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Abstract

A squashed full flat antichain (SFFA) in the Boolean lattice Bn is a family

A∪B of subsets of [n] = {1, 2, . . . , n} such that, for some k ∈ [n] and 0 ≤ m ≤(
n
k

)
, A is the family of the first m k-sets in squashed (reverse-lexicographic)

order and B contains exactly those (k−1)-subsets of [n] that are not contained

in some A ∈ A. If, in addition, every k-subset of [n] which is not in A contains

some B ∈ B, then A ∪ B is a squashed maximal flat antichain (SMFA). For

any n, k and positive real numbers α, β, we determine all SFFA and all SMFA

of minimum weight α · |A|+β · |B|. Based on this, asymptotic results on SMFA

with minimum size and minimum BLYM value, respectively, are derived.
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1 Introduction

An antichain in the Boolean lattice Bn is a family of subsets of [n] := {1, 2, . . . , n}
such that none of the subsets is properly contained in another. An antichain F ⊆ Bn

is flat if |F | ∈ {k− 1, k} for all F ∈ F and some 1 ≤ k ≤ n. In this paper, we study

flat antichains with the property that no (k−1)-set can be added without destroying

the antichain property and such that the k-sets form an initial segment in squashed

(or colexicographic) order. Such squashed full flat antichains (SFFA) are known to

generate ideals of minimum size among all antichains of the same size in Bn. This

fact and the Flat Antichain Theorem are the main motivations for this research.

More detailed explanations are given later in this introductory section and in the

beginning of the next section. Our main result is a characterization of those SFFA

that attain minimum weight with respect to certain weight functions. In particular,

we determine all SFFA of minimum weight, minimum volume, and minimum BLYM

value, respectively.

Throughout, let n be a positive integer. We use 2[n] or Bn to denote the power

set of [n] and
(
[n]
i

)
for the family of all i-subsets of [n]. The volume V (F) of F ⊆ 2[n]

is defined as V (F) :=
∑

F∈F |F |. The results of Kisvölcsey [5] and Lieby [7, 8]

perfectly complement each other to give the following important theorem.

Theorem 1 (Flat Antichain Theorem (FLAT)). Let F ⊆ 2[n] be an antichain. Then

there is a flat antichain F ′ ⊆ 2[n] with |F ′| = |F| and V (F ′) = V (F).

The FLAT naturally induces an equivalence relation on the class of all antichains

in Bn. We say that two antichains are equivalent if they have the same size and

the same volume. By Theorem 1, each of the equivalence classes with respect to

this relation contains some flat antichain. Proposition 2 below illustrates that flat

antichains are in some sense the extremal representatives of their equivalence classes.

Let R+ denote the set of nonnegative real numbers, and consider a weight function

w : 2[n] 7→ R+ such that each i-set F ⊆ [n] has the same weight w(F ) = wi. The

weight of F ⊆ 2[n] is defined to be w(F) =
∑

F∈F w(F ). The sequence {wi}ni=0 is

convex if {wi − wi−1}ni=1 is increasing and concave if {wi − wi−1}ni=1 is decreasing.

Proposition 2. Let w : 2[n] 7→ R+ be a weight function as above. Furthermore,

let A ⊆ 2[n] be an antichain and F ⊆ 2[n] a flat antichain such that |F| = |A| and

V (F) = V (A).

(i) If the sequence {wi}ni=0 is convex, then w(F) ≤ w(A).

(ii) If the sequence {wi}ni=0 is concave, then w(F) ≥ w(A).

Proof: We only prove part (i) here. The proof of (ii) is analogous.
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Assume that {wi}ni=0 is convex. Let a = (a0, a1, . . . , an) be the profile vector

of A, i.e., ai = |{A ∈ A : |A| = i}|. Furthermore, let ` = min{i : ai 6= 0}
and u = max{i : ai 6= 0}. The weight of A is determined by a, and one has

w(A) =
∑u

i=` aiwi =: w(a). If u− ` ≤ 1, then A is flat. As A and F have the same

size and the same volume, their profile vectors must be equal then, and it follows

that w(A) = w(F). Hence, without loss of generality we can assume that u− ` ≥ 2.

Consider the vector a′ obtained from a replacing a` by a` − 1, a`+1 by a`+1 + 1,

au by au − 1, and au−1 by au−1 + 1. (That is, if u− ` = 2, then a`+1 = au−1 will be

increased by 2.) Note that
∑
a′i =

∑
ai,
∑
a′ii =

∑
aii, and

w(a)− w(a′) = (wu − wu−1)− (w`+1 − w`).

As {wi} is convex, it follows that w(a′) ≤ w(a). (It should be pointed out that we

do not claim or need that a′ is the profile vector of some antichain in Bn.) Iterating

this process, we transform a into the profile vector f of F as A and F agree in size

and volume. This implies w(F) = w(f) ≤ w(a) = w(A). �

The well-known BLYM inequality (see [1] for instance) states that BLYM value

of any antichain in Bn is at most 1, where the BLYM value of F ⊆ 2[n] is defined to

be
∑

F∈F |F |/
(

n
|F |

)
. In this context, Proposition 2 implies an interesting observation

about flat antichains.

Corollary 3. Flat antichains have minimum BLYM values within their equivalence

classes.

Proof: The claim follows from Proposition 2 and the fact that the sequence{
1/
(
n
i

)}n
i=0

is convex which is straight forward to verify. �

For a family G ⊆
(
[n]
i

)
the shadow and the shade (or upper shadow) of G are the

families ∆G := {H ∈
(
[n]
i−1

)
: H ⊂ G for some G ∈ G} and ∇G := {H ∈

(
[n]
i+1

)
:

H ⊃ G for some G ∈ G}, respectively. Full flat antichains (FFA) F = A ∪ B with

A ⊆
(
[n]
k

)
and B ⊆

(
[n]
k−1

)
for some 1 ≤ k ≤ n are characterized by B =

(
[n]
k−1

)
\∆A.

Maximal flat antichains (MFA) are the ones that in addition satisfy A =
(
[n]
k

)
\∇B.

For example, F =
{
{1, 2}, {1, 3}, {4}

}
is an FFA in B4 as all singletons other

than {4} are covered by the 2-sets in F . On the other hand, F is not an MFA since

{2, 3} could be added in without destroying the antichain property.

It is easy to see that F is an MFA if and only if its complementary antichain

F := {[n] \ F : F ∈ F} is an MFA. If F is an FFA, then F is an FFA only if F is

an MFA.

In [3], it is shown that the minimum size of an MFA with k = 3 (that is an MFA

consisting of 2-sets and 3-sets) is
(
n
2

)
− b(n+ 1)2/8c, and all such MFA of minimum
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size are determined. Some further results are obtained for the more general problem

of minimizing the total weight of an MFA with k = 3 when each 3-sets has some

weight α and each 2-set has weight β, where α, β ∈ R+.

In the next section, we solve a similar problem for squashed FFA and squashed

MFA for any n and k.

2 SFFA and SMFA of minimum weight

We say that F ⊆ [n] precedes G ⊆ [n], G 6= F , in squashed (or colexicographic)

order and write F <S G whenever max
(
(F ∪G) \ (F ∩G)

)
∈ G.

A squashed FFA (SFFA) in Bn is an FFA of the form F = A∪B, where A ⊆
(
[n]
k

)
and B ⊆

(
[n]
k−1

)
for some 1 ≤ k ≤ n and such that A consists of the first m elements

of
(
[n]
k

)
with respect to squashed order for some m ≤

(
n
k

)
. Clearly, an SFFA F is

completely determined by n, k, and m. If an SFFA F is an MFA, then we call it a

squashed MFA (SMFA).

By Sperner’s Theorem [9], any antichain in Bn has size at most
(

n
bn/2c

)
. It is

a remarkable fact that for any positive s ≤
(

n
bn/2c

)
there is an SFFA of size s in

Bn. Moreover, among all antichains of size s a uniquely determined SFFA generates

an ideal of minimum weight, where each i-set in Bn has the same weight wi and

0 ≤ w0 ≤ w1 ≤ · · · ≤ wn. For details, see Theorem 8.3.5 in Engel’s book [1]. The

last statement was generalized to Macaulay posets P with the the property that P

and its dual are weakly shadow increasing in [2].

For 1 ≤ k ≤ n and 0 ≤ m ≤
(
n
k

)
, the k-cascade representation of m is a

representation of m in the form

m =
k∑

i=1

(
ai
i

)
with ak > ak−1 > · · · at ≥ t > 0 = at−1 = · · · = a1. (1)

The summands
(
ai
i

)
with ai = 0 could clearly be removed from the above repre-

sentation of m. Their only purpose here is that they will allow us a more compact

formulation of the main result (Theorem 5). It is easy to see (cf. [4]) that for given k

and m there is a unique k-cascade representation of m. Moreover, if A is the family

of the first m k-sets in squashed order and (1) is the k-cascade representation of m,

then

|∆A| =
k∑
i=t

(
ai
i− 1

)
. (2)

By the Kruskal-Katona Theorem [6, 4], the family A of the first m k-sets in squashed

order has a shadow of smallest size among all m-element subsets of
(
[n]
k

)
.

The following is folklore and easy to check:
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Proposition 4. Let F = A ∪ B be a SFFA with A ⊆
(
[n]
k

)
and B ⊆

(
[n]
k−1

)
, and let

m := |A| be represented as in (1). F is an SMFA if and only if a1 = 0.

Our main result is the following characterization of all SFFA of minimum weight.

To avoid certain technicalities, the trivial cases k = 1 and k = n are excluded.

Theorem 5. Let 1 < k < n be integers, α, β positive real numbers and λ := β/α.

Furthermore, let F = A ∪ B with A ⊆
(
[n]
k

)
and B ⊆

(
[n]
k−1

)
be a SFFA, and let

(1) be the k-cascade representation of m := |A|. F has minimum weight w(F) =

α · |A|+ β · |B| among all SFFA in
(
[n]
k

)
∪
(

[n]
k−1

)
if and only if

ai =



n− k − 1 + i if i > 1 + (n− k)/λ,

d(i− 1)(λ+ 1)− 1)e or b(i− 1)(λ+ 1)c if 1 + (n− k)/λ ≥ i ≥ 1 + 2/λ,

i if 1 + 2/λ > i > 1/λ,

0 or i if 1/λ = i,

0 if 1/λ > i.

Proof: First, observe that with g(m) := m− λ|∆A| we have

w(F) = α · g(m) +

(
n

k − 1

)
.

Hence, our problem of minimizing w(F) is equivalent to minimizing g(m) over all

m ∈
{

0, 1, . . . ,
(
n
k

)}
.

If m ∈
{(

n
k

)
− 1,

(
n
k

)}
, then ∆A =

(
[n]
k−1

)
holds. Consequently, m =

(
n
k

)
does

not minimize g(m), and we can assume that m <
(
n
k

)
, i.e. that ak ≤ n − 1. As

ak > ak−1 > · · · > at, this implies

ai = 0 or i ≤ ai ≤ n− 1− k + i for i ∈ [k]. (3)

By (2), we have

g(m) =
k∑
i=t

hi(ai), (4)

where, for i ∈ [k], the polynomial hi : R 7→ R is defined by

hi(x) :=

(
x

i

)
− λ
(

x

i− 1

)
=


x− λ if i = 1,

x+ 1− i(λ+ 1)

i!

i−2∏
j=0

(x− j) if i ≥ 2.

Our strategy is as follows: For each i ∈ [k], we determine those x ∈ [i, n − 1 −
k+ i]∩Z for which hi(x) is smallest possible. For such x, we choose ai = x or ai = 0
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if hi(x) is negative or positive, respectively. If hi(x) = 0, we choose ai ∈ {0, x}.
Eventually, we will verify that, with the ai’s chosen as described, we obtain a proper

k-cascade representation (1), i.e. that the following implication is true:

(i ∈ [k − 1]) ∧ (ai > 0) =⇒ (ai < ai+1). (5)

To begin with, note that h1(x) = x−λ achieves its global minimum with respect

to the interval [1, n− k] at x = 1, and we have have h1(1) = 1− λ.

Let i ∈ [k] \ {1}. Then hi is a polynomial of degree i with leading coefficient 1

and zeros 0, 1, . . . , i− 1 and i(λ+ 1)− 1. That means, hi(x) is positive and strictly

increasing for x > i(λ+ 1)− 1, and hi(x) < 0 for i− 2 < x < i(λ+ 1)− 1. Moreover,

hi is strictly convex on I :=
(
i− 2, i(λ+ 1)− 1

)
. The numbers u := (i− 1)(λ+ 1)

and u− 1 both lie in I, and one can easily check that hi(u− 1) = hi(u).

Based on the above discussion, we distinguish three cases to find the global

minimum of hi(x) over all x ∈ [i, n− 1− k + i] ∩ Z.

Case 1: Assume that u− 1 < i. Note that this is equivalent to i < 1 + 2/λ. In

this case, hi(x) is a minimum only at x = i, and hi(i) is positive if i < 1/λ, equals

0 if i = 1/λ and is negative if i > 1/λ.

Case 2: Assume that i ≤ u − 1 and that u ≤ n − 1 − k + i. Note that this is

equivalent to 1 + 2/λ ≤ i ≤ 1 + (n− k)/λ. In this case, hi(x) attains its minimum

exactly for x ∈ {du− 1e, buc}, and this minimum is negative.

Case 3: Assume that n − 1 − k + i < u. Note that this is equivalent to

1 + (n − k)/λ < i. In this case, hi(x) is a minimum only at x = n − 1 − k + i and

hi(n− 1− k + i) < 0.

By the results of the above case study and (4), g(m) becomes a minimum when

the ai’s are chosen as in the theorem, where the minimization is over all choices

satisfying (3). Finally, a straight forward calculation shows that (5) holds for the

ai’s as in the theorem. �

Note that, by Proposition 4, for λ < 1 the optimal SFFA in Theorem 5 are also

SMFA. In general, Theorem 5 and its proof yield the following characterization of

minimum weight SMFA.

Corollary 6. Let 1 < k < n be integers, α, β positive real numbers and λ := β/α.

Furthermore, let F = A ∪ B with A ⊆
(
[n]
k

)
and B ⊆

(
[n]
k−1

)
be a SMFA, and let

(1) be the k-cascade representation of m := |A|. F has minimum weight w(F) =

α · |A|+ β · |B| among all MFSA in
(
[n]
k

)
∪
(

[n]
k−1

)
if and only if

6



(a) λ ≤ n− k + 1 and

ai =



n− k − 1 + i if i > 1 + (n− k)/λ,

d(i− 1)(λ+ 1)− 1)e or b(i− 1)(λ+ 1)c if 1 + (n− k)/λ ≥ i ≥ 1 + 2/λ,

i if 1 + 2/λ > i > max{1/λ, 1},
0 or i if 1/λ = i > 1,

0 otherwise,

or

(b) λ ≥ n− k + 1, ai = 0 for i = 1, . . . , k − 1 and ak = n.

Proof: In the beginning of the proof of Theorem 5 we ruled out the case that

F =
(
[n]
k

)
when looking for SFFA of minimum weight. For λ < n− k+ 1, the SMFA(

[n]
k

)
can not be an SMFA of minimum weight either. This follows from the simple

observation that in this case, the SMFA((
[n]

k

)
\ ∇
{
{n− k + 2, n− k + 3, . . . , n}

})
∪
{
{n− k + 2, n− k + 3, . . . , n}

}
has a smaller weight. Now the ai’s are determined as in the proof of Theorem 5,

with the exception that a1 must be 0 by Proposition 4. This proves the claim for

λ < n− k + 1.

If λ > n− k+ 1, then
(
[n]
k

)
is the unique SMFA of minimum weight. To see this,

assume that B 6= ∅, and use |∇B| ≤ (n− k + 1)|B| which implies that(
[n]

k

)
= (F \ B) ∪∇B

has a smaller weight that F .

Finally, if λ = n− k + 1, then choosing a1 = 0 and the other ai’s as in Theorem

5 (i.e., ai = n− k − 1 + i for i = 2, . . . , k) gives an SMFA that has the same weight

as
(
[n]
k

)
. �

3 Cases of special interest

Theorem 5 and Corollary 6 together with (2) and B =
(

[n]
k−1

)
\∆A give the formula

w(F) = β
(

n
k−1

)
+
∑k

i=1

(
α
(
ai
i

)
− β

(
ai
i−1

))
(6)

for the smallest weight of an SFFA and an SMFA in
(
[n]
k

)
∪
(

[n]
k−1

)
, where the ai’s are

chosen as in the theorem and the corollary, respectively. (Note that for our formula

to be accurate we have to adopt the somewhat unusual convention that
(
0
0

)
is 0.)
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3.1 SFFA and SMFA of minimum size

Let s(n, k) denote the minimum size of an SFFA in
(
[n]
k

)
∪
(

[n]
k−1

)
. By Theorem 5 with

α = β = 1, s(n, k) is equal to the right-hand side of (6) for

ai =


n− k − 1 + i if i > n− k + 2,

2i− 3 or 2i− 2 if 3 ≤ i ≤ n− k + 1,

2 if i = 2,

0 or 1 if i = 1.

For the minimum size of an SMFA we have to choose a1 = 0 and the other ai’s as

above by Corollary 6. Consequently, s(n, k) is also the minimum size of an SMFA

in
(
[n]
k

)
∪
(

[n]
k−1

)
.

Using the above values for the ai’s in (6) gives the following formula for s(n, k).

Corollary 7. Let 1 ≤ k ≤ (n+ 1)/2. Then

s(n, k) = s(n, n− k + 1) =

(
n

k − 1

)
−

k−1∑
i=1

1

i+ 1

(
2i

i

)
.

Corollary 7 implies that as n gets larger for fixed k the optimal SFFA look more

and more like the (k − 1)-st level of Bn.

Corollary 8. For fixed k ≥ 1 one has lim
n→∞

s(n, k)(
n

k−1

) = 1.

3.2 SFFA and SMFA of minimum volume

Using, α = k and β = k − 1 in Theorem 5 gives a characterization of all SFFA in(
[n]
k

)
∪
(

[n]
k−1

)
of minimum volume. As λ = (k− 1)/k < 1 in this case, these SFFA are

all also SMFA.

3.3 SFFA and SMFA of minimum BLYM value

To find the minimum BLYM value of an SFFA or SMFA in
(
[n]
k

)
∪
(

[n]
k−1

)
, we can use

(6) with α = 1/
(
n
k

)
and β = 1/

(
n

k=1

)
which means that λ = (n − k + 1)/k. Note

that the optimal SFFA given by Theorem 5 are also SMFA if k > (n + 1)/2. For

k = (n+1)/2 there is an optimal SFFA which also is an SMFA, but not for k ≤ n/2.

Let BLYM(n, k) be the minimum BLYM value of an SMFA in
(
[n]
k

)
∪
(

[n]
k−1

)
. As

the optimal SFFA and SMFA differ only marginally, it is easy to verify that the

following asymptotic result still holds for SFFA. For brevity, we only look at SMFA

here.
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Corollary 9. For fixed k ≥ 1 one has lim
n→∞

BLYM(n, k) = 1− (k − 1)k−1

kk
.

Proof: For the asymptotic to be shown, we can assume that λ = (n − k + 1)/k

is large. Considering this, Corollary 6 implies that for an optimal SMFA we can

choose a1 = 0 and ai = b(i− 1)(λ+ 1)c.

For 2 ≤ i ≤ k − 1 we have ai = b(i− 1)(λ + 1)c = b i−1
k

(n + 1)c ≤ i
k
n < n.

Consequently, for i 6= k the summands

α

(
ai
i

)
− β

(
ai
i− 1

)
=

(
ai
i

)(
n
k

) − ( ai
i−1

)(
n

k−1

)
on the right-hand side of (6) all tend to 0 as n→∞.

The claim follows by β
(

n
k−1

)
= 1 and the fact that

α

(
ak
k

)
− β

(
ak

k − 1

)
=

(b k−1
k

(n+1)c
k

)(
n
k

) −
(b k−1

k
(n+1)c

k−1

)(
n

k−1

)
=

(
bk−1

k
(n+ 1)c − k + 1

n− k + 1
− 1

)
k−2∏
j=0

bk−1
k

(n+ 1)c − j
n− j

tends to (
k − 1

k
− 1

)(
k − 1

k

)k−1

= − (k − 1)k−1

kk

as n→∞. �
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