Real spumber fubellings
 Jeirrold Griggs uningevidy fof guth Gerolinat Xiaohua Teresa Jin Unineresity of Vermont

A Channel Assignment Problem [F. Roberts, 1988]

Find an efficient assignment of channels $f(x) \in \mathbb{R}$ to sites $x \in \mathbb{R}^{2}$ so that two levels of interference are avoided:
$|f(x)-f(y)| \geq \begin{cases}2 d & \text { if }\|x-y\| \leq A \\ d & \text { if }\|x-y\| \leq 2 A\end{cases}$

We must minimize $\operatorname{span}(f):=\max _{x} f(x)-\min _{x} f(x)$.

We consider the analogous problem for graphs $G=(V, E)$ [G., 1989]. The problem can be reduced to the case $d=1$ and labelings $f: V \rightarrow\{0,1,2, \ldots\}$ such that
$|f(x)-f(y)| \geq \begin{cases}2 & \text { if } \operatorname{dist}(x, y)=1 \\ 1 & \text { if } \operatorname{dist}(x, y)=2\end{cases}$

We consider the analogous problem for graphs $G=(V, E)$ [G., 1989]. The problem can be reduced to the case $d=1$ and labelings $f: V \rightarrow\{0,1,2, \ldots\}$ such that
$|f(x)-f(y)| \geq \begin{cases}2 & \text { if } \operatorname{dist}(x, y)=1 \\ 1 & \text { if } \operatorname{dist}(x, y)=2\end{cases}$
Such an f is called a λ-labeling and $\lambda(G):=\min _{f} \operatorname{span}(f)$.

The graph problem differs from the "real" one when putting vertices $u \sim v$ corresponding to "very close" locations u, v.

A Network of Transmitters with a Hexagonal Cell Covering and the corresponding Triangular Lattice Γ_{\triangle}

Complete Graphs K_{n}.

Complete Graphs K_{n}.

$$
\lambda\left(K_{n}\right)=2 n-2
$$

Cycles C_{n}.

Cycles C_{n}.

$$
\lambda\left(C_{n}\right)=4 \text { for } n \geq 3 .
$$

Problem. Bound $\lambda(G)$ in terms of Δ.

Problem. Bound $\lambda(G)$ in terms of Δ.
$\Delta=2 \quad \Longrightarrow \quad \lambda \leq 4, \quad$ paths or cycles

Problem. Bound $\lambda(G)$ in terms of Δ.
$\Delta=2 \quad \Longrightarrow \quad \lambda \leq 4, \quad$ paths or cycles
$\Delta=3$

Problem. Bound $\lambda(G)$ in terms of Δ.
$\Delta=2 \quad \Longrightarrow \quad \lambda \leq 4, \quad$ paths or cycles
$\Delta=3$
Example Petersen Graph.

Problem. Bound $\lambda(G)$ in terms of Δ.
$\Delta=2 \quad \Longrightarrow \quad \lambda \leq 4, \quad$ paths or cycles
$\Delta=3$
Example Petersen Graph.

Problem. Bound $\lambda(G)$ in terms of Δ.
$\Delta=2 \quad \Longrightarrow \quad \lambda \leq 4, \quad$ paths or cycles
$\Delta=3$
Example Petersen Graph. $\quad \lambda=9$.

Conjecture. $\quad \Delta=3 \quad \Longrightarrow \quad \lambda \leq 9$.

Conjecture. $\Delta=3 \quad \Longrightarrow \quad \lambda \leq 9$.

More generally, we have the
Δ^{2} Conjecture. [G.-Yeh, 1989]
For all graphs of maximum degree $\Delta \geq 2$,

$$
\lambda(G) \leq \Delta^{2}
$$

Results. Δ-Bounds on λ :

- $\lambda \leq \Delta^{2}+2 \Delta$ by first-fit [G.]

Results. Δ-Bounds on λ :

- $\lambda \leq \Delta^{2}+2 \Delta$ by first-fit [G.]
- $\exists G$ with $\lambda \geq \Delta^{2}-\Delta$ for infinitely many values $\Delta \quad$ [G.-Yeh, 1990]

Results. Δ-Bounds on λ :

- $\lambda \leq \Delta^{2}+2 \Delta$ by first-fit [G.]
- $\exists G$ with $\lambda \geq \Delta^{2}-\Delta$ for infinitely many values Δ [G.-Yeh, 1990]
- $\lambda \leq \Delta^{2}+\Delta \quad$ [Chang and Kuo, 1995]

Results. Δ-Bounds on λ :

- $\lambda \leq \Delta^{2}+2 \Delta$ by first-fit [G.]
- $\exists G$ with $\lambda \geq \Delta^{2}-\Delta$ for infinitely many values Δ [G.-Yeh, 1990]
- $\lambda \leq \Delta^{2}+\Delta \quad$ [Chang and Kuo, 1995]
- $\lambda \leq 11$ for $\Delta=3 \quad$ [Jonas, 1993]

Results. Δ-Bounds on λ :

- $\lambda \leq \Delta^{2}+2 \Delta$ by first-fit [G.]
- $\exists G$ with $\lambda \geq \Delta^{2}-\Delta$ for infinitely many values $\Delta \quad$ [G.-Yeh, 1990]
- $\lambda \leq \Delta^{2}+\Delta \quad$ [Chang and Kuo, 1995]
- $\lambda \leq 11$ for $\Delta=3 \quad$ [Jonas, 1993]
- $\lambda \leq \Delta^{2}+\Delta-1 \quad$ [Král' and Skrekovski, 2003]

Results. Δ-Bounds on λ :

- $\lambda \leq \Delta^{2}+2 \Delta$ by first-fit [G.]
- $\exists G$ with $\lambda \geq \Delta^{2}-\Delta$ for infinitely many values $\Delta \quad$ [G.-Yeh, 1990]
- $\lambda \leq \Delta^{2}+\Delta \quad$ [Chang and Kuo, 1995]
- $\lambda \leq 11$ for $\Delta=3 \quad$ [Jonas, 1993]
- $\lambda \leq \Delta^{2}+\Delta-1 \quad$ [Král' and Skrekovski, 2003]
- $\lambda \leq \Delta^{2}+\Delta-2 \quad$ [Gonçalves, 2005]

Results. Δ-Bounds on λ :

- $\lambda \leq \Delta^{2}+2 \Delta$ by first-fit [G.]
- $\exists G$ with $\lambda \geq \Delta^{2}-\Delta$ for infinitely many values Δ [G.-Yeh, 1990]
- $\lambda \leq \Delta^{2}+\Delta \quad$ [Chang and Kuo, 1995]
- $\lambda \leq 11$ for $\Delta=3 \quad$ [Jonas, 1993]
- $\lambda \leq \Delta^{2}+\Delta-1 \quad$ [Král' and Skrekovski, 2003]
- $\lambda \leq \Delta^{2}+\Delta-2 \quad$ [Gonçalves, 2005]
- In particular, $\lambda \leq 10$ for $\Delta=3$

Georges and Mauro investigated many connected graphs with $\Delta=3$.

Georges and Mauro investigated many connected graphs with $\Delta=3$.

They suspect that for such graphs, $\lambda \leq 7$, unless G is the Petersen graph $(\lambda=9)$.

Georges and Mauro investigated many connected graphs with $\Delta=3$.

They suspect that for such graphs, $\lambda \leq 7$, unless G is the Petersen graph $(\lambda=9)$.

Kang verified $\lambda \leq 9$ when G is cubic and Hamiltonian.

Among many results verifying the conjecture for special classes of graphs, we have

Theorem [G-Yeh, 1992].
For graphs G of diameter $2, \quad \lambda \leq \Delta^{2}$, and this is sharp iff $\Delta=2,3,7,57(?)$.

Determining λ, even for graphs of diameter two,
is NP-complete [G.-Yeh]: Is $\lambda \leq v-1$?

Determining λ, even for graphs of diameter two, is NP-complete [G.-Yeh]: Is $\lambda \leq v-1$?
[Fiala, Kloks, and Kratochvíl, 2001] Fix k. Is $\lambda=k$?

Determining λ, even for graphs of diameter two, is NP-complete [G.-Yeh]: Is $\lambda \leq v-1$?
[Fiala, Kloks, and Kratochvíl, 2001] Fix k. Is $\lambda=k$?
Polynomial: $k \leq 3$.

Determining λ, even for graphs of diameter two, is NP-complete [G.-Yeh]: Is $\lambda \leq v-1$?
[Fiala, Kloks, and Kratochvíl, 2001] Fix k. Is $\lambda=k$?
Polynomial: $k \leq 3$.
NP-Complete: $k \geq 4$.
via homomorphisms to multigraphs.

Trees. Let $\Delta:=$ maximum degree ($=A$ in Figures).

Trees. Let $\Delta:=$ maximum degree ($=A$ in Figures).
Example. $\quad \lambda=\Delta+1$ (left) and $\lambda=\Delta+2$ (right).

Trees. Let $\Delta:=$ maximum degree ($=A$ in Figures).
Example. $\lambda=\Delta+1$ (left) and $\lambda=\Delta+2$ (right).

Theorem [Yeh, 1992]. For a tree $T, \lambda(T)=\Delta+1$ or $\Delta+2$.

Trees. Let $\Delta:=$ maximum degree ($=A$ in Figures).
Example. $\lambda=\Delta+1$ (left) and $\lambda=\Delta+2$ (right).

Theorem [Yeh, 1992]. For a tree $T, \lambda(T)=\Delta+1$ or $\Delta+2$.
It is difficult to determine which, though there is a polynomial algorithm [Chang-Kuo 1995].

General Version [G. 1992].
Integer $L\left(k_{1}, k_{2}, \cdots, k_{p}\right)$-labelings of a graph G :

- $k_{1}, k_{2}, \ldots, k_{p} \geq 0$ are integers.
- A labeling f : vertex set $V(G) \rightarrow\{0,1,2, \ldots\}$ such that
- for all $u, v,|f(u)-f(v)| \geq k_{i}$ if $\operatorname{dist}(u, v)=i$ in G

General Version [G. 1992].
Integer $L\left(k_{1}, k_{2}, \cdots, k_{p}\right)$-labelings of a graph G :

- $k_{1}, k_{2}, \ldots, k_{p} \geq 0$ are integers.
- A labeling f : vertex set $V(G) \rightarrow\{0,1,2, \ldots\}$ such that
- for all $u, v,|f(u)-f(v)| \geq k_{i}$ if $\operatorname{dist}(u, v)=i$ in G

The minimum span $\lambda\left(G ; k_{1}, k_{2}, \cdots, k_{p}\right):=\min _{f} \operatorname{span}(f)$.

More History of the Distance Labeling Problem

- Hale (1980) :

Models radio channel assignment problems by graph theory.

- Georges, Mauro, Calamoneri, Sakai, Chang, Kuo, Liu, Jha, Klavzar, Vesel et al. investigate $L(2,1)$-labelings, and more general integer $L\left(k_{1}, k_{2}\right)$-labelings with $k_{1} \geq k_{2}$.

We introduce Real $L\left(k_{1}, k_{2}, \cdots, k_{p}\right)$-labelings of a graph G :

We introduce Real $L\left(k_{1}, k_{2}, \cdots, k_{p}\right)$-labelings of a graph G :
Let $\vec{k}=\left(k_{1}, \ldots, k_{p}\right)$ with each $k_{i} \geq 0$ real.
Given graph $G=(V, E)$, possibly infinite, define
$L(G ; \vec{k})$ to be the set of labelings $f: V(G) \rightarrow[0, \infty)$ such that $|f(u)-f(v)| \geq k_{d}$ whenever $d=\operatorname{dist}_{G}(u, v)$.

We introduce Real $L\left(k_{1}, k_{2}, \cdots, k_{p}\right)$-labelings of a graph G :
Let $\vec{k}=\left(k_{1}, \ldots, k_{p}\right)$ with each $k_{i} \geq 0$ real.
Given graph $G=(V, E)$, possibly infinite, define $L(G ; \vec{k})$ to be the set of labelings $f: V(G) \rightarrow[0, \infty)$ such that $|f(u)-f(v)| \geq k_{d}$ whenever $d=\operatorname{dist}_{G}(u, v)$.
$\operatorname{span}(f):=\sup _{v}\{f(v)\}-\inf _{v}\{f(v)\}$.

We introduce Real $L\left(k_{1}, k_{2}, \cdots, k_{p}\right)$-labelings of a graph G :
Let $\vec{k}=\left(k_{1}, \ldots, k_{p}\right)$ with each $k_{i} \geq 0$ real.
Given graph $G=(V, E)$, possibly infinite, define $L(G ; \vec{k})$ to be the set of labelings $f: V(G) \rightarrow[0, \infty)$ such that $|f(u)-f(v)| \geq k_{d}$ whenever $d=\operatorname{dist}_{G}(u, v)$.
$\operatorname{span}(f):=\sup _{v}\{f(v)\}-\inf _{v}\{f(v)\}$.
$\lambda\left(G ; k_{1}, k_{2}, \cdots, k_{p}\right)=\inf _{f \in L(G ; \vec{k})} \operatorname{span}(f)$.

An advantage of the concept of real number labelings.
SCALING PROPERTY. For real numbers $d, k_{i} \geq 0$, $\lambda\left(G ; d \cdot k_{1}, d \cdot k_{2}, \ldots, d \cdot k_{p}\right)=d \cdot \lambda\left(G ; k_{1}, k_{2}, \ldots, k_{p}\right)$.

An advantage of the concept of real number labelings.
SCALING PROPERTY. For real numbers $d, k_{i} \geq 0$, $\lambda\left(G ; d \cdot k_{1}, d \cdot k_{2}, \ldots, d \cdot k_{p}\right)=d \cdot \lambda\left(G ; k_{1}, k_{2}, \ldots, k_{p}\right)$.

Example. $\lambda\left(G ; k_{1}, k_{2}\right)=k_{2} \lambda(G ; k, 1)$
where $k=k_{1} / k_{2}, k_{2}>0$,
reduces it from two parameters k_{1}, k_{2} to just one, k.

Theorem. [G-J; cf. Georges-Mauro 1995] For the path P_{n} on n vertices, we have the minimum span $\lambda\left(P_{n} ; k, 1\right)$.

Theorem. [G-J; cf. Georges-Mauro 1995] For the cycle C_{n} on n vertices, we have the minimum span $\lambda\left(C_{n} ; k, 1\right)$

(ctd.) The minimum span $\lambda\left(C_{n} ; k, 1\right), n \geq 6$, depending on $n(\bmod 3)$ and $(\bmod 4)$.

THE D-SET THEOREM for REAL LABELINGS. (G.-J., 2003)

THE D-SET THEOREM for REAL LABELINGS.

(G.-J., 2003)

Let G be a graph, possibly infinite, of bounded degree. Let reals $k_{1}, \ldots, k_{p} \geq 0$. Then there exists an optimal $L\left(k_{1}, k_{2}, \ldots, k_{p}\right)$-labeling f^{*}

THE D-SET THEOREM for REAL LABELINGS.

(G.-J., 2003)

Let G be a graph, possibly infinite, of bounded degree. Let reals $k_{1}, \ldots, k_{p} \geq 0$. Then there exists an optimal $L\left(k_{1}, k_{2}, \ldots, k_{p}\right)$-labeling f^{*}

- with smallest label 0
- with all labels $f^{*}(v)$ in the D-set

THE D-SET THEOREM for REAL LABELINGS.

(G.-J., 2003)

Let G be a graph, possibly infinite, of bounded degree. Let reals $k_{1}, \ldots, k_{p} \geq 0$. Then there exists an optimal $L\left(k_{1}, k_{2}, \ldots, k_{p}\right)$-labeling f^{*}

- with smallest label 0
- with all labels $f^{*}(v)$ in the D-set

$$
D_{k_{1}, k_{2}, \ldots, k_{p}}:=\left\{\sum_{i=1}^{p} a_{i} k_{i}: a_{i} \in\{0,1,2, \ldots\}\right\} .
$$

THE D-SET THEOREM for REAL LABELINGS.

(G.-J., 2003)

Let G be a graph, possibly infinite, of bounded degree. Let reals $k_{1}, \ldots, k_{p} \geq 0$. Then there exists an optimal $L\left(k_{1}, k_{2}, \ldots, k_{p}\right)$-labeling f^{*}

- with smallest label 0
- with all labels $f^{*}(v)$ in the D-set

$$
D_{k_{1}, k_{2}, \ldots, k_{p}}:=\left\{\sum_{i=1}^{p} a_{i} k_{i}: a_{i} \in\{0,1,2, \ldots\}\right\} .
$$

Hence, $\lambda\left(G ; k_{1}, k_{2}, \ldots, k_{p}\right) \in D_{k_{1}, k_{2}, \ldots, k_{p}}$.
(ctd.) Moreover, if G is finite, each label of f^{*} is of the form $\sum_{i} a_{i} k_{i}$, where the coefficients $a_{i} \in\{0,1,2, \cdots\}$ and $\sum_{i} a_{i}<n$, the number of vertices.

```
*******
```

(ctd.) Moreover, if G is finite, each label of f^{*} is of the form $\sum_{i} a_{i} k_{i}$, where the coefficients $a_{i} \in\{0,1,2, \cdots\}$ and $\sum_{i} a_{i}<n$, the number of vertices.

$$
* * * * * * *
$$

Corollary. If all k_{i} are integers, then $\lambda\left(G ; k_{1}, k_{2}, \ldots, k_{p}\right)$ agrees with the former integer λ 's.
(ctd.) Moreover, if G is finite, each label of f^{*} is of the form $\sum_{i} a_{i} k_{i}$, where the coefficients $a_{i} \in\{0,1,2, \cdots\}$ and $\sum_{i} a_{i}<n$, the number of vertices.

$$
* * * * * * *
$$

Corollary. If all k_{i} are integers, then $\lambda\left(G ; k_{1}, k_{2}, \ldots, k_{p}\right)$ agrees with the former integer λ 's.

Note. The D-set Thm. allows us to ignore some labels. Example. For $\left(k_{1}, k_{2}\right)=(5,3)$, it suffices to consider labels $f(v)$ in $D_{5,3}=\{0,3,5,6,8,9,10, \ldots\}$.

Theorem. For the triangular lattice we have $\lambda\left(\Gamma_{\triangle} ; k, 1\right)$:

A Manhattan Network and the Square Lattice Γ_{\square}

Theorem. For the square lattice we have $\lambda\left(\Gamma_{\square} ; k, 1\right)$:

Equilateral Triangle Cell Covering and the Hexagonal Lattice Γ_{H}

Theorem. For the hexagonal lattice we have $\lambda\left(\Gamma_{H} ; k, 1\right)$:

Piecewise Linearity

Piecewise Linearity

PL Conjecture. For any integer $p \geq 1$ and any graph G of bounded maximum degree, $\lambda(G ; \vec{k})$ is PL, i.e., continuous and piecewise-linear, with finitely many pieces as a function of $\vec{k}=\left(k_{1}, k_{2}, \ldots, k_{p}\right) \in[0, \infty)^{p}$.

Piecewise Linearity

PL Conjecture. For any integer $p \geq 1$ and any graph G of bounded maximum degree, $\lambda(G ; \vec{k})$ is PL, i.e., continuous and piecewise-linear, with finitely many pieces as a function of $\vec{k}=\left(k_{1}, k_{2}, \ldots, k_{p}\right) \in[0, \infty)^{p}$.

Finite Graph PL Theorem. For any integer $p \geq 1$ and any finite graph $G, \lambda(G ; \vec{k})$ is PL .

Theorem ($p=2$). For any graph G, possibly infinite, with finite maximum degree, $\lambda(G ; k, 1)$ is a piecewise linear function of k with finitely many linear pieces.

Theorem ($p=2$). For any graph G, possibly infinite, with finite maximum degree, $\lambda(G ; k, 1)$ is a piecewise linear function of k with finitely many linear pieces.

Moreover,
$\lambda(G ; k, 1)= \begin{cases}a k+\chi\left(G^{2}-G\right)-1 & \text { if } 0 \leq k \leq 1 / \Delta^{3} \\ (\chi(G)-1) k+b & \text { if } k \geq \Delta^{3}\end{cases}$
for some constants $a, b \in\left\{0,1, \ldots, \Delta^{3}-1\right\}$, where $G^{2}-G$ is the graph on $V(G)$ in which edges join vertices that are at distance two in G.

We make the stronger
Delta Bound Conjecture For all p and Δ, there is a constant $c:=c(\Delta, p)$ such that for all graphs G of maximum degree Δ and all k_{1}, \ldots, k_{p}, there is an optimal labeling $f \in L\left(k_{1}, \ldots, k_{p}\right)$ in which the smallest label is 0 , all labels are in $D\left(k_{1}, \ldots, k_{p}\right)$ and of the form $\sum_{i} a_{i} k_{i}$ where all coefficients $a_{i} \leq c$.

We make the stronger
Delta Bound Conjecture For all p and Δ, there is a constant $c:=c(\Delta, p)$ such that for all graphs G of maximum degree Δ and all k_{1}, \ldots, k_{p}, there is an optimal labeling $f \in L\left(k_{1}, \ldots, k_{p}\right)$ in which the smallest label is 0 , all labels are in $D\left(k_{1}, \ldots, k_{p}\right)$ and of the form $\sum_{i} a_{i} k_{i}$ where all coefficients $a_{i} \leq c$.

Theorem This holds for $p=2$.

Lambda Graphs.

A more general model for graph labelling has been introduced recently by Babilon, Jelínek, Král', and Valtr. A λ-graph $G=(V, E)$ is a multigraph in which each edge is of one of p types. Given reals $k_{1}, \ldots, k_{p} \geq 0$, a labelling $f: V \rightarrow[0, \infty)$ is proper if for every edge $e \in E$, say it is type i, the labels at the ends of e differ by at least k_{i}.

The infimum of the spans of the proper labellings of G is denoted by $\lambda_{G}\left(k_{1}, \ldots, k_{p}\right)$.

We assume implicitly that for every choice of the parameters k_{i}, the optimal span $\lambda_{G}\left(k_{1}, \ldots, k_{p}\right)$ is finite. For example, this holds when $\chi(G)<\infty$.

Given a graph G, form λ-graph $H=G^{p}$ in which an edge joining vertices u, v has type $i=\operatorname{dist}_{G}(u, v), 1 \leq i \leq p$. Thus, the real number distance labelling is a special case of λ-graphs.

Given a graph G, form λ-graph $H=G^{p}$ in which an edge joining vertices u, v has type $i=\operatorname{dist}_{G}(u, v), 1 \leq i \leq p$. Thus, the real number distance labelling is a special case of λ-graphs.

Results on distance-labelling, concerning continuity, piecewise-linearity, and the D-Set Theorem, can be extended to λ-graphs [Babilon et al.].

Král' has managed to prove the PL and Delta Bound Conjectures, in the more general setting of λ-graphs, in a stronger form:

Theorem For every $p, \chi \geq 1$, there exist constants $C_{p, \chi}, D_{p, \chi}$ such that the space $[0, \infty)^{p}$ can be partitioned into at most $C_{p, \chi}$ polyhedral cones K, on each of which the optimal span $\lambda_{G}\left(k_{1}, \ldots, k_{p}\right)$ of every lambda graph G, with p types of edges and chromatic number at most χ, is a linear function of k_{1}, \ldots, k_{p}.

Moreover, for each K and G, there is a proper labelling f of λ-graph G in the form $f(v)=\sum_{i} a_{i}(v) k_{i}$ at every vertex v, which is optimal for all $\left(k_{1}, \ldots, k_{p}\right) \in K$, where the integer coefficients $0 \leq a_{i}(v) \leq D_{p, \chi}$.

A surprising consequence is
Corollary [Král'] There exist only finitely many piecewise-linear functions that can be the λ-function of a λ-graph with given number of edges k and chromatic number at most χ.

Future Work.

- The Δ^{2} Conjecture.

Future Work.

- The Δ^{2} Conjecture.
- Better bounds $D_{k, \chi}$ on the coefficients.

Future Work.

- The Δ^{2} Conjecture.
- Better bounds $D_{k, \chi}$ on the coefficients.
- The "left-right" behavior of $\lambda(G ; k, 1)$ as a function of k.

Future Work.

- The Δ^{2} Conjecture.
- Better bounds $D_{k, \chi}$ on the coefficients.
- The "left-right" behavior of $\lambda(G ; k, 1)$ as a function of k.
- Cyclic analogues, generalizing circular chromatic numbers.

Future Work.

- The Δ^{2} Conjecture.
- Better bounds $D_{k, \chi}$ on the coefficients.
- The "left-right" behavior of $\lambda(G ; k, 1)$ as a function of k.
- Cyclic analogues, generalizing circular chromatic numbers.
- Symmetry properties of optimal labellings of lattices.

Congratulations, Joel!!!

Congratulations, Joel!!!

