two vectors f(loop(1)), f(loop(2)) alternately
starting with the entry of f(loop(1)) for loop(1). Let i* refer to the vector
of k — 1 entries (i, —4,4, —i,...,1) = (i, (—,7)*/?~1). For even m,

d=((2,-2)271 1 1% (=2,25)™m/D-1 1 _1%).
For odd m,
d=((2,-2")m/2=1 9 1% —1, 2%(—2,2%)m/21=t 1 —1%).
We can now check that disc(mk, k) = 1.

For the remainder, assume k is odd. Let n = 3m. Then let o(i), 1 <
i < 3, be the three loops loop(i) from the constructions in the cases, 3
divides n, of the proof of Theorem 4. In particular, 0(3) has the numbers
2m+1,2m + 2,...,3m. Now define the rest of the loops (for k£ > 3):

loop(4) = (5m +1) -1 —o(3), loop(5) = 2m -1+ o(3),

loop(6) = (Tm +1) -1 —0¢(3), loop(7) = (4m) -1+ o(3),
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We check as before that the discrepancy is bounded as promised. ]

The following easy lemma shows that a particular construction for placing
1/2’s and —1/2’s around a circle result in low discrepancy for consecutive b-
sums and it is used in Case 2 in Theorem 9.

Lemma 8 Let a,b be integers with a even, b odd, and ged(a,b) = 1. Form
a sequence s = (81,82,...,8q) with s; = —1/2 if i = e - b(mod a) for 1 <
e < a2 and s; = 1/2 if i = e- b(mod a) for ¢c/2+1 < e < a. Then
Yitils; € {—1/2,1/2} for any t where indices are taken modulo a.

Proof: The role of k is taken by b. Note that with two exceptions, s;., = s;.
As a result, the numbers d; = s;, — s; are 0 for all but two values and the
other two values are 1/2, —1/2. The sum of all the entries of s is 0 and so
the sum of all consecutive b-sums is 0. We deduce that half the consecutive
b-sums on s are 1/2 and half are —1/2. N

Here is the main upper bound theorem when ged(n, k) > 1.

Theorem 9 Let g = ged(n, k) and assume g > 1. Then disc(n, k) < 2 for
even g, and disc(n, k) < 7/2 for odd g.

Proof: To give m we need to specify the g loops loop(1),loop(2),...,loop(g).
A special permutation o = (01,09, ...,0,/4), satisfying

oir1—o; € {—2,-1,1,2},
can be given for even n/g by
c=(1,3,5,...,n/g—1,n/g,n/g—2,n/g—4,...,2)
and for odd n/g by
c=(1,3,5,...,n/g,n/g—1,n/g—3,n/g—5,...,2).

Case 1. g is even (and so k is even).

We obtain 7 by placing o+ (In/g)-1 in loop(1+21) and placing (n + 1) - I—
(o +(In/g) - 1) in loop(2 + 21), for 0 < 21 < g— 2. We note that 7 is indeed a
permutation of 1,2,...,n, and for odd ¢, m; + m;.1 = n + 1. Thus for any ¢,
Sk maurj = k(n+1)/2. Now the entries d; come from successive differences
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in a given loop and by construction d; € {—2,—1,1,2}. Hence |d;| < 2. We
deduce disc(m, k) < 2.
Case 2. g is odd.

We begin as in Case 1 by obtaining 7 by placing o+ (In/g)- Tin loop(1+20)
and placing (n+1) -1 — (o + (In/g) - 1) in loop(2 + 21), for 0 < 21 < g — 3.
As above Ty +Tgsyiy1 = n+1 for odd 7, and ¢ < g —4 and any s. We have
yet to assign the 3n/g numbers j with (¢ —3)/2-n/g<j <(9+3)/2-n/g
into the three loops loop(g —2),loop(g—1),loop(g). We use a special scheme
for k = 3. For odd n/g with 3n/g = 6p + 3 we define

o(l)= 3p+1 3p—2 3p—5 ... 1 p 5 ... 3p—1
o(2) = 3 9 15 ... 6p+3 6p 6p—6 ... 6
o3)= 6p+2 6p—1 6p—5 ... 3p+2 3p+4 3p+7 ... 6p+1

and for even n/g with 3n/g = 6p we define

c(l)= 3p—1 3p—4 3p—-7 ... 2 1 4 . 3p—2
s(2)= 3 9 5 ... 6p—3 6p 6p—6 ... 6
c(3)= 6p—1 6p—4 6p—7 ... 3p+2 3p+1 3p+4 ... 6p—2

We place o (i) + (g — 3)/2- (n/g) - 1 in loop(g — 3 +4) for 1 <i < 3.

For odd n/g we check that 7gsig—2 + Tgs1g—1 + Tgs+g = 3(n+1)/2 and so
Tgst1+Tgst2+ Tgspa+ - +Tgsrg = g(n+1)/2. And so the k—sum beginning
with Tgs+1 is k(n+ 1)/2 Then using dgs+2l+l +dg5_|_21+2 =0for0 S 21 S g—3
and |dgs1;| < 2for 1 <i<g—3, and |dgsig 2| and |dgsig 2 + dgstg—1| are at
most 3, we conclude disc(r, k) < 3.

For even n/g, we compute Tgeig—2 + Tgsrg—1 + Tgsrg = 3(n+1)/2 —1/2
for 0 < s < p—1and mgsig-—2 + Mgstg—1 + Tgstg = 3(n + 1)/2 + 1/2 for
p < s <2p—1. We use Lemma 8 with a = n/g and b = k/g to deduce
that for any s, >-F_; 7g; is either k(n +1)/2 + 1/2 or k(n + 1)/2 — 1/2.
Knowing that dgs+21+1 + dgs+21_|_2 =0 and |dgs+21+1| =2for0<20<g—3
and |dgstg—2| < 3, and |dgsig-2 + dgs+g—1| < 3 we conclude disc(m, k) < 7/2.
|

The special scheme o(1), 0(2),0(3) for k = 3 is not taken from Theorem 4,
but the loops yield a permutation 7 with disc(m,3) < 7/2 (i.e., not enough
for Theorem 4, but where o(1) + 0(2) + o(3) has special properties).

The following result shows that improvements to Theorem 9 are some-
times possible if disc(n/g,k/g) < 2.
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Theorem 10 Let n, k be given with g = ged(n, k) > 1 being odd. Then
disc(n, k) < disc(n/g,k/g).

Proof: To construct a m € S, with disc(m, k) < disc(n/g,k/g) we start
with a permutation 7 € S,,, with disc(7,k/g) = disc(n/g,k/g). Compute

e = (e1,€2,...,6n/g) 8S €; = Ty1/g — T; (Where the indices are taken modulo
n/g). Let 0 = (01,09,...,0n/4) Where 0; = Ti1(i_1)k/g- Thus o is the loop
generating 7. We form 7 by specifying g loops:

2 b —
loop(1) =, loop(2) = (_n +1)-1—0, loop(3)=2n/g-1+o0,
9

4 - —
loop(4) = (—n +1)-1—0, loop(5)=4n/g-1+a,...
g
If we let a* denote the vector (a,—a,a,—a,...,a) of length g, then we ver-
ify that d computed from 7 has d = (ej,e3,...,€;, /). Thus disc(m, k) =
disc(7,k/g). N

4 Bounds for Relatively Prime n and &

The following theorem identifies cases where non trivial lower bounds can be
established. As we will conjecture later, these bounds may be exact or nearly
so. An easy and important case is where r = s =1 and b = 0.

Theorem 11 Let n, k be given with ged(n, k) =1, n > 2k. Set n = ak +r,
where 1 < r < k—1, and s is the smallest positive integer such that rs =
+1(mod k). Then

disc(n, k) > ﬁ

2s

Proof: For some b > 0, we have rs = bk £ 1. This gives sn = ask +rs =
(as + b)k £ 1. We seek a lower bound on disc(n, k) by seeking lower bounds
on Z;:s d;. Consider a permutation = with m; = 1 and assume 74, = n.
Since (as +b)k = F1(mod n), the p+ 1 entries 71, T4k, T142ks - - - s Ti4pk = 1
will be in as + b separate sets of consecutive positions, consecutive in 7. We
deduce from Zf;é di+r = n—1 that for one of the sets of consecutive entries,
say Mg, Msi1,-- -, Ty We have

id.>n—1_k(n—1)_@_1 k(sF1 _ﬁ_}(SZFl)
j:s]_as+b_ snFl s s\snTl) s s\as+b/’

12



Note that for n > 2k, we have a > 2. Then where rs = 1(mod k), we have
s=L < s=1 <1 and where rs = bk — 1, we have b > 1 and StL < sl o1

as+b — 2s as+b — 2s+1

In either case, ¥ — %(%) > 1 Because Y!_, d; is integral we have
e > k and in fact i di > [f-l )

Thus, disc(m, k) > £ using our bound (1) of Proposition 1 . N

Corollary 12 Let n,k be given with k even and n = +1(mod k). Then
disc(n, k) = k/2.
Proof: We use Theorem 11 combined with Corollary 6. |

The following provides a general upper bound that is surely not tight.
However, in conjunction with Theorem 9, it shows that the discrepancy does
not grow with large n.

Theorem 13 Let k be odd and ged(n, k) = 1. Then
disc(n, k) < k + 6.

Moreover for fized k, the given construction shows for n > n,(k) that
) k
disc(n, k) < B +9.

Proof: Consider a permutation 7 € S,,. The infinite sequence 7;, ;1 g, Ti 1ok, - - -
becomes, when the indices are reduced modulo n, a finite ‘loop’ of length n
and so a permutation o € S,,. Thus to specify m we need to specify o. For
n = ak + b with 1 < b < k we construct the permutation ¢ as follows. Infor-
mally, it rises by 3’s for a times and then rises by 2’s until it reaches n and
then drops back to 1 picking up the remaining numbers and hence initially
goes down by 2’s and then alternating goes down by 1’s and 2’s for the last
2a entries. To use up all the numbers 1 through n requires some constant
number of alterations to the pattern. For even n — a we set

oc=(1,4,7,...,3a+1,3a+3,3a+5,...,n—1,n,n—2n—4,...

...,3a+2,3a,3a—1,3a—3,...,5,3,2),

while if n — a is odd, we set

o=(1,4,7,...,3a+1,3a+3,3a+5,...,n—2,n,n—1,n—3,...

13



...,3a+2,3a,3a—1,3a—3,...,5,3,2).

We obtain 7 by setting 7y, = 014;- We have 2 cases. Either n — a is
even (and so b is even as well) or n —a is odd (and b is odd as well). We will
only deal with the case n — a and b are both even in what follows, leaving
the other case to the reader. We deduce:

e d; = 3 for the a positions in 7,7 =1,14+k,...,n —b+ 1 — k. Recall
l+ak=n—->b+1.

e d; = 2 for the @a—i—b_f positions ¢ = —b+1,k—b+1,...,1—2k+g.
° dizlforpositioni:g-i-l—k.
e d; = —2 for the @a—i—% positions ¢ = g—i—l,k-i-g—i-l, ey 20—2k+1.

e (di,dirx) = (—2,—1) for the a pairs (i,7+ k) = (2b — k + 1,2b +
1),...,(=3k+1,—2k +1).

e d;=—1for:=1-—k.

In general d; = d;, or (from the -2 -1 pairs) d; = d; 2, with |d;| =1 or 2.
Note that the transition positions ¢ where this may not occur are in positions
—b—k+1,1—-2k+ g,g—k+1,2b—2k+1,—2k+1 which are all close to
the 1 position and are in an interval [—2k + 1, max{1 + 2 — k,2b — 2k + 1}]
that has < 2k positions, independently of a.

For Sz = Z;‘:l Titj and Dz = E;c;é di+j, we have Sz — Si—k = Dz For
max{1+2—k,20—2k+1} < i < n—3k—2 the terms in the sum D; consist of
1 value of 3, (k — 3)/2 values each of 2 and —2, and 2 values from {—2, —2},
{—2,—1} or {—1,—1}. Thus D; = —1,0 or 1. If D; = 0 then D;; = 0 and if
D; = £1 then D;, = F1, as long as ¢ + 2k — 1 is in the same range. Hence,
as long as i and ¢ + (j + 1)k — 1 are outside the specified transition range,
Si+jk - Sz = —1,0 or 1.

In the transition range for the strings of d;’s, we have d; — d; , = —1 in
the 2 cases 3 — 2 and 2 — 1, d; —d;_; = 1 in the shift (-2, -2) — (-2, -1),
d; — d;_ = —3 in the shift 1 - —2, and d; — d;_; = 4 in the shift —1 — 3.
Through this transition range we then have |S;;;x — S;| < 5 for j = 0,1,2.
Thus, as long as j < a, we have [S;ijx — S;| < 7. In particular, we have
|Sivs — S;| < 7. This is generous, since the differences described tend, more
often than not, to cancel each other.

14



If S,,S; are the maximum and minimum k-sums, respectively, in 7, then
Sy — S <8, —S;+ 7, where t = | + jk with |j| < a and |u —t| < % Now,
Sy — St is a sum of |u — t| of the d;’s, so that |S, — S;| < 2|u —¢t| +1 < k&,
since in any span of k positions there is at most 1 value d; = 3 and for the
rest |d;| < 2. Thus S, — S; < k + 7 and then the average lies between the
maximum and the minimum.

We follow the same proof technique in the case n — a is odd (and b is

odd).

Now with k fixed and n — oo we use the fact that |(Sgy1 + Sk + -+ +
Sok) — (Spk+1 + Spr+2 + -+ - + S(p+1)k)| is at most &, for even p, and 0, for odd
p, where p < n/k— 1. Then for large n the k k-sums Ski1, Sgt2, - - ., Sor Will
dominate as an estimate for the average for all k-sums since there will only
be 2k sums we are not considering and their values are within k + 6 of the
average value by our work above. Hence,

k(n+1
(Sk+1+Sk+2+"'+S2k)_% < k.
Thus, the average value of a k-sum among Si1, Skio9,- .., S is within 1 of

k(n—i— 1)/2. Now |Sk:—|—i_Sk:—|—ifl| = |dk—{—z| S 2 for 2 S ) S k and |Sk+1_52k| S
|Sk1 — Sorr1|+ |Saks1 — Sak| < 143 = 4. This restricts things, remembering
that the average of Sgi1, Ski2,...,S2 is within 1 of k(n + 1)/2 so that

1
>_M<E+2 Er+l) i s < o

(max Skti 2 -2 ’ 2 1<i<k )

1<i<k
This could be achieved when the k£ k-sums start up by 2’s and then decrease
by 2’s with the indices of the sums considered modulo k. We now deduce
that no k sum is more than 7 away from the k£ k-sums 51,55, ..., Sk by our
previous arguments and so disc(n, k) < k/2 + 9. u

We can now say something about the discrepancy for fixed k as n grows,
by applying Theorem 9, Corollary 12, and Theorem 13: disc(n, k) never
exceeds k/2 by more than 9 for large n, while it is at least k/2 for infinitely
many n.

The following conjecture suggests that the exact values for the discrep-
ancies may be within reach.

15



Conjecture 14 Let n, k be given with ged(n,k) = 1. Then the bound of
Theorem 11 is exact in the cases either k is even or both k and n are odd.
In the case k is odd and n is even we believe the bound is off by at most 1.

Computer experiments have been run for £ = 402 and 2011 < n < 2209
and as well for £ = 127 and 382 < n < 507 (for the cases ged(n, k) = 1)
obtaining constructions that support this conjecture. It is reminiscent of de-
sign theory problems, and quite different from standard discrepancy results,
that there seem to always be enough choices to find a sequence achieving the
bound or getting within 1.

5 Linear Permutations

The case where we view the permutations on a line turns out to be easier.
There are only n —k+ 1 consecutive k-sums to consider with no wraparound.
The constructions are simpler and there seems to be more choices that give
low discrepancy. Recall that we defined the linear discrepancy ldisc in the
introduction.

Theorem 15 Let n, k be given. Then ldisc(n, k) < 2.

Proof: Instead of loops we define 7 using k strands with strand(i) =
(Tiy ik, Tit2ky - - - Tigpr) for 1 <4 < k and p = |(n —¢)/k|. Also in place of
d we define d as

A

d= (cil,afg, ey lp ) = (Mha1 — M1, Thya — T2y ooy Ty — Tp—k)

where the missing k entries of d are not relevant to ldisc.
Case 1. n, k are even.

Let n =ak +r with 0 <r <k — 1. Then r is even. If » = 0 we can use
the result from Theorem 7 to achieve discrepancy 1. Assume r > 1. Use the
notation 1 to denote the vector of 1’s of appropriate size. Define

strand(1) = (1,2,...,a+1)

strand(2) = (n+1)-1—strand(1)

strand(3) = (a+1)-1 4+ strand(1)

strand(4) = (n+1)-1—strand(3)...
strand(r —1) = (r/2—1)(a+1)- 1+ strand(1)
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strand(r) = (n+1)-1— strand(r — 1)
strand(r+1) = ((r/2)(a+1)+1,(r/2)(a+1)+2,...,(r/2)(a+ 1) + a)
strand(r +2) = (n+1)-1—strand(r +1),...
strand(k—1) = (((k—7)/2)—1) 1+ strand(r — 1)
strand(k) = (n+1)-1—strand(k — 1)
We verify mi+my = m3+my = -+ - = mp_1+7m, = n+1and so m+ma+- - -+

= k(n+1)/2. Alsod = (1,-1,1,-1,...,1,—1). Thus Idisc(n, k) = 1
Case 2. k is even, n is odd.

Let n = ak + r, where r is odd, 1 < r < k — 1. We must be a little
more careful with strand(r), strand(r + 1) which must use the middle 2a + 1
elements. We set strand(r) = ((r/2 —1/2)(a + 1) + (k/2 — r/2 — 1/2)a) -
1 4 strand(1), strand(r + 1) = ((r/2+ 1/2)(a + 1) + (k/2 — /2 + 1/2)a) -
T+ (—1,-2,...,—a). As above, we verify 7, +my + -+ -7, = k(n+1)/2 and
d=(1,-1,1,—1,...,—1). Thus Idisc(n, k) = 1

The solutions for odd k£ combine solutions for £ = 3 with solutions for
even k. Where n = ak + r with 0 < r < k — 1 we use constructions from
Theorem 7 when » = 0 and constructions from Theorem 6 otherwise.

Case 3. n = ak + r, with r even, k odd.

For r = 0, the bounds disc(ak, k) < % for even a and < 2 for odd a follow
from Theorem 7. For 2 < r < r — 1, we proceed as in Case 2 for strands 1,
2,...,7—2and strands r+ 2, r+3,...,k:

strand(1) = (L,2,...,a+1),

strand(2) (n + 1) 1 — strand(1)

strand(3) (a+1) -1+ strand(1),

strand(4) (n+1) -1 —strand(3),...,
strand(r — 3) (r/2—=2)(a+1)- 1+ strand(1),
strand(r —2) = (n+41)-1— strand(r — 1).

Then
strand(r+2) = (r/2—1)(a+1)-T+(1,2,...,a),

strand(r +3) = (n+1)-1—strand(r +2),
strand(r +4) = a-1+ strand(r + 2),

17



strand(r +5) = (n+1)-1— strand(r +4),...,
strand(k —1) = (k/2—1/2—3/2)a-1+ strand(r + 2),
strand(k) = (n+1)-1—strand(k —1).

We are left with the 3a 4+ 2 numbers starting with (r/2 —1)(a+ 1) + (k/2 —
r/2—1/2)a+ 1= ((k—3)a+r —2)/2+ 1. For strands r — 1,7, + 1 we
use the permutation 7’ constructed in Theorem 6 for n’ = 3a + 2. There are
two cases depending upon the parity of a. For even a we have n' = 2(mod
6) and 7’ = (1,n,n/2 —1,...). Then we set

strand(r — 1) = (((k—3)a+r—2)/2)-£+(7ri,7r£1,7r'7,...),
strand(r) = (((k—3)a+r—2)/2)-1+(7r;,7rg,...),
strand(r +1) = (((k—3)a+r—2)/2)-1+ (73,75, -..).

For the permutation 7’ we have its vector
d=(-1,1,-2,(3,-2,-1)*"13,-1)
and then for the permutation 7, we derive
d=(((1,-1)2723,-2,-1,(1, —1)<’“*"*1)/2)“_1 ,(1,=1)0272 3 1),

Note that for the first k-sum

k
k(n+1 k—3 k(n+1
ZW,-—L = ( )(n—i-l)—l-7rr_1—i-7rr—i—7rr+1—M
: 2 2 2
3((k—3 -2 3(ak 1
I (( Ja+r—2) 3(ak+r+1)
2 2
/! !/ /! 3 !/ nl 3 !/
= 7r1+7r2+7r3—§(3a+3):1+n +5—1—§(n +1)
_ 3
= -3

Checking the d vector, we see that the k-sums will always be within 3/2 of
the average, giving ldisc(n, k) < g

For odd a, we have n' = 5(mod 6) and we add (((k — 3)a+r —2)/2) - I to
the permutation 7' = (1,n/2,n —1,...) to obtain strands » — 1,7, + 1. For
7' in this case we have

d=(-1,1,-1,(3,-2,-2,3,—1,—-1)(»=%/6 3 _9)
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We obtain ldisc(n, k) < 2.

Case 4. n = ak + r, with r odd, k£ odd.

We proceed as in the previous case for strands 1, 2,..., r — 1 and strands
r+3, r+4,....,k. We are left with the 3a + 1 numbers starting with
(r/2—1/2)(a+1)+ (k/2—7r/2—1)a+1= ((k—3)a+r—1)/2+ 1. For
strands r—1,7,7+1 we use ((k—3)a+r—1)/2+7’" where 7’ is the permutation
constructed in Theorem 6 for n’ = 3a + 1, with two cases depending upon
the parity of a. We obtain disc(n, k) < 2 for even a and disc(n, k) < 2 for
odd a.

|
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