

A Channel Assignment Problem [F. Roberts, 1988]

Find an efficient assignment of channels $f(x) \in \mathbb{R}$ to sites $x \in \mathbb{R}^2$ so that two levels of interference are avoided: $|f(x) - f(y)| \ge \begin{cases} 2d & \text{if } ||x - y|| \le A \\ d & \text{if } ||x - y|| \le 2A \end{cases}$

We must minimize $\operatorname{span}(f) := \max_x f(x) - \min_x f(x)$.

We consider the analogous problem for graphs G = (V, E)[G., 1989]. The problem can be reduced to the case d = 1and labelings $f : V \to \{0, 1, 2, ...\}$ such that

$$|f(x) - f(y)| \ge \begin{cases} 2 & \text{if } \operatorname{dist}(x, y) = 1\\ 1 & \text{if } \operatorname{dist}(x, y) = 2 \end{cases}$$

We consider the analogous problem for graphs G = (V, E)[G., 1989]. The problem can be reduced to the case d = 1and labelings $f : V \to \{0, 1, 2, ...\}$ such that

$$|f(x) - f(y)| \ge \begin{cases} 2 & \text{if } \operatorname{dist}(x, y) = 1\\ 1 & \text{if } \operatorname{dist}(x, y) = 2 \end{cases}$$

Such an f is called a λ -labeling and $\lambda(G)$:=min_f span(f).

The graph problem differs from the "real" one when putting vertices $u \sim v$ corresponding to "very close" locations u, v.

A Network of Transmitters with a Hexagonal Cell Covering and the corresponding Triangular Lattice Γ_{\triangle}

Complete Graphs K_n .

Complete Graphs K_n .

$$\lambda(K_n) = 2n - 2$$

Cycles C_n .

 $\lambda(C_n) = 4$ for $n \ge 3$.

$$\Delta = 2 \implies \lambda \leq 4$$
, paths or cycles

 $\Delta = 2 \implies \lambda \leq 4$, paths or cycles

 $\Delta = 3$

 $\Delta = 2 \implies \lambda \leq 4$, paths or cycles

 $\Delta = 3$

Example Petersen Graph.

 $\Delta = 2 \implies \lambda \leq 4$, paths or cycles

 $\Delta = 3$

Example Petersen Graph.

 $\Delta = 2 \implies \lambda \leq 4$, paths or cycles

 $\Delta = 3$

Example Petersen Graph. $\lambda = 9$.

Conjecture. $\Delta = 3 \implies \lambda \leq 9.$

Conjecture. $\Delta = 3 \implies \lambda \leq 9.$

More generally, we have the

 Δ^2 Conjecture. [G.-Yeh, 1989]

For all graphs of maximum degree $\Delta \geq 2$,

 $\lambda(G) \le \Delta^2.$

•
$$\lambda \leq \Delta^2 + 2\Delta$$
 by first-fit [G.]

■
$$\exists G \text{ with } \lambda \ge \Delta^2 - \Delta$$

for infinitely many values Δ [G.-Yeh, 1990]

• $\lambda \leq \Delta^2 + 2\Delta$ by first-fit [G.]

■ ∃ G with $\lambda \ge \Delta^2 - \Delta$ for infinitely many values Δ [G.-Yeh, 1990]

• $\lambda \leq \Delta^2 + 2\Delta$ by first-fit [G.]

■ ∃ G with $\lambda \ge \Delta^2 - \Delta$ for infinitely many values Δ [G.-Yeh, 1990]

■ $\lambda \leq \Delta^2 + \Delta$ [Chang and Kuo, 1995]

● $\lambda \leq 11$ for $\Delta = 3$ [Jonas, 1993]

- ∃ G with $\lambda \ge \Delta^2 \Delta$ for infinitely many values Δ [G.-Yeh, 1990]
- $\lambda \leq 11$ for $\Delta = 3$ [Jonas, 1993]
- $\lambda \leq \Delta^2 + \Delta 1$ [Král' and Skrekovski, 2003]

- ∃ G with $\lambda \ge \Delta^2 \Delta$ for infinitely many values Δ [G.-Yeh, 1990]
- $\lambda \leq 11$ for $\Delta = 3$ [Jonas, 1993]
- $\lambda \leq \Delta^2 + \Delta 1$ [Král' and Skrekovski, 2003]
- ▶ $\lambda \leq \Delta^2 + \Delta 2$ [Gonçalves, 2005]

- ∃ G with $\lambda \ge \Delta^2 \Delta$ for infinitely many values Δ [G.-Yeh, 1990]
- $\lambda \leq 11$ for $\Delta = 3$ [Jonas, 1993]
- $\lambda \leq \Delta^2 + \Delta 1$ [Král' and Skrekovski, 2003]
- ▶ $\lambda \leq \Delta^2 + \Delta 2$ [Gonçalves, 2005]
- In particular, $\lambda \leq 10$ for $\Delta = 3$

Georges and Mauro investigated many connected graphs with $\Delta=3.$

Georges and Mauro investigated many connected graphs with $\Delta=3.$

They suspect that for such graphs, $\lambda \leq 7$, unless *G* is the Petersen graph ($\lambda = 9$).

Georges and Mauro investigated many connected graphs with $\Delta=3.$

They suspect that for such graphs, $\lambda \leq 7$, unless *G* is the Petersen graph ($\lambda = 9$).

Kang verified $\lambda \leq 9$ when G is cubic and Hamiltonian.

Among many results verifying the conjecture for special classes of graphs, we have

Theorem [G-Yeh, 1992].

For graphs G of diameter 2, $\lambda \leq \Delta^2$,

and this is sharp iff $\Delta = 2, 3, 7, 57(?)$.

[Fiala, Kloks, and Kratochvíl, 2001] Fix k. Is $\lambda = k$?

[Fiala, Kloks, and Kratochvíl, 2001] Fix k. Is $\lambda = k$?

Polynomial: $k \leq 3$.

[Fiala, Kloks, and Kratochvíl, 2001] Fix k. Is $\lambda = k$?

Polynomial: $k \leq 3$.

NP-Complete: $k \ge 4$. via homomorphisms to multigraphs.

Trees. Let $\Delta :=$ maximum degree (= A in Figures).

Trees. Let $\Delta :=$ maximum degree (= A in Figures).

Example. $\lambda = \Delta + 1$ (left) and $\lambda = \Delta + 2$ (right).

Trees. Let $\Delta :=$ maximum degree (= A in Figures).

Example. $\lambda = \Delta + 1$ (left) and $\lambda = \Delta + 2$ (right).

Theorem [Yeh, 1992]. For a tree *T*, $\lambda(T) = \Delta + 1$ or $\Delta + 2$.
Trees. Let $\Delta :=$ maximum degree (= A in Figures).

Example. $\lambda = \Delta + 1$ (left) and $\lambda = \Delta + 2$ (right).

Theorem [Yeh, 1992]. For a tree *T*, $\lambda(T) = \Delta + 1$ or $\Delta + 2$.

It is difficult to determine which, though there is a polynomial algorithm [Chang-Kuo 1995].

General Version [G. 1992].

Integer $L(k_1, k_2, \cdots, k_p)$ -labelings of a graph G:

• $k_1, k_2, \ldots, k_p \ge 0$ are integers.

- A labeling f: vertex set $V(G) \rightarrow \{0, 1, 2, ...\}$ such that
- for all u, v, $|f(u) f(v)| \ge k_i$ if dist(u, v) = i in G

General Version [G. 1992].

Integer $L(k_1, k_2, \cdots, k_p)$ -labelings of a graph G:

• $k_1, k_2, \ldots, k_p \ge 0$ are integers.

- A labeling f: vertex set $V(G) \rightarrow \{0, 1, 2, ...\}$ such that
- for all u, v, $|f(u) f(v)| \ge k_i$ if dist(u, v) = i in G

The minimum span $\lambda(G; k_1, k_2, \cdots, k_p) := \min_f \operatorname{span}(f)$.

More History of the Distance Labeling Problem

Hale (1980) : Models radio channel assignment problems by graph theory.

• Georges, Mauro, Calamoneri, Sakai, Chang, Kuo, Liu, Jha, Klavzar, Vesel et al. investigate L(2,1)-labelings, and more general integer $L(k_1, k_2)$ -labelings with $k_1 \ge k_2$.

Let $\vec{k} = (k_1, \ldots, k_p)$ with each $k_i \ge 0$ real.

Given graph G = (V, E), possibly infinite, define

 $L(G; \vec{k})$ to be the set of labelings $f: V(G) \to [0, \infty)$ such that $|f(u) - f(v)| \ge k_d$ whenever $d = \operatorname{dist}_G(u, v)$.

Let $\vec{k} = (k_1, \dots, k_p)$ with each $k_i \ge 0$ real. Given graph G = (V, E), possibly infinite, define

 $L(G; \vec{k})$ to be the set of labelings $f: V(G) \to [0, \infty)$ such that $|f(u) - f(v)| \ge k_d$ whenever $d = \operatorname{dist}_G(u, v)$.

 $\operatorname{span}(f) := \sup_{v} \{f(v)\} - \inf_{v} \{f(v)\}.$

Let $\vec{k} = (k_1, \dots, k_p)$ with each $k_i \ge 0$ real. Given graph G = (V, E), possibly infinite, define $L(G; \vec{k})$ to be the set of labelings $f : V(G) \to [0, \infty)$ such

that $|f(u) - f(v)| \ge k_d$ whenever $d = \operatorname{dist}_G(u, v)$.

$$\operatorname{span}(f) := \sup_{v} \{f(v)\} - \inf_{v} \{f(v)\}.$$

 $\lambda(G; k_1, k_2, \cdots, k_p) = \inf_{f \in L(G; \vec{k})} \operatorname{span}(f).$

An advantage of the concept of real number labelings.

SCALING PROPERTY. For real numbers $d, k_i \ge 0$, $\lambda(G; d \cdot k_1, d \cdot k_2, \ldots, d \cdot k_p) = d \cdot \lambda(G; k_1, k_2, \ldots, k_p)$.

An advantage of the concept of real number labelings.

SCALING PROPERTY. For real numbers $d, k_i \ge 0$, $\lambda(G; d \cdot k_1, d \cdot k_2, \ldots, d \cdot k_p) = d \cdot \lambda(G; k_1, k_2, \ldots, k_p)$.

Example. $\lambda(G; k_1, k_2) = k_2 \lambda(G; k, 1)$ where $k = k_1/k_2$, $k_2 > 0$, reduces it from two parameters k_1, k_2 to just one, k.

Theorem. [G-J; cf. Georges-Mauro 1995] For the path P_n on *n* vertices, we have the minimum span $\lambda(P_n; k, 1)$.

Theorem. [G-J; cf. Georges-Mauro 1995] For the cycle C_n on n vertices, we have the minimum span $\lambda(C_n; k, 1)$

(ctd.) The minimum span $\lambda(C_n; k, 1), n \ge 6$, depending on $n \pmod{3}$ and $\pmod{4}$.

Let *G* be a graph, possibly infinite, of bounded degree. Let reals $k_1, \ldots, k_p \ge 0$. Then there exists an optimal $L(k_1, k_2, \ldots, k_p)$ -labeling f^*

Let *G* be a graph, possibly infinite, of bounded degree. Let reals $k_1, \ldots, k_p \ge 0$. Then there exists an optimal $L(k_1, k_2, \ldots, k_p)$ -labeling f^*

- with smallest label 0
- with all labels $f^*(v)$ in the *D*-set

Let *G* be a graph, possibly infinite, of bounded degree. Let reals $k_1, \ldots, k_p \ge 0$. Then there exists an optimal $L(k_1, k_2, \ldots, k_p)$ -labeling f^*

- with smallest label 0
- with all labels $f^*(v)$ in the *D*-set

$$D_{k_1,k_2,\ldots,k_p} := \{\sum_{i=1}^p a_i k_i : a_i \in \{0, 1, 2, \ldots\}\}.$$

Let *G* be a graph, possibly infinite, of bounded degree. Let reals $k_1, \ldots, k_p \ge 0$. Then there exists an optimal $L(k_1, k_2, \ldots, k_p)$ -labeling f^*

- with smallest label 0
- with all labels $f^*(v)$ in the *D*-set

 $D_{k_1,k_2,\ldots,k_p} := \{ \sum_{i=1}^p a_i k_i : a_i \in \{0, 1, 2, \ldots\} \}.$ Hence, $\lambda(G; k_1, k_2, \ldots, k_p) \in D_{k_1,k_2,\ldots,k_p}.$ (ctd.) Moreover, if *G* is finite, each label of f^* is of the form $\sum_i a_i k_i$, where the coefficients $a_i \in \{0, 1, 2, \dots\}$ and $\sum_i a_i < n$, the number of vertices.

* * * * * * *

(ctd.) Moreover, if *G* is finite, each label of f^* is of the form $\sum_i a_i k_i$, where the coefficients $a_i \in \{0, 1, 2, \dots\}$ and $\sum_i a_i < n$, the number of vertices.

* * * * * * *

Corollary. If all k_i are integers, then $\lambda(G; k_1, k_2, ..., k_p)$ agrees with the former integer λ 's.

(ctd.) Moreover, if *G* is finite, each label of f^* is of the form $\sum_i a_i k_i$, where the coefficients $a_i \in \{0, 1, 2, \dots\}$ and $\sum_i a_i < n$, the number of vertices.

* * * * * * *

Corollary. If all k_i are integers, then $\lambda(G; k_1, k_2, ..., k_p)$ agrees with the former integer λ 's.

Note. The *D*-set Thm. allows us to ignore some labels. Example. For $(k_1, k_2) = (5, 3)$, it suffices to consider labels f(v) in $D_{5,3} = \{0, 3, 5, 6, 8, 9, 10, \ldots\}$.

Theorem. For the triangular lattice we have $\lambda(\Gamma_{\Delta}; k, 1)$:

A Manhattan Network and the Square Lattice Γ_{\Box}

Theorem. For the square lattice we have $\lambda(\Gamma_{\Box}; k, 1)$:

Equilateral Triangle Cell Covering and the Hexagonal Lattice Γ_H

Theorem. For the hexagonal lattice we have $\lambda(\Gamma_H; k, 1)$:

Piecewise Linearity

Piecewise Linearity

PL Conjecture. For any integer $p \ge 1$ and any graph G of bounded maximum degree, $\lambda(G; \vec{k})$ is **PL**, i.e., continuous and piecewise-linear, with finitely many pieces as a function of $\vec{k} = (k_1, k_2, \dots, k_p) \in [0, \infty)^p$.

Piecewise Linearity

PL Conjecture. For any integer $p \ge 1$ and any graph G of bounded maximum degree, $\lambda(G; \vec{k})$ is **PL**, i.e., continuous and piecewise-linear, with finitely many pieces as a function of $\vec{k} = (k_1, k_2, \dots, k_p) \in [0, \infty)^p$.

Finite Graph PL Theorem. For any integer $p \ge 1$ and any finite graph G, $\lambda(G; \vec{k})$ is PL.

Theorem (p = 2). For any graph G, possibly infinite, with finite maximum degree, $\lambda(G; k, 1)$ is a piecewise linear function of k with finitely many linear pieces.

Theorem (p = 2). For any graph G, possibly infinite, with finite maximum degree, $\lambda(G; k, 1)$ is a piecewise linear function of k with finitely many linear pieces.

Moreover,

$$\lambda(G;k,1) = \begin{cases} ak + \chi(G^2 - G) - 1 & \text{if } 0 \le k \le 1/\Delta^3 \\ (\chi(G) - 1)k + b & \text{if } k \ge \Delta^3 \end{cases}$$

for some constants $a, b \in \{0, 1, ..., \Delta^3 - 1\}$, where $G^2 - G$ is the graph on V(G) in which edges join vertices that are at distance two in G.

We make the stronger **Delta Bound Conjecture** For all p and Δ , there is a constant $c := c(\Delta, p)$ such that for all graphs G of maximum degree Δ and all k_1, \ldots, k_p , there is an optimal labeling $f \in L(k_1, \ldots, k_p)$ in which the smallest label is 0, all labels are in $D(k_1, \ldots, k_p)$ and of the form $\sum_i a_i k_i$ where all coefficients $a_i \leq c$. We make the stronger **Delta Bound Conjecture** For all p and Δ , there is a constant $c := c(\Delta, p)$ such that for all graphs G of maximum degree Δ and all k_1, \ldots, k_p , there is an optimal labeling $f \in L(k_1, \ldots, k_p)$ in which the smallest label is 0, all labels are in $D(k_1, \ldots, k_p)$ and of the form $\sum_i a_i k_i$ where all coefficients $a_i \leq c$.

Theorem This holds for p = 2.

Lambda Graphs.

A more general model for graph labelling has been introduced recently by Babilon, Jelínek, Král', and Valtr. A λ -graph G = (V, E) is a multigraph in which each edge is of one of p types. Given reals $k_1, \ldots, k_p \ge 0$, a labelling $f: V \to [0, \infty)$ is proper if for every edge $e \in E$, say it is type i, the labels at the ends of e differ by at least k_i .

The infimum of the spans of the proper labellings of *G* is denoted by $\lambda_G(k_1, \ldots, k_p)$.

We assume implicitly that for every choice of the parameters k_i , the optimal span $\lambda_G(k_1, \ldots, k_p)$ is finite. For example, this holds when $\chi(G) < \infty$.

Given a graph *G*, form λ -graph $H = G^p$ in which an edge joining vertices u, v has type $i = \text{dist}_G(u, v)$, $1 \le i \le p$. Thus, the real number distance labelling is a special case of λ -graphs.

Given a graph *G*, form λ -graph $H = G^p$ in which an edge joining vertices u, v has type $i = \text{dist}_G(u, v)$, $1 \le i \le p$. Thus, the real number distance labelling is a special case of λ -graphs.

Results on distance-labelling, concerning continuity, piecewise-linearity, and the *D*-Set Theorem, can be extended to λ -graphs [Babilon et al.].
Král' has managed to prove the PL and Delta Bound Conjectures, in the more general setting of λ -graphs, in a stronger form:

Theorem For every $p, \chi \ge 1$, there exist constants $C_{p,\chi}, D_{p,\chi}$ such that the space $[0, \infty)^p$ can be partitioned into at most $C_{p,\chi}$ polyhedral cones K, on each of which the optimal span $\lambda_G(k_1, \ldots, k_p)$ of every lambda graph G, with p types of edges and chromatic number at most χ , is a linear function of k_1, \ldots, k_p .

Moreover, for each *K* and *G*, there is a proper labelling *f* of λ -graph *G* in the form $f(v) = \sum_i a_i(v)k_i$ at every vertex *v*, which is optimal for all $(k_1, \ldots, k_p) \in K$, where the integer coefficients $0 \le a_i(v) \le D_{p,\chi}$.

A surprising consequence is

Corollary [Král'] There exist only finitely many piecewise-linear functions that can be the λ -function of a λ -graph with given number of edges k and chromatic number at most χ .

• The Δ^2 Conjecture.

- The Δ^2 Conjecture.
- **•** Better bounds $D_{k,\chi}$ on the coefficients.

- The Δ^2 Conjecture.
- Better bounds $D_{k,\chi}$ on the coefficients.
- The "left-right" behavior of $\lambda(G; k, 1)$ as a function of k.

- The Δ^2 Conjecture.
- Better bounds $D_{k,\chi}$ on the coefficients.
- The "left-right" behavior of $\lambda(G; k, 1)$ as a function of k.
- Cyclic analogues, generalizing circular chromatic numbers.

- The Δ^2 Conjecture.
- **•** Better bounds $D_{k,\chi}$ on the coefficients.
- The "left-right" behavior of $\lambda(G; k, 1)$ as a function of k.
- Cyclic analogues, generalizing circular chromatic numbers.
- Symmetry properties of optimal labellings of lattices.

Congratulations, Joel!!!

Congratulations, **Joel**!!!

