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Abstract

We prove a “supersaturation-type” extension of both Sperner’s Theorem (1928) and its
generalization by Erdős (1945) to k-chains. Our result implies that a largest family whose
size is x more than the size of a largest k-chain free family and that contains the minimum
number of k-chains is the family formed by taking the middle (k − 1) rows of the Boolean
lattice and x elements from the kth middle row. We prove our result using the symmetric chain
decomposition method of de Bruijn, van Ebbenhorst Tengbergen, and Kruyswijk (1951).

1 Introduction

A core topic of extremal graph theory is the study of “Turán-type questions”: fix a (finite) graph H
and a positive integer n. What is the largest number ex(n, H) of edges in an n-vertex graph that
contains no copy of H? More than a hundred years ago, Mantel [14] answered this question in the
case where H is K3, the triangle. About forty years later, Turán [19] generalized this to all complete
graphs. More precisely, the Turán graph T (n,r ) is the complete r -partite graph of order n with parts
of size bn/r c or dn/r e. Not only did Turán prove that T (n,r ) has the largest number of edges among
all n-vertex graphs with no copies of Kr+1, that is, ex(n,r ) = |E(T (n,r ))|, but also he proved that all
other n-vertex graphs containing no copies of Kk+1 have strictly fewer edges than T (n,r ).

The theory of graph supersaturation deals with the situation beyond the threshold given by
ex(n, H). Specifically, define `(n, H , q) as the least number of copies of H in an n-vertex graph with
at least ex(n, H)+ q edges. By the definition, we know that `(n, H , q) Ê 1 as soon as q > 0, but it
turns out that an extra edge is likely to create many more copies of H . Arguably, the first result in
this direction was proved in an unpublished work of Rademacher from 1941 (orally communicated
to Erdős [3]): while Mantel’s theorem states that every n-vertex graph with more than |E(T (n,2))| =
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bn/2cdn/2e edges contains a triangle, Rademacher established that such graphs contain, actually, at
least bn/2c triangle copies.

This result was generalized by Erdős, who proved that `(n,K3, q) Ê bn/2c first if q ∈ {1,2,3}
in 1955 [3] and a few years later in the case q < c ·n/2 for a fixed constant c ∈ (0 ,1) [4]. More
than twenty years later, Lovász and Simonovits [13] established the following theorem, thereby
confirming a conjecture of Erdős.

Theorem 1.1 (Lovász and Simonovits (1983)). Let n and q be positive integers. If q < n/2, then
`(n,K3, q) Ê q · bn/2c.

In addition, Lovász and Simonovits [13] determined `(n,Kr , q) when q = o
(
n2

)
. Their techniques do

not apply, though, for the case where q =Ω(
n2

)
. Solutions to this difficult problem were provided

recently with the aid of flag algebras: first, by Razborov [16] for H = K3, then, by Nikiforov [15] for
H = K4 and, finally, by Reiher [17] for the general case H = Kr .

Supersaturation results have not to our knowledge been studied as extensively in other im-
portant areas of extremal combinatorics. In this paper, we pursue this direction for extremal set
theory.

Let the Boolean lattice Bn be the poset (2[n],⊆) of all subsets of the set [n] = {1, . . . ,n}, ordered
by inclusion. For a set S, the collection of all k-subsets of S is denoted by

(S
k

)
. Following notation of

previous work [10], by B(n,k) and Σ(n,k) we mean the families of subsets of [n] of the k middle
sizes and the size of the families. More precisely,

B(n,k) =
(

[n]⌊
n−k+1

2

⌋)
∪·· ·∪

(
[n]⌊

n+k−1
2

⌋)
or B(n,k) =

(
[n]⌈

n−k+1
2

⌉)
∪·· ·∪

(
[n]⌈

n+k−1
2

⌉)

(so, depending on the parity of n and k, this can be either one or two different families).
Given two finite posets P = (P,É) and P ′ = (P ′,É′), we say that P ′ contains P (or P is a (weak)

subposet of P ′), if there is an injection f : P → P ′ that preserves the partial ordering, i.e. if u É v in P ,
then f (u) É′ f (v) in P ′. We let Pk be the k-element totally ordered poset (chain).

What is the largest size La(n,P ) of a family of subsets of [n] that does not contain P? The
foundational result of this kind, Sperner’s Theorem [18] from 1928, answers this question for a
two-element chain: La(n,P2) =Σ(n,1). Moreover, the value La(n,P2) is attained only by B(n,1),
which consists of subsets all of (a) middle size. Erdős [2] almost two decades later generalized this
to P =Pk , showing that La(n,Pk ) =Σ(n,k −1), which is attained only by B(n,k −1). Katona has
championed the La(n,P ) problem for posets P other than k-chains, and this is a challenging area
of extremal set theory. It is often very difficult to obtain the extremal size La(n,P ) of such a family,
even asymptotically (see [10] for a survey).

However, for those P for which we know the exact threshold, we can ask how many copies of
P must be present in families larger than the threshold La(n,P ). Here we investigate the simplest
instance of this problem, when P is a chain. Analogous to the way that Rademacher and Erdős
(and subsequent researchers) have extended the theorems of Mantel and Turán, we present a
supersaturation extension of Sperner’s Theorem and its k-chain generalization by Erdős.

Our initial result was a lower bound on the number of P2’s in a family F ⊆ 2[n] of a given size that
is optimal for |F | ÉΣ(n,2), extending Sperner’s Theorem. By investigating more examples, we came
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to believe that for any size |F |, with Σ(n,`) É |F | ÉΣ(n,`+1), the number of P2’s in F is minimized
by taking F to consist of B(n,`) together with subsets of B(n,`+ 1). In further exploration of
problems related to poset-free families of subsets, we came across the work of Kleitman [11] from
1968, which corroborates our findings and intuition. Indeed, Kleitman, albeit with matching theory
techniques, obtained the (same) supersaturation extension of Sperner’s Theorem and more. This
settled a conjecture of Erdős and Katona. In particular, he determined the minimum number of
pairs (A,B) with A ⊂ B in a family F ⊆ 2[n] of any given size. As we had intuited, taking the subsets
of some middle sizes attains the optimum.

One particularly nice way to quickly derive Sperner’s Theorem and its generalization by Erdős
is to employ the remarkable symmetric chain decomposition (SCD, for short) of all 2n subsets
of [n], discovered by de Bruijn, van Ebbenhorst Tengbergen, and Kruyswijk [1] in 1951. It is a
partition of the Boolean lattice into just

( n
bn/2c

)
disjoint chains of subsets, where for each chain there

is some k É n/2 such that the chain consists of a subset of each size from k to n −k. For all k the
decomposition induces the best possible upper bound on |F | for a Pk -free family F of subsets of
[n]. (It requires some additional arguments to obtain the extremal families.) The construction,
which is obtained by a clever inductive argument, was done originally in the more general setting of
a product of chains. In this way, the authors obtained the extension of Sperner’s Theorem to the
lattice of divisors of an integer N .

There is a large literature on the existence of SCDs in posets and other ordered/ranked set
systems [6, 7, 12]. Greene and Kleitman [5] discovered an explicit SCD of the Boolean lattice for all
n, based on a simple “bracketing procedure", as opposed to the original inductive construction.
Bracketing has proven to be valuable in its own right, such as for the Littlewood-Offord problem [6]
and for the construction of symmetric Venn diagrams on n sets for all prime n [9].

It is not surprising then that a SCD of Bn yields a lower bound on the number of paths in a family
F of given size. In particular, if we arbitrarily consider one particular SCD, the number of chains
in F that are also chains in the SCD is minimized by taking the sets of F to be of the middle sizes.
However, this argument does not account for the many containment relations for pairs of subsets
A ⊂ B where A and B are on different chains in the SCD. To adjust for this, and to exploit symmetry
by avoiding bias towards a particular SCD, our new idea here is to take all n! SCDs obtained by
permutation of the ground set [n]. In this way, we obtain lower bounds on the number of paths in a
family F of given size, bounds that are best possible for small F .

Our main aim in this paper is then to prove the following supersaturation extension of the
theorems of Sperner and Erdős, using the above-outlined SCD approach.

Theorem 1.2. If a family F of subsets of [n] satisfies |F | = x +Σ(n,k −1), then there must be at least

x ·
k−1∏
i=1

(⌊
n +k

2

⌋
− i +1

)
copies of Pk in F .

Note that
k−1∏
i=1

(⌊
n +k

2

⌋
− i +1

)
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is the number of copies of Pk contained in B(n,k), with one endpoint of the chain being a particular
set in the kth middle row. Thus the family that consists of B(n,k−1) and x sets from the kth middle
row witnesses that the above bound is tight for

x É
(

n⌊n
2

⌋+ (−1)k
⌊

k
2

⌋)
.

More generally, Kleitman [11] has conjectured that for any k the natural construction (that
selects subsets around the middle) minimizes the number of chains Pk in F . Our result gives new
information in support of this conjecture, verifying it for |F | ÉΣ(n,k). We suspect that a stronger
version of our SCD method, in which weights are assigned, may lead to a proof of Kleitman’s
conjecture in full for general k. So far our efforts in this direction that looked very promising have
not yet succeeded. We cannot imagine that his conjecture is not correct.

2 Proof of Theorem 1.2

As mentioned earlier, we shall use the symmetric chain decomposition of Bn .

Proof of Theorem 1.2. Given a poset (P,¹) on 2[n], let us say that a k-chain A1 ⊂ ·· · ⊂ Ak of F (in
Bn) is included in P if A1 ≺ ·· · ≺ Ak , and furthermore define cF (P ) to be the number of k-chains of
F included in P . For any SCD C of Bn , let PC be the poset on 2[n] defined by taking the disjoint
union of the chains in C . Let us fix the SCD C . By the pigeonhole principle, PC includes at least
x k-chains of F , i.e. cF (PC ) Ê x. Each (non-trivial) permutation π of [n] applied to C results in a
new unique SCD π(C ) for Bn . Note that π(C ) 6=π′(C ) for distinct permutations π and π′ of [n]. By
summing over the permutations π of [n], we obtain

n! · x É∑
π

cF (Pπ(C )).

Let us change the summation to sum over all k-chains of F . For this, we define N (n, A1, . . . , Ak ) to be
the number of permutations π such that Pπ(C ) includes a given chain A1 ⊂ ·· · ⊂ Ak of F . We obtain∑

π

cF (Pπ(C )) =
∑

A1⊂···⊂Ak ;Ai∈F
N (n, A1, . . . , Ak ).

Setting ai := |Ai | for each i ∈ {1, . . . ,k}, it holds that

N (n, A1, . . . , Ak ) = a1! · (a2 −a1)! · · · (ak −ak−1)! · (n −ak )! ·min

{(
n

a1

)
,

(
n

ak

)}
,

where the last factor comes from the number of chains in a SCD that the given chain could fit. After
some manipulation, we deduce that

N (n, A1, . . . , Ak ) = n!

max
{( ak

ak−1

) · · ·(a2
a1

)
,
(n−a1

n−a2

) · · ·(n−ak−1
n−ak

)} .
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We shall find a general upper bound for N (n, A1, . . . , Ak ) by minimizing the maximum of y defined
as

( ak
ak−1

) · · ·(a2
a1

)
and z defined as

(n−a1
n−a2

) · · ·(n−ak−1
n−ak

)
. Note the following binomial identity:(

a + i + j

a + i

)(
a + i

a

)
=

(
a + i + j

a + j

)(
a + j

a

)
.

As a consequence of this, the values of y and z are invariant as long as the multiset of all differences
between consecutive values of ai is invariant. By this fact, if there is some difference in this multiset
that is at least 2, we may assume without loss of generality that this “large” difference is between
ak−1 and ak . It follows that

y ′ := y ·
(ak−1+1

ak−1

)( ak
ak−1

) = y · ak−1 +1( ak
ak−1

) < y,

provided that ak−1 > 0. Similarly,

z ′ := z ·
(n−a2+1

n−a2

)(n−a1
n−a2

) = z · n −a2 +1(n−a1
n−a2

) < z,

provided that a2 < n. It follows that y and z are minimized when the multiset of differences is the
multiset of all ones, i.e. with

y = ak !

(ak −k +1)!
and z = (n −ak +k −1)!

(n −ak )!
.

The maximum of y and z is then minimized by choosing ak to be
⌊

n+k
2

⌋
, so

n! · x É ∑
A1⊂···⊂Ak

Ai∈F

N (n, A1, . . . , Ak ) É ∑
A1⊂···⊂Ak

Ai∈F

n!∏k−1
i=1

(⌊
n+k

2

⌋
− i +1

) = cF (F ) · n!∏k−1
i=1

(⌊
n+k

2

⌋
− i +1

) ,

as required.

Remarks

Our result was presented by the second author in Prague in June 2012 [8]. In the preparation of this
manuscript, we learned that recently Das, Gan and Sudakov have independently pursued a similar
line of research and possibly obtained results similar to ours.
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