
§1. Old Math 784 Test Problems: The Thinking Problems

1. Let α be an algebraic number, and let R be the ring of algebraic integers in Q(α). The minimal
polynomial for α has degree n. Decide whether each of the following is true or false and give an
appropriate justification for your answer. Note that an answer of “true” means that you believe the
statement is true for all choices of α as above.

(i) If β and γ are in R and β divides γ in R, then N(β)|N(γ) in Z.

(ii) If β and γ are in R and N(β)|N(γ) in Z, then β divides γ in R.

(iii) If β ∈ R, then N(β) ∈ Z.

(iv) If β ∈ Q(α) and N(β) ∈ Z, then β ∈ R.

(v) If N(β) is a rational prime, then β is irreducible in R.

(vi) If β divides a unit in R, then β is a unit.

(vii) If β divides an irreducible element of R and β is not a unit, then β is irreducible.

(viii) If N(β) = N(γ), then β = εγ for some unit ε in R.

(ix) The field conjugates of β all lie in Q(α).

(x) If
√

2 ∈ Q(α), then
√

2 ∈ R.

(xi) If
√

2 ∈ Q(α), then n is even.

(xii) If
√

2 ∈ Q(α) and
√

3 ∈ Q(α), then n > 2.

(xiii) If β ∈ Q(α), then there is an odd integer d such that dβ ∈ R.

(xiv) If β ∈ Q(α), then there is an even integer d such that dβ ∈ R.

2. Let R be the ring of algebraic integers in Q(
√
−13). Since −13 ≡ 3 (mod 4), R = Z[

√
−13].

Observe that

(1 +
√
−13)(1−

√
−13) = 2 · 7 and (2 +

√
−13)(2−

√
−13) = 17.

(a) Explain why the norm of a non-zero non-unit element of R is at least 4.

(b) Is 2 irreducible in R? Justify your answer.

(c) Is 2 prime in R? Justify your answer.

(e) Is R a UFD? Justify your answer using (b) and (c).

(d) Is 2 +
√
−13 irreducible in R? Justify your answer.

(f) Explain why the norm of an element of the ideal (2, 1 +
√
−13) must be even.

(g) Justify that (2, 1 +
√
−13) is not principal. (Assume that it is (β). Note that both 2 and

1 +
√
−13 are in (β). What can you say about N(β)?)

(h) Is R a UFD? Justify your answer using (g).

3. LetR be the ring of algebraic integers in Q(
√

14). Observe that 42−14 = 2 so thatN(4±
√

14) =
2. The number 15 + 4

√
14 is a unit in R. Find a pair of positive integers (x, y) 6= (4, 1) such that

x2 − 14y2 = 2. Give specific integers x and y (not just a method for finding them).



4. (a) Prove that Q(
√

5,
√

7) = Q(
√

5 +
√

7).

(b) Calculate NQ(
√

5+
√

7)/Q
(√

5
)

and TrQ(
√

5+
√

7)/Q
(√

5
)
.

(c) Let α be a root of x3 − x− 1 = 0. Explain why
√

5 6∈ Q(α). The answer should be short, but
try to state any results from class that you are using as clearly as possible.

5. If n = 7, then the product n(n+ 2) is equal to 7 times a square. Find the next two positive integers
n such that n(n+ 2) is 7 times a square.

6. Let Q(α) be an algebraic number field where α is a root of a cubic equation with coefficients in Z.
Suppose that {1, α, α2} is an integral basis for the ring R of algebraic integers in Q(α).

(a) Prove that {1, 1 + α, α + α2} is an integral basis for the ring R.

(b) Prove that {1, 1 + 2α, α + α2} is not an integral basis for the ring R.

7. Let α be a root of the irreducible polynomial f(x) = x3 − 3x2 − 4 (you do not need to explain
why f(x) is irreducible; this is given information).

(a) What is the minimal polynomial of 1/α?

(b) Compute NQ(α)/Q(α3) and TrQ(α)/Q(α3).

(c) Compute ∆(1, α, α2).

8. The polynomial f(x) = x4 − x3 + 1 is irreducible over the rationals (you do not need to justify
this). Let α denote a root of f(x).

(a) Show that ∆(1, α, α2, α3) = 44f(3/4).

(b) Explain why {1, α, α2, α3} is an integral basis for Q(α) over Q.

9. Let α be a root of the irreducible polynomial f(x) = x8 − 2x6 − 2 (you do not need to explain
why f(x) is irreducible; this is given information). Let β be a root of g(x) = x4 − 2x3 − 2.

(a) Why is g(x) the minimal polynomial of β?

(b) Must β be in Q(α)? Explain your answer.

(c) Suppose β ∈ Q(α). Must β be in the ring of algebraic integers in Q(α)? Explain (briefly).

(d) Suppose β ∈ Q(α). Compute NQ(α)/Q(β) and TrQ(α)/Q(β).

(e) Compute ∆(1, α, α2, . . . , α7).

10. Let N be a squarefree integer 6≡ 1 (mod 4) such that the ring R of algebraic integers in Q(
√
N)

is a UFD. Let p be an odd rational prime not dividing N .

(a) Prove that if N is a square modulo p, then there exist integers x and y satisfying at least one
of p = x2 −Ny2 and −p = x2 −Ny2.

(b) Prove that if N is not a square modulo p, then there do not exist integers x and y satisfying
either of p = x2 −Ny2 and −p = x2 −Ny2.



11. The ring R of algebraic integers in Q(
√
−19) is not Euclidean but it is a unique factorization

domain. (You may use this without proving it.) Consider an odd prime p such that −19 is a square
modulo p.

(a) Explain why there are non-negative rational integers u and v having the same parity (i.e., they
are both even or both odd) such that 4p = u2 + 19v2.

(b) It is not the case that p itself can necessarily be written in the form x2 +19y2 for some rational
integers x and y. For example, the primes 5 and 61 cannot be expressed in the form x2 +19y2

even though 12 ≡ −19 (mod 5) and 152 ≡ −19 (mod 61) (so −19 is a square modulo 5
and modulo 61). Prove that p can necessarily be written in the form 5x2 − 19xy + 19y2 for
some non-negative rational integers x and y. (Hint: Consider x = u and y = (u+v)/2 where
u and v are from part (a).)

12. Suppose x, y and z are relatively prime rational integers (i.e., no prime divides all three of them)
for which x2 + y2 = z3. Let R = Z[i], where i =

√
−1.

(a) Prove x, y and z are pairwise relatively prime (i.e., no prime divides two of them).

(b) Show that x and y have opposite parity. In other words, show that one is even and one is odd.

(c) Prove that if r ∈ R and r divides both x+ iy and x− iy, then r is a unit.

(d) Prove that there are rational integers u and v such that

x = u(u2 − 3v2), y = v(3u2 − v2), z = u2 + v2.

(Note: Any such x, y and z satisfies x2+y2 = z3, but you do not need to justify this. In other words,
if you completed this problem correctly, then you have found all the solutions to the Diophantine
equation x2 + y2 = z3.)

13. Let (xn, yn) denote the nth positive integral pair (x, y) satisfying x2 − 2y2 = 1 (ordered so that
x1 < x2 < · · · ). Thus, for example, (x1, y1) = (3, 2) and (x2, y2) = (17, 12). Let p be a prime.
Prove that

xp ≡ x1 (mod p) and yp ≡ y1 (mod p) ⇐⇒ p ≡ ±1 (mod 8).

14. (a) It is a fact that if p ≡ 1 (mod 28), then −7 is a square modulo p. This can be shown by

evaluating the Legendre symbol
(
−7

p

)
, but you do not need to justify this. Use this fact to prove

that if p ≡ 1 (mod 28), then there are unique positive integers x and y such that p = x2 + 7y2.

(b) Let n be an integer such that (i) n ≡ 1 (mod 28) and (ii) there are positive integers x and y
satisfying n = x2 + 7y2. Must n be a prime? In other words, either prove that n is a prime or show
that n may be composite.

15. Let B denote a positive integer. This problem concerns solutions to the equation x2 − 15y2 = B.

(a) Suppose x and y satisfy x2 − 15y2 = B. Let u = 4x − 15y and v = 4y − x. Prove that
u2 − 15v2 = B by direct substitution (express u2 − 15v2 in terms of x and y).



(b) Compute the fundamental unit in R, the ring of algebraic integers in Q(
√

15). Show how the
formulas for u and v in part (a) can be obtained by making use of this fundamental unit in R.
(Think in terms of the norms of x+

√
15y and the fundamental unit.)

(c) Prove that if x and y are positive in part (a), then x/y >
√

15.

(d) Suppose B is a positive integer for which x2 − 15y2 = B has a solution in integers x and y.
Prove that such a solution exists with

0 ≤ y <

(
B

2
√

15

)1/2

.

(Hint: When is |v| < y?)

(e) Suppose B is a positive integer ≤ 100. Find the set S ⊆ {1, 2, . . . , 100} for which the
following holds: x2 − 15y2 = B has a solution in integers x and y if and only if B ∈ S.
Justify your answer.

16. Find (with proof) all integers x and y such that y2 +1 = x5. (Note that the case that y is odd should
be easy.)

17. Let α be an algebraic number with minimal polynomial f(x) of degree m. Let d(n) denote the
number of divisors of a positive rational integer n.

(a) Prove that if p is a rational prime, then the ideal (p) is the product of ≤ m prime ideals in R.

(b) For n a rational integer, prove that the number of ideal divisors of (n) is bounded by d(n)m.

(c) Suppose that α =
√
−D for some positive squarefree integer D > 3. Prove that if β and γ

are in R and (β) = (γ), then γ = ±β. Discuss what happens in the cases that D = 2 and
D = 3.

(d) Fix positive integers n and D with D squarefree and > 3. Show that the number of integer
pairs (x, y) satisfying x2 +Dy2 = n is ≤ 2d(n)2.

18. Suppose we wish to find integers x and y which satisfy y2 + 25 = 2x3. First, observe that y must
be odd (this should be obvious). There are 2 cases one can consider, the case when 5 divides y and
the case when 5 does not divide y. Do the second case. In other words, find all the solutions to
y2 + 25 = 2x3 with gcd(10, y) = 1. You should get one solution.

19. Let α be an algebraic number, and let R be the ring of algebraic integers in Q(α). Let f(x) be the
minimal polynomial for α. Let p be a rational prime and suppose that p | f(m) for some integer
m and that p2 - f(m). Let I be the ideal (m− α, p).

(a) Explain why I divides the principal ideals (m− α) and (p).

(b) Briefly justify that N(m− α) = f(m). (Note: N(m− α) is a norm of an element in R.)

(c) Why is f(m)/(m− α) ∈ R?

(d) Show that 1 is not in the ideal I .

(e) Explain why the norm of the ideal I is p.



20. Let p be a rational prime, and suppose that there is a positive rational integer a < p/2 such that
a2 ≡ −5 (mod p). For example, if p = 7, then a = 3; and if p = 29, then a = 13. Let R be the
ring of integers in Q(

√
−5).

(a) Prove the following ideal factorization holds in R:

(p) =
(
a+
√
−5, p

)(
a−
√
−5, p

)
.

(b) What is the norm of the ideal
(
a+
√
−5, p

)
in R? Justify your answer.

(c) Is
(
3 +
√
−5, 7

)
a prime ideal? Is

(
13 +

√
−5, 29

)
a prime ideal? Justify your answers.

(d) Is
(
3 +
√
−5, 7

)
a principal ideal? Is

(
13 +

√
−5, 29

)
a principal ideal? Justify your answers.

(e) Is
(
2 +
√
−5, 7

)
a principal ideal? Justify your answer.

21. Let α be an algebraic number, and let R be the ring of algebraic integers in Q(α). Decide whether
each of the following is true or false and give an appropriate justification for your answer. Note
that an answer of “true” indicates that you believe the statement holds for every ring R as above.

(i) If β and γ are in R, then β2 − βγ3 + 5 ∈ R.

(ii) The ideal (2) is a prime ideal in R.

(iii) The greatest common divisor of the ideals (4) and (6) is the ideal (2).

(iv) If β ∈ R with β 6= 0, then N(β)/β ∈ R.

(v) If β ∈ Q(α) with β 6= 0, then N(β)/β ∈ R.

(vi) If β ∈ R, then the field conjugates of β all lie in Q(α).

(vii) If β is a non-unit in R that divides an irreducible element of R, then β is an irreducible
element of R.

(viii) If β is a non-unit in R that divides a prime element of R, then β is a prime in R.

(ix) If I is an ideal in R and N(I) = 1, then I = (1).

(x) If I is an ideal in R and N(I) is a square in Z, then I is the square of some ideal in R.

22. Let R be the ring of algebraic integers in Q(
√
−47), and let I be the ideal in R generated by

(3 +
√
−47)/2 and 2. Thus,

I =

(
3 +
√
−47

2
, 2

)
.

(a) Is I principal? (In other words, does there exist an α ∈ R such that I = (α)?)

(b) Let

J =

(
3−
√
−47

2
, 2

)
.

The product of the ideals I and J is a principal ideal (β) for some β ∈ R. Find such a β.

(c) Compute the norm of the ideal I (in the ring R).



23. Let N be a squarefree rational integer ≡ 3 (mod 4) such that the ring R of algebraic integers in
Q(
√
N) is a UFD. Let p be an odd rational prime not dividing N . Further suppose that N is a

square modulo p.

(a) Prove that if p ≡ 1 (mod 4), then there exist integers x and y satisfying p = x2 − Ny2 but
there do not exist integers x and y satisfying −p = x2 −Ny2.

(b) Prove that if p ≡ 3 (mod 4), then there exist integers x and y satisfying −p = x2 −Ny2 but
there do not exist integers x and y satisfying p = x2 −Ny2.

(c) Observe that 13 ≡ 1 (mod 4), 13 is a square modulo 3, and 13 = 52 − 3 × 22. Prove that
there are infinitely many distinct pairs (x, y) of rational integers such that 13 = x2 − 3y2.

24. For the following, f(x) = x3 − 10 and α is a root (any root) of f(x).

(a) Find a polynomial g(x) that has 3/(α− 1) as a root.

(b) Is {1, α, α2} an integral basis for the ring of algebraic integers in Q(α)? Justify your answer.
(Hint: You should be able to see quickly that ∆(1, α, α2) is not squarefree. This means that
its value cannot be used in the obvious way to answer this question, regardless of the answer.
I suggest instead thinking about what part (a) has to do with the question.)

25. Let R be the ring of integers in an algebraic number field Q(α). In this problem, N(x) is used to
denote the norm of x ∈ Q(α) over Q. For each part, clearly indicate whether you believe the given
statement is true or false. In this context, true means true for all choices of the variables satisfying
the given conditions and false means false for some choice of these variables. If you believe the
statement is true, provide a proof. If you believe the statement is false, provide a counter example.
Note that one of the parts is true and one is false. This is information that is meant to help you, but
saying something like, “This part is true because I know one of the parts is true and the other part is
false” is NOT an acceptable justification. A correct justification of one part should be independent
of the other part.

(a) If a and b are in R and N(a) and N(b) are relatively prime in Z, then the ideal (a, b) equals
the ideal (1).

(b) If a and b are in R and N(a) and N(b) are not relatively prime in Z, then the ideal (a, b) does
not equal the ideal (1).

26. The following concerns the Diophantine equation x2 + 13 = y3. The class number (the size of
the class group) associated with the field Q(

√
−13) is 2. In particular, the ring of integers R in

Q(
√
−13) is not a PID.

(a) Suppose A is an ideal in R and A3 is principal. Justify that A is necessarily a principal ideal
in R. (Use that the class number is 2. You do not have to prove that the class number is 2.)

(b) Suppose x0 and y0 are rational integers for which x2
0 + 13 = y3

0 . Justify that gcd(y0, 26) = 1.

(c) With the notation in part (b), justify that the ideals
(
x0 +

√
−13

)
and

(
x0 −

√
−13

)
are

relatively prime.

(d) Explain why there is a principal ideal
(
a+ b

√
−13

)
in R such that(

x0 +
√
−13

)
=
(
a+ b

√
−13

)3
.



(e) Solve the Diophantine equation x2 + 13 = y3 (i.e., find with proof all integer pairs (x0, y0)
such that x2

0 + 13 = y3
0 .)

27. The class number for the field Q(
√
−21) is 4. Using this information and material from the end of

the course, explain why the equation y2 + 21 = x21 has finitely many solutions in integers x and
y. (Note that I am not asking for the solutions.)

28. Let R be the ring of algebraic integers in Q(
√
−26). The class number for the field Q(

√
−26) is

6. You may use this information on the class number without proving it.

(a) Let A, B and C be ideals in R with A and B principal, B 6= (0) and A = BC. Using the
definition of the product of two ideals, prove that C is principal.

(b) Let A and C be ideals in R with A principal. Suppose C5 = A. Using (a) and the definition
of class numbers (but no lemmas from class), prove that C is principal.

(c) Show that y2 + 26 = x17 has finitely many solutions in integers x and y. (Note that I am not
asking for the solutions.)

§2. Old Math 784 Test Problems: The Proofs

29. Prove the theorem below. You should begin by considering β ∈ Q(α) and using that there are
N(x) and D(x) in Q[x] such that degD(x) ≤ n−1, D(α) 6= 0, and β = N(α)/D(α). You do not
need to prove such N(x) and D(x) exist. Note that the theorem is asserting that {1, α, . . . , αn−1}
forms a basis for Q(α) over Q, so this is what you are trying to prove. In other words, don’t use
that {1, α, . . . , αn−1} is a basis for Q(α) over Q as this would be circular reasoning. You should
also not deduce the theorem below as a consequence of a more general or more difficult theorem.

Theorem: Let α be an algebraic number with minimal polynomial f(x) = xn +∑n−1
j=0 ajx

j . Every element of Q(α) can be expressed uniquely in the form g(α)
where g(x) ∈ Q[x] with deg g(x) ≤ n− 1.

30. Prove the following theorem from class:

Theorem: LetR be the ring of algebraic integers in Q(
√
N). ThenR is a Euclidean

domain for N = −1, −2, −3, −7, and −11.

31. Let B and C be ideals in the ring R of algebraic integers in an algebraic number field. Prove that
B|C if and only if C ⊆ B.

32. Two theorems are stated below. Using Theorem 1, prove Theorem 2.

Theorem 1: For any ideal B in R, there exists an ideal C 6= (0) in R such that
BC = (a) for some a ∈ Z.

Theorem 2: Let B, C and D be ideals in R with D 6= (0). If BD = CD, then
B = C.



33. Two theorems are stated below. You can use Theorem 3. Don’t prove Theorem 4. Instead, I want
to know how the proof of Theorem 4 begins. Tell me N(A)N(B) distinct representatives for the
N(A)N(B) residue classes modulo AB. Note that you do not need to prove that the numbers you
indicate are distinct or are representatives of the residue classes.

Theorem 3: If A and B are non-zero ideals in R, then there is a β ∈ A such that
GCD

(
(β), AB

)
= A.

Theorem 4: Let A and B be non-zero ideals in R. Then N(AB) = N(A)N(B).


