
Math 788M: Computational Number Theory
(Instructor’s Notes)

The Very Beginning:
• A positive integer n can be written in n steps.

• The role of numerals (now O(log n) steps)

• Can we do better? (Example: The largest known prime contains 258716 digits and doesn’t
take long to write down. It’s 2859433 − 1.)

Running Time of Algorithms:
• A positive integer n in base b contains [logb n] + 1 digits.

• Big-Oh & Little-Oh Notation (as well as�,�, ∼, �)

Examples 1: log (1 + (1/n)) = O(1/n)

Examples 2: [logb n] + 1 � log n

Examples 3: 1 + 2 + · · ·+ n� n2

These notes are for a course taught by Michael Filaseta in the Spring of 1996 and being updated for Fall of 2007.

Computational Number Theory Notes 2

Examples 4: f a polynomial of degree k =⇒ f(n) = O(nk)

Examples 5: (r + 1)π ∼ rπ

• We will want algorithms to run quickly (in a small number of steps) in comparison to the
length of the input. For example, we may ask, “How quickly can we factor a positive integer n?”
One considers the length of the input n to be of order log n (corresponding to the number of binary
digits n has). An algorithm runs in polynomial time if the number of steps it takes is bounded
above by a polynomial in the length of the input. An algorithm to factor n in polynomial time
would require that it take O

(
(log n)k

)
steps (and that it factor n).

Addition and Subtraction (of n and m):
• We are taught how to do binary addition and subtraction in O(log n+ logm) steps.

• We aren’t going to do better than this.

• Converting to base 10 (or any other base) is another story.

Multiplication (of n and m):
• We are taught how to do multiplication in O ((log n)(logm)) steps.

• Better is Possible

Example: Let M(d) denote an upper bound on the number of steps required to multiply two
numbers with≤ d binary digits. For simplicity, we suppose n and m both have 2r digits. We show
that nm can be calculated in� rlog 3/ log 2 � r1.585 steps. Write n = a×2r +b andm = c×2r +d.
Then nm = x × 22r + y + z × 2r where x = ac, y = bd, and z = (a + b)(c + d) − x − y. We
deduce M(2r) ≤ 3M(r + 2) + kr for some constant k (where we have allowed for the possibility
that r is not an integer). Etc.

• Even Better is Possible

Theorem. M(d)� d(log d) log log d.

• Note that multiplying a d digit number by 19 takes O(d) steps.

Sketch of proof that M(d)� d1+ε.
• Theorem. Given distinct numbers x0, x1, . . . , xk and numbers y0, y1, . . . , yk, there is a

unique polynomial f of degree ≤ k such that f(xj) = yj for all j.

• Lagrange Interpolation:

f(x) =
k∑

i=0

(∏
0≤j≤k

j 6=i

x− xj

xi − xj

)
yi

• Mimic the Example above. Suppose n and m have ≤ kr digits. Write

n =
k−1∑
j=0

aj2
jr and m =

k−1∑
j=0

bj2
jr.

Computational Number Theory Notes 3

Consider

f(x) =

(k−1∑
j=0

ajx
j

)(k−1∑
j=0

bjx
j

)
,

and note nm = f(2r). The coefficients of f(x) can be determined by using xj = j in the Lagrange
interpolation formula, taking 2k−1 multiplications of≤ r+ck (for some constant ck) digit numbers
(to obtain the yj). This leads to

M(kr) ≤ (2k − 1)M(r + ck) + c′kr =⇒ M(d)� (2k − 1)logk d � dlog(2k−1)/ log k,

for some constant c′k, which implies what we want.

• What about the required division?

Homework:
(1) Let

f1(n) = log n, f2(n) = log log n, f3(n) = log(3n+ 5),

f4(n) = 1, and f5(n) = n.

Determine the largest subset S of {1, 2, . . . , 5} for which each of (a), (b), and (c) holds (each letter
below is a separate problem requiring a possibly different set S). You do not need to justify your
answers.

(a) f1(n) = O(fj(n)) for j ∈ S.
(b) f1(n) = o(fj(n)) for j ∈ S.
(c) f1(n) ∼ fj(n) for j ∈ S.

(2) Find an explicit function f(x) involving logarithms, powers, and/or exponentials which has
both of the properties (at the same time):

(i) f(n)� nε for every ε > 0.
(ii) f(n)� (log n)k for every k > 0.

(Hint: I did put exponentials in the list above for a reason.) Justify your answer.

(3) The value of f(n) =
n∑

k=1

1

k
can be estimated by comparing it’s value to an integral. For

example, by comparing the sum of the areas of the rectangles indicated in the graph below with
the area under the graph of y = 1/x, one obtains

f(9) ≥
∫ 10

1

1

x
dx = log 10.

Computational Number Theory Notes 4

(a) Prove that f(n)� log n.
(b) Prove that f(n) � log n. (Hint: Try another picture as above with the rectangles com-

pletely under the curve.)
(c) Prove that f(n) ∼ log n.

Division:
• Problem: Given two positive integers n and m, determine the quotient q and the remainder

r when n is divided by m. These should be integers satisfying

n = mq + r and 0 ≤ r < m.

• Let D(d) denote an upper bound on the number of steps required to obtain q and r given n
and m each have ≤ d binary digits.

• Theorem. Suppose M(d) has the form df(d) where f(d) is an increasing function of d.
Then D(d)�M(d).

• We need only compute 1/m to sufficient accuracy. Suppose n and m have ≤ r digits. If
1/m = 0.d1d2... (in binary) with d1, . . . , dr known, then n/m = (1/2r)(n×d1d2 . . . dr)+θ where
0 ≤ θ ≤ 1. If q′ represents the number formed from all but the last r digits of n× d1d2 . . . dr, then
n = mq′ + θ′ where 0 ≤ θ′ < 2m. Try q = q′ and q = q′ + 1.

• Preliminaries to the Proof – Newton’s Method

Example: Discuss computing 1/m. Consider f(x) = mx− 1 and f(x) = m− 1/x. Develop the
idea of beginning with a good approximation x0 to 1/m and obtaining successively better ones by
using the recursion xn+1 = 2xn −mx2

n. Note that if xn = (1 − ε)/m, then xn+1 = (1 − ε2)/m.
The role of multiplication already has replaced the role of division.

• Algorithm from Knuth, Vol. 2, pp. 295-6:

Algorithm R (High-precision reciprocal). Let v have the binary representation v = (0.v1v2v3 . . .)2,
where v1 = 1. This algorithm computes an approximation z to 1/v, such that

|z − 1/v| ≤ 2−n.

R1. [Initial Approximation] Set z ← 1
4
b32/(4v1 + 2v2 + v3)c and k ← 0.

R2. [Newtonian iteration] (At this point we have a number z of the binary form (xx.xx . . . x)2

with 2k + 1 places after the radix point, and z ≤ 2.) Calculate z2 = (xxx.xx . . . x)2 ex-
actly, using a high-speed multiplication routine. Then calculate Vkz

2 exactly, where Vk =
(0.v1v2 . . . v2k+1+3)2. Then set z ← 2z − Vkz

2 + r, where 0 ≤ r < 2−2k+1−1 is added if
necessary to “round up” z so that it is a multiple of 2−2k+1−1. Finally, set k ← k + 1.

R3. [Test for end] If 2k < n, go back to step R2; otherwise the algorithm terminates.

• Relate algorthm to our problem (note notational differences).

• Let zk be the value of z after k iterations of step R2. Show by induction that

zk ≤ 2 and |zk − 1/v| ≤ 2−2k

. (∗)

Computational Number Theory Notes 5

For k = 0, try each possibility for v1, v2, and v3. For the RHS of (∗), use

1

v
− zk+1 = v

(
1

v
− zk

)2

− z2
k

(
v − Vk

)
− r.

For the LHS of (∗), consider each of the cases Vk = 1/2, Vk−1 = 1/2 6= Vk, and otherwise.

• Deduce that the number of steps is

2M(4n) + 2M(2n) + 2M(n) + 2M(n/2) + · · ·+O(n)�M(n).

Homework:
We have sketched the argument that for every ε > 0, M(d)� d1+ε. Most of the details given dealt
with showing M(kr) ≤ (2k − 1)M(r + ck) + c′kr. For k = 2, we gave a more detailed argument.
Do the same (give details) for k = 3 to prove thatM(d)� dlog 5/ log 3. Your account should explain
the connection between the estimates M(3r) ≤ 5M(r + c) + c′r and M(d) � dlog 5/ log 3. Also,
clarify what the 5 multiplications are and determine a specific value for c (not c′).

Elementary Number Theory:
• Modulo Arithmetic (definition, properties, & different notation)

• Computing am (mod n)

• Euler’s Phi Function (definition, formula)

• Euler’s Theorem, Fermat’s Little Theorem, and Existence of Inverses

• Computing Inverses (later – see two sections from now)

• Chinese Remainder Theorem

• Generators exist modulo 2, 4, pe, and 2pe

Homework:
(1) A very wealthy person buys items priced at $2,259.29, $4,855.07, $9,921.23, $12,009.91, and
$20,744.39. How many of each item did he purchase if the total purchase without taxes comes to
$749,518.05? (Hint: Factor and use a calculator or computer.)

(2) Show that for every positive integer k, there is an integer n such that each of the numbers
n+ 1, n+ 2, . . . , n+ k is divisible by a square > 1. For example, for k = 3, one can take n = 47
since 48 is divisible by 4, 49 is divisible by 49, and 50 is divisible by 25.

Greatest Common Divisors:
• Algorithm from Knuth, Vol. 2, p. 320:

Algorithm A (Modern Euclidean algorithm). Given nonnegative integers u and v, this algorithm
finds their greatest common divisor. (Note: The greatest common divisor of arbitrary integers u
and v may be obtained by applying this algorithm to |u| and |v|)

A1. [Check v = 0] If v = 0, the algorithm terminates with u as the answer.

Computational Number Theory Notes 6

A2. [Take u mod v] Set r ← u mod v, u ← v, v ← r, and return to A1. (The operations of
this step decrease the value of v, but they leave gcd(u, v) unchanged.)

• Why does the algorithm work?

• How long does it take? Explain the worse case and establish the following:

Theorem (Lamé). Let φ = (1 +
√

5)/2. Let 0 ≤ u, v < N in Algorithm A. Then the number of
times step A2 is repeated is ≤ [logφ(

√
5N)]− 2.

• The above can be used to show that the Euclidean algorithm to compute gcd(a, b) with a
and b positive integers≤ N has running time� log2N . The running time for computing gcd(a, b)
can be improved however (cf. [4, p. 428]).

Theorem. The running time for computing the greatest common divisor of two positive integers
≤ N is� logN(log logN)2 log log logN .

• Inverses and a method to compute them

• Theorem. Given integers a and b, not both 0, there exist integers u and v such that
au+ bv = gcd(a, b).

• The average number of times step A2 is repeated is � logN .

• The average value of gcd(u, v) is � logN but “usually” it’s much smaller.

• Justification. For the first part use that∑
d|n

φ(d) = n and
∑
d≤N

φ(d)

d2
� logN.

Omit the details on the second of these asymptotics. For the first, note that for each divisor d of n,
the positive integers having greatest common divisor d with n are precisely the m ≤ n of the form
kd where 1 ≤ k ≤ n/d and gcd(k, n/d) = 1. This implies

n =
∑
d|n

φ(n/d) =
∑
d|n

φ(d).

The average value of gcd(u, v) is � logN follows by using
∑

1≤n≤N

∑
1≤m≤N

∑
d|n, d|m

φ(d). For the

second part, observe that the number of pairs (n,m) with gcd(n,m) > z is bounded above by∑
d>z

N2

d2
≤ N2

z2
+N2

∫ ∞

z

1

t2
dt ≤ 2N2

z
.

Probable Primes:
• The use of Fermat’s Little Theorem

• The example 341 = 11× 31 but note that 3340 ≡ 56 (mod 341)

• The example 561 = 3× 11× 17

• Some noteworthy estimates:

P2(x) ≤ x1− log log log x
2 log log x and P2(x) ≥ x2/7 ∀x ≥ x0

Computational Number Theory Notes 7

π(x) ≥ x

log x
= x1− log log x

log x ∀x ≥ 17

P2(2.5× 1010) = 21853 and π(2.5× 1010) = 1091987405

• Teminology: pseudoprime, probable prime, industrial grade prime, absolute pseudoprime,
Carmichael number

• The equivalence of two different definitions for absolute pseudoprimes

• There are infinitely many absolute pseudoprimes

• Strong pseudoprimes. Suppose n is an odd composite number and write n − 1 = 2sm
where m is an odd integer. Then n is a strong pseudoprime to the base b if either (i) bm ≡ 1
(mod n) or (ii) b2jm ≡ −1 (mod n) for some j ∈ [0, s− 1].

• Strong pseudoprimes base b are pseudoprimes base b.

• Primes p satisfy (i) or (ii) for any b relatively prime to p.

• There are no n which are strong pseudoprimes to every base b with 1 ≤ b ≤ n and
gcd(b, n) = 1. To see this, assume otherwise. Note that n must be squarefree. Next, consider a
prime divisor q of n, and note n/q > 1. Let c ∈ [1, q − 1] be such that c is not a square modulo q.
Let b satisfy b ≡ 1 (mod n/q) and b ≡ c (mod q). Then (i) cannot hold modulo q and (ii) cannot
hold modulo n/q.

• 5280 ≡ 67 (mod 561)

• The number 3215031751 = 151× 751× 28351 is simultaneously a strong pseudoprime to
each of the bases 2, 3, 5, and 7. It’s the only such number ≤ 2.5× 1010.

Homework:
(1) Using the Euclidean algorithm, calculate gcd(7046867, 1003151).

(2) Calculate integers x and y for which 7046867x+ 1003151y = gcd(7046867, 1003151).

(3) Prove that if n is an odd pseudoprime, then 2n − 1 is a pseudoprime.

(4) Prove that 1729 is an absolute pseudoprime.

The Lucas-Lehmer Primality Test:
• Fix integers P and Q. Let D = P 2 − 4Q. Define recursively un and vn by

u0 = 0, u1 = 1, un+1 = Pun −Qun−1 for n ≥ 1,

v0 = 2, v1 = P, and vn+1 = Pvn −Qvn−1 for n ≥ 1.

If p is an odd prime and p - PQ and D(p−1)/2 ≡ −1 (mod p), then p|up+1.

• Compute modulo p by using(
un+1 vn+1

un vn

)
= Mn

(
1 P
0 2

)
where M =

(
P −Q
1 0

)
.

• The formulas

un =
αn − βn

α− β
and vn = αn + βn for n ≥ 0,

Computational Number Theory Notes 8

where α = (P +
√
D)/2 and β = (P −

√
D)/2

• The formula

2n−1un =

(
n

1

)
P n−1 +

(
n

3

)
P n−3D +

(
n

5

)
P n−5D2 + · · ·

• Prove p|up+1 (let n = p+ 1 above)

Maple’s “isprime” Routine (Version 5, Release 3):
• Don’t try isprime(1093ˆ 2) or isprime(3511ˆ 2) in Maple V, Release 3. The algorithm will

end up in an infinite loop. This is not a concern in the latest version of Maple.

• What is isprime doing?

• The help output for isprime:
FUNCTION: isprime - primality test

CALLING SEQUENCE:
isprime(n)

PARAMETERS:
n - integer

SYNOPSIS:
- The function isprime is a probabilistic primality testing routine.

- It returns false if n is shown to be composite within within one strong pseudo-primality test and one Lucas
test and returns true otherwise. If isprime returns true, n is “very probably” prime - see Knuth “The art
of computer programming”, Vol 2, 2nd edition, Section 4.5.4, Algorithm P for a reference and H. Reisel,
“Prime numbers and computer methods for factorization”. No counter example is known and it has been
conjectured that such a counter example must be hundreds of digits long.

SEE ALSO: nextprime, prevprime, ithprime

• The Maple program:

proc (n)
local btor, nr, p, r;
options remember, system,

‘Copyright 1993 by Waterloo Maple Software‘;
if not type(n,integer) then

if type(n,numeric) then
ERROR(‘argument must be an integer‘)

else
RETURN(’isprime(n)’)

fi
fi;
if n < 2 then

false
elif has(‘isprime/w‘,n) then

true
elif igcd(2305567963945518424753102147331756070,n) <> 1 then

Computational Number Theory Notes 9

false
elif n < 10201 then

true
elif igcd(84969694892334181105323399091873499659260625866489327366

1154542634220389327076939090906947730950913750978691711866802886149933382
5097682386722983737962963066757674131126736578936440788157186969893730633
1130664786204486249492573240226273954373636390387526081667586612559568346
3069722044751229884822222855006268378634251996022599630131594564447006472
0696621750477244528915927867113,n) <> 1 then
false

elif n < 1018081 then
true

else nr := igcd(408410100000,n-1);
nr := igcd(nrˆ 5,n-1);
r := iquo(n-1,nr);
btor := modp(power(2,r),n);

if ‘isprime/cyclotest‘(n,btor,2,r) = false
or irem(nr,3) = 0 and ‘isprime/cyclotest‘(n,btor,3,r) = false
or irem(nr,5) = 0 and ‘isprime/cyclotest‘(n,btor,5,r) = false
or irem(nr,7) = 0 and ‘isprime/cyclotest‘(n,btor,7,r) = false then
RETURN(false)

fi;
for p from 3 while (numtheory[jacobi])(pˆ 2-4,n) <> -1 do od;
evalb(‘isprime/TraceModQF‘(p,n+1,n) = [2, p])

fi
end

Some of the Subroutines Used:
• I found this reference years later to some of the subroutines mentioned above. I only

“suspect” that these are very close to the programs that were used in the version of “isprime”
above.

cyclotest := proc(n,btor,i,r)
local nr, k, t, s, x;
option

‘Copyright (c) 1993 Gaston Gonnet, Wissenschaftliches Rechnen, ETH Zurich. All rights reserved.’;
nr := iquo(n-1,r);
for k from 0 while irem(nr,i,’t’) = 0 do nr := t od;
x := modp(power(btor,nr), n);
if x=1 then RETURN(FAIL) fi;
to k do

s := sumxtor(x,i,n);
if s[1]=0 then RETURN(FAIL) elif s[2]=1 then RETURN(false) fi;
x := s[2]

od;
false

Computational Number Theory Notes 10

end:

sumxtor := proc(x,r,n)
local i1, i2, i3, r1, r2, r3, s, xj;
option

‘Copyright (c) 1993 Gaston Gonnet, Wissenschaftliches Rechnen, ETH Zurich. All rights reserved.’;
if r < 1 then ERROR(‘r is too small‘)
elif r = 1 then [1,x]
elif r < 6 then

s := 1+x;
xj := modp(xˆ 2,n);
to r-2 do s := s+xj; xj := modp(xj*x,n) od;
[modp(s,n),xj]

else i1 := isqrt(r);
i2 := iquo(r,i1,’i3’);
if i3=0 then

r2 := procname(x,i2,n);
r1 := procname(r2[2],i1,n);
[modp(r2[1]*r1[1],n), r1[2]]

else r3 := procname(x,i3,n);
r2 := procname(x,i2,n);
r1 := procname(r2[2],i1,n);
[modp(r3[1] + r3[2] * modp(r2[1]*r1[1],n), n), modp(r3[2]*r1[2],n)]

fi;
fi;

end:

TraceModQF := proc (p, k, n)
local i, kk, trc, v;
option

‘Copyright (c) 1993 Gaston Gonnet, Wissenschaftl. Rechnen, ETH Zurich. All rights reserved.’;
kk := k;
for i while kk > 1 do kk := iquo(kk+1,2,v[i]) od;
trc := [p, 2];
for i from i-1 by -1 to 1 do

if v[i]=1 then
trc := modp([trc[1]ˆ 2 - 2, trc[1]*trc[2] - p], n);

else trc := modp([trc[1]*trc[2] - p, trc[2]ˆ 2 - 2], n);
fi

od;
trc
end:

Maple’s Initial Steps:
• The list ‘isprime/w‘ consists of the primes < 100.

• The number 2305567 . . . 6070 is the product of the primes < 100. The next prime is 101
and 1012 = 10201.

Computational Number Theory Notes 11

• The number 8496969 . . . 7113 is the product of the primes in the interval (100, 1000). The
next prime is 1009 and 10092 = 1018081.

• If n is a prime < 1018081, the initial steps will declare it to be prime. If n is a composite
number with a prime factor < 1000, then the initial steps will declare it composite. In particular,
all n < 1018081 will have been properly dealt with.

Maple’s Version of the Strong-Pseudoprime Test (or is it?):
• 408410100000 = 25355575

• If n − 1 = 2e13e25e37e4m where gcd(210,m) = 1, then nr = 2e′13e′25e′37e′4 where e′j =
min{ej, 25}. Also, r = (n− 1)/nr and btor = 2r mod n.

• What is ‘isprime/cyclotest‘(n,btor,2,r) doing? It computes x = 2y mod n where y =
(n − 1)/2e′1 . If x ≡ ±1 (mod n), then it tells the algorithm to go on to the next step (involving
‘isprime/cyclotest‘(n,btor,3,r)). Otherwise, it replaces x with x2 mod n. If now x = 1, then it
declares n composite. If x ≡ −1 (mod n), then it tells the algorithm to go on to the next step.
If x 6≡ ±1 (mod n), then it again replaces x with x2 mod n. It continues like this, declaring
n composite if x = 1, telling the algorithm to go on if x ≡ −1 (mod n), and replacing x with
x2 mod n otherwise, until e′1 squarings of x have occured. At that point, if the algorithm has not
declared n to be a prime or composite number and it has not told the algorithm to go on, then it
declares that n is composite. This is equivalent to a strong pseudoprime test to the base 2 if e′1 = e1
(for most numbers this will be the case). Otherwise it is a little weaker.

• The steps involving ‘isprime/cyclotest‘(n,btor,i,r) for i ∈ {3, 5, 7} are variations on a strong
pseudoprime test to the base 2 (yes, I mean base 2). For example, ‘isprime/cyclotest‘(n,btor,3,r)
makes use of the fact that if x3 ≡ 1 (mod p), then either x ≡ 1 (mod p) or x2 + x + 1 ≡ 0
(mod p) (this is analogous to using for the strong pseudoprime test that if x2 ≡ 1 (mod p), then
either x ≡ 1 (mod p) or x ≡ −1 (mod p)).

• The “help” for isprime is somewhat misleading. The references cited do not suggest (as
far as I noticed - OK, I didn’t read every word in these references) that one should use e′1 above
rather than e1. Algorithm P of Knuth’s book is not used (it involves choosing an integer b ∈ (1, n)
at random and checking if n is a strong pseudoprime base b).

Maple’s Version of the Lucas-Lehmer Test:
• Take Q = 1. Then

v2n = v2
n − 2 and v2n+1 = vn+1vn − P for n ≥ 1.

Also, Dun = 2vn+1 − Pvn. If p is a prime, then vp ≡ P (mod p). Isprime checks if (vn+1, vn) is
congruent to (2, P) modulo n.

• Prove that if it is, then n|un+1.

• How is (vn+1, vn) computed modulo n? Beginning with ~w = (v1, v0) and considering the
binary digits of n beginning from the left-most digit, ~w = (vm+1, vm) is replaced by (v2m+2, v2m+1)
whenever the digit 1 is encountered and by (v2m+1, v2m) whenever the digit 0 is encountered.
In this way, the subscript of the second coordinate of ~w corresponds to the number obtained by
considering a left portion of the binary representation of n.

Computational Number Theory Notes 12

The Fix to this “isprime” Routine:
• The error occurs due to the possibility that n is a perfect square. Before the Lucas-Lehmer

test at the end of the program, one can simply add the line:

if isqrt(n)ˆ 2=n then RETURN(false) fi;

Mersenne Primes:
• Definition.

• It’s connection to perfect numbers.

• The Lucas-Lehmer Test. Let p be an odd prime, and define recursively

L0 = 4 and Ln+1 = L2
n − 2 mod (2p − 1) for n ≥ 0.

Then 2p − 1 is a prime if and only if Lp−2 = 0.

• The Lucas sequence with Q = 1 and P = 4. Here, Ln = v2n mod (2p − 1). Note that

un =
(2 +

√
3)n − (2−

√
3)n

√
12

and vn = (2 +
√

3)n + (2−
√

3)n.

• (=⇒) Suppose N = 2p − 1 is a prime. We will use that (from the theory of quadratic
reciprocity) 3(N−1)/2 ≡ −1 (mod N) (where here N prime and N ≡ 7 (mod 12) is important).
Also, 2p ≡ 1 (mod N) easily implies there is an x such that x2 ≡ 2 (mod N). Hence, 2(N−1)/2 ≡
xN−1 ≡ 1 (mod N). We want v(N+1)/4 ≡ 0 (mod N). From v2n = v2

n − 2, it follows that we
need only show v(N+1)/2 ≡ −2 (mod N). Observe that 2±

√
3 = ((

√
2±
√

6)/2)2. Hence,

v(N+1)/2 =

(√
2 +
√

6

2

)N+1

+

(√
2−
√

6

2

)N+1

= 2−N

(N+1)/2∑
j=0

(
N + 1

2j

)√
2

N+1−2j√
6

2j
= 2(1−N)/2

(N+1)/2∑
j=0

(
N + 1

2j

)
3j.

Using (
N + 1

2j

)
=

(
N

2j

)
+

(
N

2j − 1

)
,

we deduce
2(N−1)/2v(N+1)/2 ≡ 1 + 3(N+1)/2 ≡ −2 (mod N),

and the result follows.

• (⇐= , the more important case) We make use of the following two identities:

vn = un+1 − un−1 and um+n = umun+1 − um−1un, (1)

where the subscripts are all assumed to be non-negative integers. Establish

if un ≡ 0 (mod pe), then upn ≡ 0 (mod pe+1), (2)

Computational Number Theory Notes 13

where e is assumed to be a positive integer. To obtain (2), use induction to show that if a = un+1,
then

ukn ≡ kak−1un (mod pe+1) and ukn+1 ≡ ak (mod pe+1)

and then take k = p; for example, observe that for k = 2, we have

u2n = unun+1 − un−1un = unun+1 + un(un+1 − 4un) ≡ 2aun (mod pe+1)

and u2n+1 = u2
n+1 − u2

n ≡ a2 (mod pe+1).
Next, we use that

un =

b(n−1)/2c∑
k=0

(
n

2k + 1

)
2n−2k−13k and vn =

bn/2c∑
k=0

(
n

2k

)
2n−2k+13k

to obtain that
up ≡ 3(p−1)/2 (mod p) and vp ≡ 4 (mod p). (3)

Fermat’s Little Theorem implies for p > 3 that up ≡ ±1 (mod p). Using (1), (3), and the def-
inition of the un, we obtain that if up ≡ 1 (mod p), then up−1 ≡ 4up − up+1 ≡ 4up − vp −
up−1 ≡ −up−1 (mod p) implying up−1 ≡ 0 (mod p). Similarly, if up ≡ −1 (mod p), then
up+1 ≡ 4up− up−1 ≡ 4up + vp− up+1 ≡ −up+1 (mod p) implying up+1 ≡ 0 (mod p). Thus, for
every prime p > 3, there is an integer ε = ε(p) = ±1 such that

up+ε ≡ 0 (mod p). (4)

Also, up ≡ 0 (mod p) if p = 2 and p = 3.
Observe that

gcd(un, un+1) = 1 and gcd(un, vn) ≤ 2. (5)

The former follows from the recursive definition of un. The second follows from the first by first
noting 2un+1 = 4un + vn (obtained by combining (1) with the recursive relation on un).

For any positive integer m, denote by α = α(m) the smallest positive integer for which uα ≡ 0
(mod m) (it is not needed, but such an α always exists). Then

un ≡ 0 (mod m) ⇐⇒ α|n. (6)

This follows by considering uα, uα+1, . . . modulo m.
By assumption, v2p−2 ≡ Lp−2 ≡ 0 (mod 2p − 1). Thus, (5) =⇒ u2p−2 6≡ 0 (mod 2p − 1).

Also, u2n = unvn implies u2p−1 ≡ 0 (mod 2p − 1). It follows that α(2p − 1) = 2p−1.
Write 2p − 1 = pe1

1 p
e2
2 · · · per

r with pj distinct primes and ej positive integers. Each pj ≥ 3. Set

k = lcm
{
p

ej−1
j (pj + εj) : j = 1, . . . , r

}
.

Here εj = ±1 are chosen so that (4) holds with p = pj and ε = εj . Observe that (2), (4), and (6)
imply uk ≡ 0 (mod 2p − 1). In particular, k is a multiple of α(2p − 1) = 2p−1. By the definition
of k, it follows that 2p−1 divides pej−1

j (pj + εj) for some j. For such j, we have pj ≥ 2p−1 − 1.
The inequality

3pj ≥ 2p + 2p−1 − 3 > 2p − 1

Computational Number Theory Notes 14

now implies that 2p − 1 must be prime.

Homework:
(1) Prove that each of the identities in (1) holds for arbitrary positive integers n and m.

(2) Prove that for every positive integer m, the number α = α(m) in the proof above exists.

General Primality Tests:
• A polynomial time algorithm may exist:

Theorem (Selfridge-Weinberger). Assume the Extended Riemann Hypothesis holds. Let n be
an odd integer > 1. A necessary and sufficient condition for n to be prime is that for all positive
integers a < min{70(log n)2, n}, we have a(n−1)/2 ≡ ±1 (mod n) with at least one occurrence
of −1.

• For n = 1729 and all integers a ∈ [1, n − 1] with gcd(a, n) = gcd(a, 7 × 13 × 19) = 1,
a(n−1)/2 ≡ 1 (mod n).

• Observe that a < n exists when n is prime (consider a primitive root).

• Theorem (Lucas). Let n be a positive integer. If there is an integer a such that an−1 ≡ 1
(mod n) and for all primes p dividing n− 1 we have a(n−1)/p 6≡ 1 (mod n), then n is prime.

• For primes such an a exists (consider a primitive root).

• Prove the theorem. Note that one can obtain that n is a prime if for each p dividing n− 1,
there is an integer a (possibly depending on p) such that an−1 ≡ 1 (mod n) and a(n−1)/p 6≡ 1
(mod n).

• Theorem (Pepin Test). Let Fn = 22n
+ 1 with n a positive integer. Then Fn is prime if

and only if 3(Fn−1)/2 ≡ −1 (mod Fn).

• Prove the theorem.

• Theorem (Proth, Pocklington, Lehmer Test). Let n be a positive integer. Suppose
n − 1 = FR where all the prime factors of F are known and gcd(F,R) = 1. Suppose further
that there exists an integer a such that an−1 ≡ 1 (mod n) and for all primes p dividing F we have
gcd(a(n−1)/p − 1, n) = 1. Then every prime factor of n is congruent to 1 modulo F .

• Consider the case F ≥
√
n.

• Prove the theorem. (Let q be a prime divisor of n. Consider m = ordq(a). Show F |m by
showing pe||F and pe - m is impossible.)

• In 1980, Adleman, Pomerance, and Rumely developed a primality test that determines if n
is prime in about (log n)c log log log n steps (shown by Odlyzko).

Factoring Algorithms (Part I):
• Given a composite integer n > 1, the general problem is to find some nontrivial factoriza-

tion of n, say n = uv where each of u and v is an integer > 1. If this can be done effectively and
one has a good primality test, one will have a good method for completely factoring n.

• The expectation is that a random number nwill have on the order of log log n prime factors.
Describe what this means but don’t prove it.

Computational Number Theory Notes 15

• Most numbers n have a prime factor >
√
n. Prove using∑

p≤x

1

p
= log log x+ A+O(1/ log x).

• One expects typically small prime factors, so it is reasonable to first do a quick “sieve” to
determine if this is the case.

• Pollard’s p− 1 Factoring Algorithm
This algorithm determines a factorization of a number n if n has a prime factor p where p − 1
factors into a product of small primes. A simple form of the algorthm is to compute 2k! mod n
successively for k = 1, 2, . . . until some prescribed amount (say 106 or 107), for each k checking
gcd(2k! − 1 mod n, n) to possibly obtain a nontrivial factor of n. If (p − 1)|k!, then 2k! ≡ 1
(mod p) so that p will divide gcd(2k! − 1 mod n, n) and the chances of obtaining a nontrivial
factor of n will be good.

• Pollard’s ρ-Algorithm
This method typically finds a prime factor p of n in about

√
p steps (so O(N1/4) steps). Note that

small prime factors will usually be found first.

• Preliminary observation. Suppose we roll a fair die with n faces k times. We claim that if
k ≥ 2

√
n + 2, then with probability > 1/2 two of the numbers rolled will be the same. (Mention

the birthday problem.) Use that there are at least
√
n integers in [

√
n, 2
√
n + 1]. The probability

the numbers rolled are all different is

k−1∏
j=1

(
n− j
n

)
≤
(

1−
√
n

n

)√n

≤ 1

e
.

So the result follows.

• The algorithm. Let f(x) = x2 + 1. Let f (j) be defined by f (1)(x) = f(x) and f (j+1)(x) =
f(f (j)(x)) for j ≥ 1. Compute aj = f (j)(1) mod n for 1 ≤ j ≤ k. The idea is that if k ≥ 100

√
p

where p is a prime factor of n, then one can expect to find i and j with 1 ≤ i < j ≤ k such
that f (i)(1) mod p = f (j)(1) mod p. In this case, we would have ai ≡ aj (mod p) so that p
will divide gcd(ai − aj, n). Hopefully then by computing gcd(ai − aj, n) we can determine a
factorization of n. This will not be so good however if we actually compute

(
k
2

)
different gcd’s.

We instead use Floyd’s cycle-finding algorithm. Observe that if i and j are as above, then (since
there are j − i integers in (i, j]) there is an integer t ∈ (i, j] for which (j − i)|t. Now, ai ≡ aj

(mod p) implies ai+u ≡ aj+u (mod p) for every positive integer u. In particular,

at ≡ at+(j−i) ≡ at+2(j−i) ≡ at+3(j−i) ≡ · · · ≡ a2t (mod p).

Thus, rather than checking
(

k
2

)
different gcd’s as above, one can compute a1, a2, . . . and check as

one progresses the values of gcd(a2t − at, n) for t = 1, 2, One continues until one finds a
factorization of n, noting again that this should take O(

√
p) steps to find a given prime factor p.

• Brent and Pollard factored F8 = 228
+ 1 using this method with f(x) = x1024 + 1. Discuss

why such a choice for f(x) would be appropriate here.

Computational Number Theory Notes 16

Dixon’s Factoring Algorithm:
• The basic idea. Suppose n = pe1

1 p
e2
2 · · · per

r with pj odd distinct primes and ej ∈ Z+. Then
x2 ≡ 1 (mod p

ej

j) has two solutions implies x2 ≡ 1 (mod n) has 2r solutions. If x and y are
random and x2 ≡ y2 (mod n), then with probability (2r − 2)/2r we can factor n (nontrivially) by
considering gcd(x+ y, n).

• The algorithm.

(1) Randomly choose a number a and compute s(a) = a2 mod n. (We want a >
√
n.)

(2) A bound B = B(n) to be specified momentarily is chosen. Determine if s(a) has a prime
factor > B. We choose a new a if it does. Otherwise, we obtain a complete factorization of
s(a).

(3) Let p1, . . . , pt denote the primes ≤ B. We continue steps (1) and (2) until we obtain t + 1
different a’s, say a1, . . . , at+1.

(4) From the above, we have the factorizations

s(ai) = p
e(i,1)
1 p

e(i,2)
2 · · · pe(i,t)

t for i ∈ {1, 2, . . . , t+ 1}.

Compute the vectors

~vi = 〈e(i, 1), e(i, 2), . . . , e(i, t)〉 mod 2 for i ∈ {1, 2, . . . , t+ 1}.

These vectors are linearly dependent modulo 2. Use Gaussian elimination (or something
better) to find a non-empty set S ⊆ {1, 2, . . . , t + 1} such that

∑
i∈S ~vi ≡ ~0 (mod 2).

Calculate x ∈ [0, n− 1] ∩ Z (in an obvious way) satisfying∏
i∈S

s(ai) ≡ x2 (mod n).

(5) Calculate y =
∏

i∈S ai mod n. Then x2 ≡ y2 (mod n). Compute gcd(x + y, n). Hopefully,
a nontrivial factorization of n results.

• A (non-realistic) example. Take n = 1189 and B = 11. Suppose after step (3) we have for
the ai’s the numbers 151, 907, 449, 642, 120, and 1108 with the s(ai)’s being 210 = 2× 3× 5× 7,
1050 = 2 × 3 × 52 × 7, 660 = 22 × 3 × 5 × 11, 770 = 2 × 5 × 7 × 11, 132 = 22 × 3 × 11, and
1108 = 23 × 7× 11, respectively. Execute the rest of the algorithm.

Homework:
Use Dixon’s Algorithm to factor n = 80099. Suppose B = 15 and the aj’s from the first

three steps are the numbers 1392, 58360, 27258, 39429, 12556, 42032, and 1234. (Each of these
squared reduced modulo n should have all of its prime factors ≤ B.)

• What about B? To analyze the optimal choice for B, we use

ψ(x, y) = |{n ≤ x : p|n =⇒ p ≤ y}|.

From previous discussions, ψ(x,
√
x) ∼ (1 − log 2)x. In general, ψ(x, x1/u) ∼ ρ(u)x for some

number ρ(u).

Computational Number Theory Notes 17

Theorem 1 (Dickman). For u fixed, ψ(x, x1/u) ∼ ρ(u)x where ρ(u) satisfies:
(i) ρ(u) is continuous for u > 0
(ii) ρ(u)→ 0 as u→∞
(iii) ρ(u) = 1 for 0 < u ≤ 1
(iv) for u > 1, ρ(u) satisfies the differential delay equation uρ′(u) = −ρ(u− 1).

Helmut Maier, improving on work of deBruijn, essentially removes any restriction on u by
establishing the result above whenever u < (log x)1−ε for any fixed ε > 0. Note that x1/ log x = e.
Also, deBruijn established that

ρ(u) = exp (−(1 + o(1))u log u) ≈ 1

uu
.

We are interested in ψ(n,B). Thus, u = log n/ logB. Note that u ≤ log n. Suppose u <
(log n)1−ε as above. We deduce

ψ(n,B) = n exp (−(1 + o(1)) log n log u/ logB) .

The number of different times we expect to go through steps (1) and (2) of the algorithm is

(π(B) + 1) exp ((1 + o(1)) log n log u/ logB) .

We expect ≤ B steps to factor each value of s(a). We are led to considering

B = exp
(√

log n
√

log u/
√

2
)

= exp
(√

log n
√

log log n/2
)
.

The number of steps expected for Dixon’s Algorithm is therefore exp
(
2
√

log n
√

log log n
)

(take
into account the Gaussian elimination).

• Preliminaries to the CFRAC Algorithm. Discuss simple continued fractions (scf). Mention
that if a/b is a reduced convergent of the scf for α, then |α − (a/b)| < 1/b2. Deduce that |a2 −
α2b2| � α.

• The CFRAC Algorithm. Use Dixon’s Algorithm with the aj’s chosen so that aj is the
numerator of a reduced convergent of the scf for

√
n. If bj is the denominator, then |a2

j − nb2j | <
2
√
n. In other words, if one modifies s(aj) so that it might be negative, we can take |s(aj)| <

2
√
n. One can deal with negative s(aj) by treating −1 as a prime. The running time is im-

proved as ψ(n,B) above gets to be replaced by ψ(2
√
n,B). One obtains here a running time of

O
(
exp(
√

2
√

log n
√

log log n)
)
. On the other hand, it has not been established that the values of

s(aj) here are just as likely to have all prime factors ≤ B as random numbers their size, so this
running time is heuristic. We note that this algorithm was used by Brillhart and Morrison to factor
F7 = 227

+ 1.

• An “early abort” strategy can be combined with the above ideas to reduce the running time
of the algorithms. Given a, one stops trying to factor s(a) if it has no “small” prime factors. This
leads to a running time of the form O

(
exp(

√
3/2
√

log n
√

log log n)
)

.

Computational Number Theory Notes 18

Homework:
Use the CFRAC Algorithm to factor n = 135683. The first 10 numerators of the convergents

for the simple continued fraction for
√
n and their squares modulo n (in factored form) are shown

below. You may use this information. As far as B goes, ignore it (take it to be 1000 if you
want). You do not need to use Gaussian elimination. Instead you can simply try to find the right
combination of factors mentally.

Numerators
737
1105
6262
13629
19891
53411
233535
520481
1274497
4343972

Squares Mod n
19× 23
−1× 2× 61
257
−1× 2× 193
11× 23
−1× 2× 7× 11
277
−1× 2× 7× 19
11× 19
−1× 83

• The Quadratic Sieve Algorithm. Consider F (x) = (x+[
√
n])2−n. Then |F (x)| � |x|

√
n

for 0 < |x| ≤
√
n. The idea of the quadratic sieve algorithm is to consider a in Dixon’s Algorithm

to be of the form a = x + [
√
n] with |x| small. Here, we allow for s(a) to be negative as in the

CFRAC Algorithm. Thus, |s(a)| � |x|
√
n.

• Why would this be better than the CFRAC Algorithm? In the CFRAC Algorithm, we had
|s(a)| < 2

√
n, so this is a reasonable question. The advantage of the Quadratic Sieve Algorithm is

that one can “sieve” prime divisors of s(a) to determine how s(a) factors for many a at once. To
clarify, for a small prime p, one can solve the quadratic F (x) ≡ 0 (mod p). If there are solutions
to the congruence, there will usually be two incongruent solutions modulo p, say x1 and x2. Thus,
one knows that if x ≡ x1 or x2 modulo p and a = x+ [

√
n], then p|s(a). Otherwise, p - s(a).

• The running time is O
(
exp(

√
9/8
√

log n
√

log log n)
)

for the Quadratic Sieve Algorithm.
The running time is heuristic.

• There are other variations of the above algorithms. In particular, a version of the Quadratic
Sieve Algorithm suggested by Peter Montgomery reduces the running time to

O
(
(1/2)

√
log n

√
log log n)

)
.

The Number Field Sieve:
• Let f be an irreducible monic polynomial with integer coefficients. Let α be a root of

f . Let m be an integer for which f(m) ≡ 0 (mod n). The mapping φ : Z[α] → Zn with
φ(g(α)) = g(m) mod n for all g(x) ∈ Z[x] is a homomorphism. The idea is to find a set S of
polynomials g(x) ∈ Z[x] such that (i)

∏
g∈S g(m) = y2 for some y ∈ Z, and (ii)

∏
g∈S g(α) = β2

Computational Number Theory Notes 19

for some β ∈ Z[α]. Taking x = φ(β), we deduce

x2 ≡ φ(β)2 ≡ φ(β2) ≡ φ

(∏
g∈S

g(α)

)
≡
∏
g∈S

g(m) ≡ y2 (mod n).

Thus, we can hope once again to factor n by computing gcd(x+ y, n).

• What do we choose for f? We determine an f of degree d > 1 and with n > 2d2 as follows.
Setm = [n1/d]. Write n in basem; in other words, compute c0, c1, . . . , cd each in {0, 1, . . . ,m−1}
with

n = cdm
d + cd−1m

d−1 + · · ·+ c1m+ c0.

Set f(x) =
∑d

j=0 cjx
j . Then f is monic and f(m) ≡ 0 (mod n). Next, we attempt to factor f in

Z[x]. (Discuss the running time for this.) If it is irreducible, then we are happy. If it is reducible,
then we use the factorization of f to determine a factorization of n (explain).

Homework:
Prove that f is monic. In other words, show that cd = 1.

• What do we choose for the g? We take the g to be of the form a − bx where |a| ≤ D and
0 < b ≤ D. We want g(m) to have only small prime factors. This is done by first choosing b
and then, with b fixed, letting a vary and sieving to determine the a for which g(m) has only small
prime factors.

• How do we obtain the desired square in Z[α]? Let α1, . . . , αd be the distinct roots of f with
α = α1. We consider the norm map N(g(α)) = g(α1) · · · g(αd), where g ∈ Z[x]. It has the two
properties: (i) if g and h are in Z[x], then N (g(α)h(α)) = N (g(α)) N (h(α)), and (ii) if g ∈ Z[x],
then N (g(α)) ∈ Z. It follows that the norm of a square in Z[α] is a square in Z. On the other hand,

N(a− bα) = bd
d∏

j=1

(a
b
− αj

)
= bdf(a/b) = ad + cd−1a

d−1b+ · · ·+ c1ab
d−1 + c0b

d.

The idea is to try to obtain a set S of pairs (a, b) as above. As we force the product
∏

(a − bm)
to be a square (products over (a, b) ∈ S), we also force

∏(
ad + cd−1a

d−1b+ · · ·+ c0b
d
)

to be a
square.

• Have we really answered the previous question? No. We have found an element of Z[α]
with its norm being a square in Z. This does not mean the element is a square in Z[α]. (For
example, consider α = i and S = {(2, 1), (2,−1)}.) There is quite a bit of work left in the
algorithm in terms of modifying the exponent vectors to produce the squares we want, but a small
bit of the ideas have been demonstrated.

• The running time for the number field sieve is exp
(
c(log n)1/3(log log n)2/3

)
where c is a

constant and c = 4/(32/3) will do.

• The number field sieve was used to factor F9 = 229
+ 1 in 1993 by Lenstra, Lenstra,

Manasse, and Pollard.

Computational Number Theory Notes 20

Public-Key Encryption:
• Problem: Describe how to communicate with someone you have never met before through

the personals without anyone else understanding the private material you are sharing with this
stranger.

• What they don’t know can hurt them. Find two large primes p and q; right now 100 digit
primes will suffice. Compute n = pq. If you are secretive about your choices for p and q, then you
can tell the world what n is and you will know something no one else in the world knows, namely
how n factors. Now, don’t you feel special?

• What to publish first. Now that you know something no one else knows, the problem
becomes a bit easier to resolve. You (and you alone) can determine φ(n). Do so, and choose some
positive integer s (the “encrypting exponent”) with gcd(s, φ(n)) = 1. You publish n and s in the
personals. You also describe to someone how to correspond with you in such a way that no one else
will understand the message (at this point everyone can read what you are writing, but that’s OK
as it is only a temporary situation). What you tell them is something like this: to form a message
M concatenate the symbols 00 for blank, 01 for a, 02 for b, ..., 26 for z, 27 for a comma, 28 for a
period, and whatever else you might want. For example, M = 0805121215 means “hello”. Next,
tell the person to publish (back in the personals) the value ofE = M s mod n. (The person should
be told to make sure that M s > n by adding extra blanks if necessary and that M < n by breaking
up a message into two or more messages if necessary.)

• What can you do with the encoded message? You calculate t with st ≡ 1 (mod φ(n))
(one can use t ≡ sφ(φ(n))−1 mod φ(n)). Then compute Et mod n. This will be the same as M
modulo n (unless p or q divides M , which isn’t likely). So now you know the message.

• Computing φ(n) is seemingly as difficult as factoring n. Here one needs to compute
φ(φ(n)) which for you is only as difficult as factoring p − 1 and q − 1. If these each have 100
digits, then n has around 200 digits and all is reasonable (for the times we live in). One can also
try to construct p and q with p− 1 and q − 1 of some nice form (for example, having small prime
factors).

Homework:
Let p = 193 and q = 257, so n = pq = 49601. Let s = 247.
(a) Someone sends the encrypted message E = 48791. Determine the word sent.
(b) Encrypt the message, “No”. In other words, tell me the value of E.

• Certified signatures. Imagine person A has published n and s in the personals, person B is
corresponding with person A in private, and person C really dislikes person B. C decides to send
A a message in the personals that reads something like, “Dear A, I think you are a jerk. Your dear
friend, B.” This of course would make A very upset with B and would make C very happy. What
would be nice is if there were a way for B to sign his messages so that A can see the signature and
know whether a message supposedly from B is really from B. This is done as follows. First, if
B is really corresponding with A, he (B stands for boy) should have his very own n and s which
he has shared with at least A. Let’s call them n′ and s′, and let the corresponding t be t′. Now,
B doesn’t have to use his name, but he informs A of some signature (name) he will use, say S.
He can change S regularly if he wishes, but in any case, it is given to A as part of an encrypted

Computational Number Theory Notes 21

message. At the end of the encrypted message, he gives A the number T = St′ mod n′. After A
decodes the message, he computes T s′ mod n′ (remember n′ and s′ are public). The result will
be S. Since only B knows t′, only B could have determined T and A will know that the message
really came from B.

Factoring Polynomials:
• Problem: Given a polynomial in Z[x], determine if it is irreducible over Q. If it is

reducible, find a non-trivial factorization of it in Z[x].

• Berlekamp’s Algorithm. This algorithm determines the factorization of a polynomial
f(x) in Zp[x] where p is a prime (or more generally over finite fields). For simplicity, we suppose
f(x) is monic and squarefree in Zp[x]. Let n = deg f(x). Let A be the matrix with jth column
derived from the coefficients reduced modulo p of x(j−1)p mod f(x). Specifically, write

x(j−1)p ≡
n∑

i=1

aijx
i−1 mod f(x) for 1 ≤ j ≤ n.

Then we set A = (aij mod p)n×n. Note that the first column consists of a one followed by n− 1
zeroes. In particular, 〈1, 0, 0, . . . , 0〉 will be an eigenvector for A associated with the eigenvalue 1.
We are interested in determining the complete set of eigenvectors associated with the eigenvalue 1.
In other words, we would like to know the null space of B = A− I where I represents the n× n
identity matrix. It will be spanned by k = n − rank(B) linearly independent vectors which can
be determined by performing row operations on B. Suppose ~v = 〈b1, b2, . . . , bn〉 is one of these
vectors, and set g(x) =

∑n
j=1 bjx

j−1. Observe that g(xp) ≡ g(x) (mod f(x)) in Zp[x]. Moreover,
the g(x) with this property are precisely the g(x) with coefficients obtained from the components
of vectors ~v in the null space of B.

Claim. f(x) ≡
∏p−1

s=0 gcd (g(x)− s, f(x)) (mod p).

The proof follows by using that f(x) divides g(x)p − g(x) ≡
∏p−1

s=0 (g(x)− s) in Zp[x] and that
each irreducible factor of f(x) in Zp[x] divides at most one of the g(x) − s. Observe that if g(x)
is not a constant, then 1 ≤ deg(g(x) − s) < deg f(x) for each s so the above claim implies we
get a non-trivial factorization of f(x) in Zp[x]. On the other hand, f(x) will not necessarily be
completely factored. One can completely factor f(x) by repeating the above procedure for each
factor obtained from the claim; but it is simpler to use (and not difficult to show) that if one takes
the product of the greatest common divisors of each factor of f(x) obtained above with h(x) − s
(with 0 ≤ s ≤ p− 1) where h(x) is obtained from another of the k vectors spanning the null space
of B, then one will obtain a new non-trivial factor of f(x) in Zp[x]. Continuing to use all k vectors
will produce a complete factorization of f(x) in Zp[x]. (As an example of Berlekamp’s algorithm,
factor x7 + x4 + x3 + x+ 1 in Z2[x].)

• Hensel Lifting Algorithm. This algorithm gives a method for using the factorization of
f(x) in Zp[x] (p a prime) to produce a factorization of f(x) in Zpk [x]. Suppose that u(x) and v(x)
are relatively prime polynomials in Zp[x] for which

f(x) ≡ u(x)v(x) (mod p).

Then Hensel Lifting will produce for any positive integer k polynomials uk(x) and vk(x) in Z[x]
satisfying

uk(x) ≡ u(x) (mod p), vk(x) ≡ v(x) (mod p),

Computational Number Theory Notes 22

and
f(x) ≡ uk(x)vk(x) (mod pk).

When k = 1, it is clear how to choose uk(x) and vk(x). For k ≥ 1, we determine values of uk+1(x)
and vk+1(x) from the values of uk(x) and vk(x) as follows. We compute

wk(x) ≡
1

pk
(f(x)− uk(x)vk(x)) (mod p).

Since u(x) and v(x) are relatively prime in Zp[x], we can find a(x) and b(x) in Zp[x] (depending
on k) such that

a(x)u(x) + b(x)v(x) ≡ wk(x) (mod p).

It follows that we can take

uk+1(x) = uk(x) + b(x)pk and vk+1(x) = vk(x) + a(x)pk.

A complete factorization of f(x) modulo pk can be obtained from a complete factorization of f(x)
modulo p by modifying this idea. However, note that f(x) = 2x2 + 5x + 3 = (x + 1)(2x + 3)
satisfies

f(x) ≡
(
x+

3k + 3

2

)
(2x+ 2) (mod 3k).

Homework:
(1) Use Berlekamp’s algorithm to factor f(x) = x6 + x3 + x2 + x + 1 modulo 2. You should
obtain two polynomials u(x) and v(x) of degrees < 6 such that f(x) ≡ u(x)v(x) (mod 2).

(2) Use the previous problem and Hensel lifting to factor f(x) = x6 +x3 +x2 +x+1 modulo 32.
To help, let u(x) and v(x) be as in the previous problem with deg u > deg v. Then you can take
advantage of the following:

u(x) + x3v(x) ≡ x5 + 1 (mod 2)

(x+ 1)u(x) + (x2 + 1)v(x) ≡ x5 + x4 (mod 2)

xu(x) + (x2 + x)v(x) ≡ x5 (mod 2).

• An Inequality of Landau. This inequality gives an upper bound on the “size” of the
factors of a given polynomial in Z[x]. Given f(x) =

∑n
j=0 aj ∈ Z[x], we measure it’s size with

‖f‖ =
(∑n

j=0 a
2
j

)1/2

. Thus for a fixed f(x) ∈ Z[x], we want an upper bound on ‖g‖ where g(x)
is a factor of f(x) in Z[x].

Theorem. If f(x), g(x), and h(x) in Z[x] are such that f(x) = g(x)h(x), then ‖g‖ ≤
2deg g‖f‖.
For f(x) = an

∏n
j=1(x − αj) with an 6= 0 and αj complex but not necessarily distinct, we define

the Mahler measure of f as M(f) = |an|
∏n

j=1 max{1, |αj|}. The following two properties are
easily seen to hold: (i) if g(x) and h(x) are in C[x], then M(gh) = M(g)M(h); (ii) if g(x) is in
Z[x], then M(g) ≥ 1.

Computational Number Theory Notes 23

Claim. For f(x) ∈ R[x], M(f) ≤ ‖f‖ ≤ 2deg fM(f).

For the claim, we define for a given w(x) ∈ C[x], w̃(x) = xdeg ww(1/x). The coefficient of xdeg w

in the expanded product w(x)w̃(x) is ‖w‖2. For f(x) =
∑n

j=0 ajx
j = an

∏n
j=1(x − αj), we

consider
w(x) = an

∏
1≤j≤n
|αj |>1

(x− αj)
∏

1≤j≤n
|αj |≤1

(αjx− 1).

One checks that

w(x)w̃(x) = a2
n

n∏
j=1

(x− αj)
n∏

j=1

(1− αjx) = f(x)f̃(x).

By comparing coefficients of xn, we deduce that ‖w‖ = ‖f‖. Also, observe that from the definition
of w, |w(0)| = M(f). Thus, if w =

∑n
j=0 cjx

j , then

M(f) = |c0| ≤ (c20 + c21 + · · ·+ c2n)1/2 = ‖w‖ = ‖f‖,

establishing the first inequality. For the second inequality observe that for any k ∈ {1, 2, . . . , n},
the product of any k of the αj has absolute value ≤ M(f)/|an|. It follows that |an−k|/|an|,
which is the sum of the products of the roots taken k at a time, is ≤

(
n
k

)
×M(f)/|an|. Hence,

|an−k| ≤
(

n
k

)
M(f) =

(
n

n−k

)
M(f). The second inequality now follows from

‖f‖ =

(
n∑

j=0

a2
j

)1/2

≤
n∑

j=0

|aj| ≤
n∑

j=0

(
n

j

)
M(f) = 2nM(f).

To prove the theorem, just use the Claim and properties (i) and (ii) of Mahler measure to deduce

‖g‖ ≤ 2deg gM(g) ≤ 2deg gM(g)M(h) = 2deg gM(gh) = 2deg gM(f) ≤ 2deg g‖f‖.

• Combining the above ideas. We factor a given f(x) ∈ Z[x] with the added assumptions
that it is monic and squarefree. The latter we can test by computing gcd(f, f ′), which will give us
a nontrivial factor of f if f is not squarefree. If f were not monic, a little more needs to be added
to the ideas below (but not much).

Let B = 2(deg f)/2‖f‖. Then if f has a nontrivial factor g in Z[x], it has such a factor of degree
≤ (deg f)/2 so that by Landau’s inequality, we can use B as a bound on ‖g‖.

Next, we find a prime p for which f is squarefree modulo p. There are a variety of ways this
can be done. There are only a finite number of primes for which f is not squarefree modulo p
(these primes divide the resultant of f and f ′). Working with gcd(f, f ′) modulo p can resolve the
issue or simply using Berlekamp’s factoring algorithm until a squarefree factorization occurs is
fine.

We choose a positive integer r as small as possible such that pr > 2B. One factors f modulo
p by Berlekamp’s algorithm and uses Hensel lifting to obtain the factorization of f modulo pr.
Given our conditions on f , we can suppose all irreducible factors are monic and do so.

Now, we can determine if f(x) = g(x)h(x) for some monic g and h in Z[x] with ‖g‖ ≤ B
as follows. We observe that the coefficients of g are in [−B,B]. We use a residue system modulo
pr that includes this interval, namely (−pr/2, pr/2], and consider each factorization of f modulo

Computational Number Theory Notes 24

pr with coefficients in this residue system as a product of two monic polynomials u(x) and v(x).
Since f = gh, there must be some factorization where g ≡ u (mod pr) and h ≡ v (mod pr). On
the other hand, the coefficients of g and u are all in (−pr/2, pr/2] so that the coefficients of g − u
are each divisible by pr and are each < pr in absolute value. This implies g = u. Thus, we can
determine if a factor g exists as above by simply checking each monic factor of f modulo pr with
coefficients in (−pr/2, pr/2].

• Swinnerton-Dyer’s Example. The algorithm just described above for factoring a polyno-
mial f(x) ∈ Z[x] of degree n can take time that is exponential in n for some, albeit rare, f(x).
This has been illustrated by a nice example due to Swinnerton-Dyer. We formulate this way. Let
a1, a2, . . . , am be arbitrary squarefree pairwise relatively prime integers > 1. Let Sm be the set of
2m different m-tuples (ε1, . . . , εm) where each εj ∈ {1,−1}. Then the polynomial

f(x) =
∏

(ε1,...,εm)∈Sm

(
x− (ε1

√
a1 + · · ·+ εm

√
am)
)

has the properties:

(i) The polynomial f(x) is in Z[x].

(ii) It is irreducible over the rationals.

(iii) It factors into a product of linear and quadratic polynomials modulo every prime p.

To see (i), use elementary symmetric functions. Also, note that if fm(x) is the polynomial f(x)
above corresponding to a list a1, a2, . . . , then fm(x) = fm−1

(
x+
√
am

)
fm−1

(
x−√am

)
.

To see (ii), use induction on m. The irreducibility of f(x) can be deduced from showing that
Q
(√

a1, . . . ,
√
am

)
is an extension of degree 2m over Q whose Galois group over Q is generated

by the automorphisms σ1, . . . , σm defined by σj

(√
aj

)
= −√aj and σj

(√
ai

)
=
√
ai for i 6= j.

The induction is completed by showing that
√
am+1 6∈ Q

(√
a1, . . . ,

√
am

)
.

Assume otherwise. Then
√
am+1 can be expressed as a linear combination over Q of the 2m

numbers formed by taking products of the numbers √aj (where 1 ≤ j ≤ m). Apply σ1 to such
an expression and note that the result must be σ1

(√
am+1

)
which is either

√
am+1 or −√am+1. In

either case (by multiplying by−1 in the second situation), we get “another” expression for
√
am+1

as a linear combination over Q of products of the numbers √aj (with 1 ≤ j ≤ m). In the first
case, we deduce that √

am+1 ∈ Q
(√

a2, . . . ,
√
am

)
and can apply a suitable induction hypothesis. In the second case, we deduce

√
a1am+1 ∈ Q

(√
a2, . . . ,

√
am

)
and can again apply the induction hypothesis.

To see (iii), again use induction on m. Fix p. If some aj is a square modulo p, then let g(x) be
the polynomial corresponding to f(x) above but with them−1 numbers a1, . . . , aj−1, aj+1, . . . , am.
Then f(x) = g

(
x +

√
aj

)
g
(
x − √aj

)
. It follows that if b2 ≡ aj (mod p), then f(x) ≡

Computational Number Theory Notes 25

g(x+ b)g(x− b) (mod p). Since each of g(x+ b) and g(x− b) factors as a product of linears and
quadratics modulo p by the induction hypothesis, we are through in this case. Now, suppose no aj

is a square modulo p. Fix (ε1, . . . , εm) ∈ Sm and observe that when the product(
x+ (ε1

√
a1 + · · ·+ εm

√
am)
) (
x− (ε1

√
a1 + · · ·+ εm

√
am)
)

is expanded the result is an expression with each radicand the product of two of the aj . Since no
aj is a square modulo p, each such product will be (the product of two non-quadratic residues is
a quadratic residue). This means that the above product can be expressed as a quadratic modulo p
with coefficients from {0, 1, . . . , p− 1}. Pairing then the linear factors of f(x) appropriately leads
to the desired factorization modulo p.

Discrete and Fast Fourier Transforms:
• Goal: LetM(d) denote the number of binary bit operations needed to multiply two positive

integers each consisting of ≤ d bits. We have stated without proof that M(d)� d(log d) log log d.
We give here the basic idea behind the proof, not worrying so much about the running time but
concentrating on the main idea of using fast Fourier transforms for performing multiplication.

• A not-so-discrete formula. The following example is vaguely related to what we are after.
Let R be a rectangle, and suppose R is expressed as a union of rectangles Rj , 1 ≤ j ≤ r, with
edges parallel to R and common points only along these edges. Suppose further that each Rj has
at least one edge of integer length. Then show that R itself has an edge of integer length by using
that ∣∣∣∣∫∫

R

e2πi(x+y)dx dy

∣∣∣∣ =

∣∣∣∣ r∑
j=1

∫∫
Rj

e2πi(x+y)dx dy

∣∣∣∣.
For connections to what we really want, observe that∫ 1

0

ei2πkθdθ =
1

2π

∫ 2π

0

eikθdθ =

{
0 if k 6= 0

1 if k = 0,

where k is an integer.

• Prove the following more discrete version of the above formula.

Lemma. Let n and k be integers with n ≥ 1. Let ω = e2πi/n. Then

n−1∑
j=0

ωkj =

{
0 if k 6≡ 0 (mod n)

n if k ≡ 0 (mod n).

• Example. Show that

1− 1

4
+

1

7
− 1

10
+ · · · = 3 log 2 +

√
3π

9
.

Call the sum S. Use that

z2 log(1 + z) = z3 − z4

2
+
z5

3
− z6

4
+ · · · .

Computational Number Theory Notes 26

Let ω = e2πi/3, and note that

(1 + ω)(1 + ω2) = 1 + ω + ω2 + ω3 = ω3 = 1.

This can be deduced also from

ω =
−1 +

√
3 i

2
and ω2 =

−1−
√

3 i

2
.

The lemma implies that

3S = log(1 + 1) + ω2 log(1 + ω) + ω log(1 + ω2)

= log 2− 1

2
log
(
(1 + ω)(1 + ω2)

)
+

√
3 i

2
log
(
(1 + ω2)/(1 + ω)

)
= log 2 +

√
3 i log

(
1 + ω2

)
= log 2 +

√
3i log

(
− ω

)
= log 2 +

√
3π/3,

from which the value of S above follows. Note that this example illustrates precisely what we
are after with the above lemma, a way to isolate certain terms. We used third roots of unity to
isolate every third term of a series. We will similarly use nth roots of unity to isolate each term of
a polynomial of degree n− 1.

• Definitions and notations. For n a positive integer, we set ω = ωn = e2πi/n. Let

D = D(n, ω) =

1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
1 ωn−1 ω2(n−1) · · · ω(n−1)2

 .

Given a vector ~u = 〈u0, u1, . . . , un−1〉 ∈ Cn, we define ~v = 〈v0, v1, . . . , vn−1〉, called the discrete
Fourier transform of ~u, as D~uT (the product of the matrix D with the matrix consisting of a single
column with the entries of ~u). The inverse discrete Fourier transform of a vector ~v ∈ Cn is defined
as (1/n)D(n, ω−1)~v T . We justify that this is truly an inverse (not just in name).

• Prove that (1/n)D(n, ω−1)D(n, ω) is the identity matrix by using the lemma above.

• The polynomial connection. Observe that if f(x) =
∑n−1

j=1 ajx
j ∈ C[x], then

D 〈a0, a1, . . . , an−1〉T = 〈f(1), f(ω), . . . , f(ωn−1)〉T . (7)

On the other hand, if we know the values f(1), f(ω), . . . , f(ωn−1) of a polynomial f(x) and do
not know the coefficients of f(x), then we can obtain the coefficients from

D−1〈f(1), f(ω), . . . , f(ωn−1)〉T = 〈a0, a1, . . . , an−1〉T . (8)

Note that here D−1 = (1/n)D(n, ω−1).
The operations D and D−1 are more related than might appear. Define

F (x) = f(1) + f(ω)x+ · · ·+ f(wn−1)xn−1.

Computational Number Theory Notes 27

Then (8) is equivalent to the assertion that

F (1) = na0, F
(
ω−1

)
= na1, F

(
ω−2

)
= na2, . . . , F

(
ω−(n−1)

)
= nan−1.

In other words, (8) is simply asserting that if the matrix D
(
n, ω−1

)
is multiplied by the coeffi-

cient vector for F (x), then one gets the vector 〈F (1), F
(
ω−1

)
, . . . , F

(
ω−(n−1)

)
〉T . Hence, (8) is

essentially (7) for a different polynomial and with the role of ω replaced by ω−1.

• The Fast Fourier Transform. We explain a fast way of performing the computation in (7).
There exist unique polynomials fe and fo in C[x] such that f(x) = fe(x

2) + xfo(x
2). Compute

fe(ω
2j), fo(ω

2j) and ωjfo(ω
2j) for 0 ≤ j ≤ n− 1. Use this to get the right side of (7).

• Why is this fast? Note that computing the right side of (7) in an obvious way takes n2 multi-
plications and n(n−1) additions. The above gives a considerable improvement over this “obvious”
computation (assuming that we have nth roots of unity available to us). For convenience, view n
as a power of 2. Let A(n) be the number of arithmetic operations of addition and multiplication
needed for the computation in (7). So A(n) is the number of such operations needed to compute
f(1), f(ω), . . . , f(ωn−1). Observe that

fe(ω
2j
n) = fe(ω

j
n/2) = fe(ω

j+(n/2)
n/2) = fe(ω

2(j+(n/2))
n) for 0 ≤ j ≤ (n/2)− 1.

Similar equations hold with fe replaced by fo. We deduce that computing the values of fe(ω
2j) and

fo(ω
2j) takes 2A(n/2) arithmetic operations. Multiplying fo(ω

2j) by ωj and then adding fe(ω
2j)

takes 2n more arithmetic operations. We obtain

A(n) = 2A(n/2) + 2n =⇒ A(n) = (2/ log 2)n log n+ Cn

for some appropriate constant C (depending on say A(2)). A similar analysis holds for the number
of arithmetic operations needed for the computation in (8).

• Multiplying two polynomials. An obvious way of obtaining the coefficients of a product
of two polynomials of degree ≤ n takes on the order of n2 multiplications. This can be done
considerably faster using the above ideas (and assuming, as before, that we have nth roots of unity
available to us). Let

g(x) = br−1x
r−1 + · · ·+ b1x+ b0 and h(x) = cs−1x

s−1 + · · ·+ c1x+ c0

be polynomials in C[x] with s ≤ r. Let n = 2r, and rewrite g(x) and h(x) with leading zeroes as

g(x) = bn−1x
n−1 + · · ·+ b1x+ b0 and h(x) = cn−1x

n−1 + · · ·+ c1x+ c0.

Let f(x) = g(x)h(x), and note that deg f ≤ n− 1. From (7), we obtain

D 〈b0, b1, . . . , bn−1〉T = 〈g(1), g(ω), . . . , g(ωn−1)〉T

and
D 〈c0, c1, . . . , cn−1〉T = 〈h(1), h(ω), . . . , h(ωn−1)〉T .

These can be computed with 2A(n) arithmetic operations where A(n) is as before. Computing
f(ωj) = g(ωj)h(ωj) for 0 ≤ j ≤ n − 1 takes n multiplications. Now, applying (8) allows us to

Computational Number Theory Notes 28

compute the coefficients of f(x) with A(n) further arithmetic operations. Rescaling, we deduce
that the product of two polynomials of degree ≤ n in C[x] can be computed with O(n log n)
complex additions and multiplications.

• Integer multiplication? Suppose we wish to multiply two positive integers A and B. Write
each in binary as

A = (br−1 . . . b1b0)2 and B = (cs−1 . . . c1c0)2.

The idea then is to take g(x) and h(x) as above, and compute the product f(x) = g(x)h(x).
Observe that the coefficients of f(x) are not bits. However, the product AB can still be obtained
by computing f(2) which, after computing the coefficients of f(x), amounts to some shifts and
additions that do not require much time. The main difficulty is in having to deal with roots of unity.
In 1968, Volker Straussen showed that it is possible to approximate the roots of unity to sufficient
accuracy to obtain a total complexity for the multiplication of order n log n(log log n)1+ε (for any
fixed ε > 0) where n is a bound on the number of bits of A and B. So this is close to what is
the best known bound. We will explain an alternative approach that avoids computations of the
complex roots of unity.

• The main idea is to replace complex roots of unity with roots of 1 modulo some prime (or
various primes) p. More precisely, let d be a positive integer (for computational purposes, it is best
that d consist of only of small prime divisors; in particular, a power of 2 can be used for d). Let p
be a prime such that d|(p − 1). Then there is a positive integer ω such that ω has order d modulo
p− 1. Observe that if p divides a Fermat number 22k

+ 1, for example, and d = 2k+1, then one can
take ω = 2. The following lemma replaces our previous one.

Lemma. Let t be an integer. With the notation above,

d−1∑
j=0

ωtj ≡

{
0 (mod p) if t 6≡ 0 (mod d)

d (mod p) if t ≡ 0 (mod d).

• Work modulo p. Observe that d has an inverse modulo p since p > d ≥ 1. Also, ω has an
inverse, namely ωd−1, modulo p. We thus define the discrete Fourier transform modulo p using ω
as our root of unity and note that both D(d, ω) and its inverse D

(
d, ω−1

)
/d are defined modulo p.

The previous arguments all carry through in this setting.

• Some analysis of the complexity (and clarification of the algorithm). Suppose that we want
to multiply two positive integers A and B and construct, as before,

g(x) = bn−1x
n−1 + · · ·+ b1x+ b0 and h(x) = cn−1x

n−1 + · · ·+ c1x+ c0,

where the bj and cj are either 0 or 1 (though, in practice, larger coefficients can be considered),
A = g(2), B = h(2) and the leading coefficients are stacked to be 0’s in such a way that if

r − 1 = max{j : bj 6= 0} and s− 1 = max{j : cj 6= 0},

then s ≤ r ≤ n/2. Note that n/2 is a bound for the number of bits making up A and B. We
consider n = d and a prime p as above with d|(p− 1). We also let, as before, ω denote an element
of order d modulo p. (Discuss how this can be found.) We compute the coefficients of f(x) =

Computational Number Theory Notes 29

g(x)h(x) modulo p by using the fast Fourier transform to obtain the product of D(d, ω) with the
coefficient vectors for g(x) and h(x) giving g

(
ωj
)

and h
(
ωj
)

(that is, modulo p) for 0 ≤ j ≤ n−1,
by computing f

(
ωj
)

= g
(
ωj
)
h
(
ωj
)

(modulo p) for each such j, and then by using the fast Fourier
transform to obtain the product of D

(
d, ω−1

)
/d with the vector 〈f(1), f(ω), . . . , f

(
ωn−1

)
〉T .

Observe that once we know the coefficients of f(x) modulo p, we can compute f(2) modulo
p, but what we are really wanting is the value of f(2) not modulo p. We get around this by
making sure p is sufficiently large (or by using similar information obtained from various primes
and combining the information with an application of the Chinese Remainder Theorem). More
precisely, we observe that the coefficients of g(x)h(x) are each ≥ 0 and

≤ s ≤ d/2 < p/2.

Hence, if the coefficients of f(x) modulo p are taken to be in the interval [0, p), then they will be
the coefficients of f(x) (not modulo p).

To examine the complexity, observe that arithmetic is done modulo p (this is replacing the
need to compute approximations to complex roots of unity). So the running time analysis must
take this arithmetic into consideration. We want a prime p chosen so that d|(p − 1). Keeping in
mind that d can be chosen to be on the order of the number of bits of A and B, distribution results
for primes imply that such primes can be found that are not very large (so, in any case, arithmetic
modulo p can be done in time that is polynomial in the logarithm of the number of bits of A and
B). The size of p can be reduced somewhat by decreasing the size of n = d and increasing the
size of the coefficients aj and bj so that A = g(2`) and B = h(2`) for some appropriate positive
integer `. Then the size of the coefficients of g(x)h(x) may exceed p, but we can work around
this by computing the coefficients of g(x)h(x) modulo several primes and then using the Chinese
Remainder Theorem to obtain the actual coefficients of g(x)h(x).

We note the example given by John Pollard [14]. Suppose we want to multiply two 10000 bit
numbers A and B. Take ` = 21 so that A = g(221) and B = h(221) correspond to writing A and
B in base 221 (or breaking up their binary representations into blocks of 21 bits). Then the degrees
of g(x) and h(x) are ≤ 512, and we can take d = 210. Define the primes p1, p2, and p3 by

p1 = 6946817, p2 = 7340033, p3 = 7667713.

These primes are between 221 and 223. Observe that the largest coefficient of g(x)h(x) is no more
than

512 · 221 · 221 < p1p2p3.

Hence, using the discrete and fast fourier transforms to compute the coefficients of f(x) modulo
each pj and combining the results with the Chinese Remainder Theorem allows us to determine
the coefficients of f(x) = g(x)h(x). Then computing f(221) will give us the value of AB. Note
that the same primes (and their corresponding ω’s) can be used for every A and B having fewer
than 10000 bits.

The LLL Algorithm:
• Background. In 1982, Arjen Lenstra, Hendrik Lenstra, Jr., and László Lovász [9] showed

that it is possible to factor a polynomial f(x) =
∑n

j=0 ajx
j ∈ Z[x] in polynomial time. If n is the

degree of f(x) (so an 6= 0) and H is the height of f(x), that is the maximum of |aj| for 0 ≤ j ≤ n,

Computational Number Theory Notes 30

then the quantity n(log2H+log2 n+2) can be viewed as an upper bound on the length of the input
polynomial f(x). A polynomial time algorithm for factoring f(x) corresponds to an algorithm that
runs in time that is polynomial in n and logH . The previous factoring algorithm we described is not
polynomial as was seen from the example of Swinnerton-Dyer. The main problem there (which
is notably atypical) is that the polynomial f(x) can factor into many small irreducible factors
modulo every prime p causing us to have to consider exponentially many possibilities for the mod
p reduction of any non-trivial factor of f(x). The algorithm of Lenstra, Lenstra and Lovász (called
the LLL-algorithm) is an approach for getting around having to consider all such mod p reductions
and thereby provides a polynomial time algorithm for factoring f(x) over the rationals.

• House, Mick Jagger and a general research idea. Mick Jagger had it right, you can’t always
get what you want. House knew this (see the pilot episode - the song also appeared at the end of the
last episode of Season 1 and at the end of the first episode of Season 3). There are many problems
in which we want to get the shortest non-zero vector in a lattice (like that of factoring), but we
can’t or at least no one knows how to. So we can’t get what we want. But as Mick Jagger and
Cuddy (from House) note, if you try, sometimes you get what you need. In general, if one knows
that A leads to a proof of B and A seems unattainable, then it makes sense to try weakening A
until it is attainable and seeing if it is enough to imply B (which will likely require a more difficult
argument than the one for A implies B but perhaps be based on a similar line of reasoning).

• Lattice background. Let b1, . . . ,bn ∈ Qn, and let A =
(
b1, . . . ,bn

)
be the n × n matrix

with columns b1, . . . ,bn. The lattice L generated by b1, . . . ,bn is

L = L(A) = b1Z + · · ·+ bnZ.

We will be interested mainly in the case that b1, . . . ,bn are linearly independent; in this case,
b1, . . . ,bn is called a basis for L. Observe that given L, the value of | detA| is the same regardless
of the basis b1, . . . ,bn that is used to describe L. To see this, observe that if b′1, . . . ,b

′
n is another

basis for L, there are matrices A and B with integer entries such that(
b1, . . . ,bn

)
AB =

(
b′1, . . . ,b

′
n

)
B =

(
b1, . . . ,bn

)
.

Given that b1, . . . ,bn is a basis for Rn, it follows that AB is the identity matrix and detB = ±1.
The second equation above then implies

| det
(
b′1, . . . ,b

′
n

)
| = | det

(
b1, . . . ,bn

)
|.

We set detL to be this common value.

• The Gram-Schmidt orthogonaliztion process. Define recursively

b∗i = bi −
i−1∑
j=1

µijb
∗
j , for 1 ≤ i ≤ n,

where

µij = µi,j =
bi · b∗j
b∗j · b∗j

, for 1 ≤ j < i ≤ n.

Then for each i ∈ {1, . . . , n}, the vectors b∗1, . . . ,b
∗
i span the same subspace of Rn (not L) as

b1, . . . ,bi. Furthermore, the vectors b∗1, . . . ,b
∗
n are linearly independent (hence, non-zero) and

pairwise orthogonal (i.e., for distinct i and j, we have b∗i · b∗j = 0). These are easily established.

Computational Number Theory Notes 31

• Hadamard’s inequality. The value of detL can be viewed as the volume of the polyhedron
with edges parallel to and the same length as b1, . . . ,bn. As indicated by the above remarks, this
volume is independent of the basis. Geometrically, it is apparent that

detL ≤ ‖b1‖ ‖b2‖ · · · ‖bn‖,

where ‖bj‖ is the Euclidean length of bj (where “apparent” is limited somewhat to the dimensions
we can think in). This is Hadamard’s inequality. One can also use the vectors b∗j to provide a proof
(in any dimensions) as follows. One checks that

det
(
b1, . . . ,bn

)
= det

(
b∗1,b

∗
2 + µ21b

∗
1, . . . ,b

∗
n +

n−1∑
j=1

µnjb
∗
j

)
= det

(
b∗1, . . . ,b

∗
n

)
.

Since b1, . . . ,bn is a basis for L, we deduce that

(detL)2 = det
(
(b∗1, . . . ,b

∗
n)T (b∗1, . . . ,b

∗
n)
)

= det

‖b
∗
1‖2 0 . . . 0
...
0 . . . 0 ‖b∗n‖2

=

(n∏
i=1

‖b∗i ‖
)2

.

Thus, detL =
∏n

i=1 ‖b∗i ‖. So it suffices to show ‖b∗i ‖ ≤ ‖bi‖. The orthogonality of the b∗i ’s
implies

‖bi‖2 =

∥∥∥∥b∗i +
i−1∑
j=1

µijb
∗
j

∥∥∥∥2

= ‖b∗i ‖2 +
i−1∑
j=1

µ2
ij‖b∗j‖2.

The sum on the right above is clearly positive so that ‖b∗i ‖ ≤ ‖bi‖ follows.

• The opposite direction. The Hadamard inequality provides an upper bound on the value of
detL. Hermite proved that there is a constant cn (depending only on n) such that for some basis
b1, . . . ,bn of L, we have

‖b1‖ ‖b2‖ · · · ‖bn‖ ≤ cn detL.

It is known that cn ≤ nn. To clarify a point, Minkowski has shown that there exist n linearly
independent vectors b′1, . . . ,b

′
n in L such that

‖b′1‖ ‖b′2‖ · · · ‖b′n‖ ≤ nn/2 detL,

but b′1, . . . ,b
′
n is not necessarily a basis for L. Further, we note that the problem of finding a basis

b1, . . . ,bn of L for which ‖b1‖ · · · ‖bn‖ is minimal is known to be NP-hard.

• The shortest vector problem. The problem of finding a vector b ∈ L with ‖b‖ minimal is
not known to be NP-complete, but it may well be. In any case, no one knows a polynomial time
algorithm for this problem. (Note that Jeff Lagarias [8] has, however, proved that the problem of
finding a vector b ∈ L which minimizes the maximal absolute value of a component is NP-hard.)

Computational Number Theory Notes 32

Observe that Hermite’s result mentioned above implies that there is a constant c′n, depending only
on n, such that ‖b‖ ≤ c′n

n
√

logL. It is possible for a lattice L to contain a vector that is much
shorter than this, but it is known that the best constant c′n for all lattices L satisfies√

n/(2eπ) ≤ c′n ≤
√
n/(eπ).

• A lower bound on the shortest vector. The vectors b∗j obtained from the Gram-Schmidt
orthogonalization process can be used to obtain a lower bound for the shortest vector in a lattice
L. More precisely, we have

b ∈ L, b 6= 0 =⇒ ‖b‖ ≥ min{‖b∗1‖, ‖b∗2‖, . . . , ‖b∗n‖}. (9)

To see this, express b in the form

b = u1b1 + · · ·+ ukbk, where each uj ∈ Z and uk 6= 0.

Observe that the definition of the b∗j imply then that

b = v1b
∗
1 + · · ·+ vkb

∗
k, for some vj ∈ Q with vk = uk.

In particular, vk is a non-zero integer. We deduce that

‖b‖2 =
(
v1b

∗
1 + · · ·+ vkb

∗
k

)
·
(
v1b

∗
1 + · · ·+ vkb

∗
k

)
= v2

1‖b∗1‖2 + · · ·+ v2
k‖b∗k‖2 ≥ ‖b∗k‖2,

from which (9) follows.

• Reduced bases. We will want the following important defintion.

Definition: Let b1, . . . ,bn be a basis for a lattice L and b∗1, . . . ,b
∗
n the corresponding basis for

Rn obtained from the Gram-Schmidt orthogonalization process, with µij as defined before. Then
b1, . . . ,bn is said to be reduced if

(i) ‖µij‖ ≤
1

2
for 1 ≤ j < i ≤ n

(ii) ‖b∗i + µi,i−1b
∗
i−1‖2 ≥

3

4
‖b∗i−1‖2 for 1 < i ≤ n.

The main work of Lenstra, Lenstra and Lovász [9] establishes an algorithm that runs in polynomial
time which constructs a reduced basis of L from an arbitrary basis b1, . . . ,bn of L. Our main goal
below is to explain how such a reduced basis can be used to factor a polynomial f(x) in polynomial
time. We will need to describe the related lattice and an initial basis for it. We begin, however,
with some properties of reduced bases.

• A reduced basis contains short vectors. Let b1, . . . ,bn be a reduced basis for a lattice L
and b∗1, . . . ,b

∗
n the corresponding basis for Rn obtained from the Gram-Schmidt orthogonalization

process with µij as before. The argument for (9) can be modified to show that

b ∈ L, b 6= 0 =⇒ ‖b1‖ ≤ 2(n−1)/2‖b‖. (10)

Computational Number Theory Notes 33

In particular, the above inequality holds for the shortest vector b ∈ L. To prove (10), observe that
(i) and (ii) imply

‖b∗i ‖2 +
1

4
‖b∗i−1‖2 ≥ ‖b∗i ‖2 + µ2

i,i−1‖b∗i−1‖2 = ‖b∗i + µi,i−1b
∗
i−1‖2 ≥

3

4
‖b∗i−1‖2.

Hence, ‖b∗i ‖2 ≥ (1/2)‖b∗i−1‖2. We deduce that

‖b∗i ‖2 ≥
1

2i−j
‖b∗j‖2 for 1 ≤ j < i ≤ n. (11)

Defining k as in the proof of (9) and following the argument there, we obtain ‖b‖2 ≥ ‖b∗k‖2.
Hence,

‖b‖2 ≥ ‖b∗k‖2 ≥
1

2k−1
‖b∗1‖2 ≥

1

2n−1
‖b∗1‖2 =

1

2n−1
‖b1‖2,

where the last equation makes use of b∗1 = b1. Thus, (10) follows.
Recall that

‖bi‖2 = ‖b∗i ‖2 +
i−1∑
j=1

µ2
ij‖b∗j‖2.

From (i) and (11), we obtain

‖bi‖2 ≤ ‖b∗i ‖2 +
1

4

i−1∑
j=1

‖b∗j‖2 ≤ ‖b∗i ‖2 +
1

4

i−1∑
j=1

2i−j‖b∗i ‖2

=

(
1 +

1

4
(2i − 2)

)
‖b∗i ‖2 ≤ 2i−1‖b∗i ‖2.

Using (11) again, we deduce

‖bj‖2 ≤ 2j−1‖b∗j‖2 ≤ 2i−1‖b∗i ‖2 for 1 ≤ j ≤ i ≤ n. (12)

We show now the following improvement of (10). Let x1,x2, . . . ,xt be t linearly independent
vectors in L. Then

‖bj‖ ≤ 2(n−1)/2 max{‖x1‖2, ‖x2‖2, . . . , ‖xt‖2} for 1 ≤ j ≤ t. (13)

For each 1 ≤ j ≤ t, define a positive integer m(j) and integers uji by

xj =

m(j)∑
i=1

ujibi, ujm(j) 6= 0.

By reordering the xj , we may suppose further that m(1) ≤ m(2) ≤ · · · ≤ m(t). The linear
independence of the xj implies that m(j) ≥ j for 1 ≤ j ≤ t. The proof of (9) implies here that

‖xj‖ ≥ ‖b∗m(j)‖ for 1 ≤ j ≤ t.

From (12), we deduce

‖bj‖2 ≤ 2m(j)−1‖b∗m(j)‖2 ≤ 2m(j)−1‖xj‖2 ≤ 2n−1‖xj‖2 for 1 ≤ j ≤ t.

Computational Number Theory Notes 34

The inequality in (13) now follows.
Recall that detL =

∏n
i=1 ‖b∗i ‖. We obtain from (12) that

n∏
i=1

‖bi‖2 ≤
n∏

i=1

2i−1‖b∗i ‖2 ≤ 2n(n−1)/2

n∏
i=1

‖b∗i ‖2 = 2n(n−1)/2(detL)2.

Thus, from Hadamard’s inequality, we obtain

2−n(n−1)/4‖b1‖ ‖b2‖ · · · ‖bn‖ ≤ detL ≤ ‖b′1‖ ‖b′2‖ · · · ‖b′n‖

for any basis b′1, . . . ,b
′
n of L. Recall that finding a basis b′1, . . . ,b

′
n for which the product on the

right is minimal is NP-hard. The above implies that a reduced basis is close to being such a basis.
We also note that Hermite’s inequality mentioned earlier is a consequence of the above inequality.

• The connection with factoring polynomials. Suppose now that we want to factor a non-
zero polynomial f(x) ∈ Z[x]. Let p be a prime, and consider a monic irreducible factor h(x) of
f(x) modulo pk (obtained say through Berlekamp’s algorithm and Hensel lifting). Now, let h0(x)
denote an irreducible factor of f(x) in Z[x] such that h0(x) is divisible by h(x) modulo p. Note
that h0(x) being irreducible in Z[x] implies that the content of h0(x) (the greatest common divisor
of its coefficients) is 1. Our goal here is to show how one can determine h0(x) without worrying
about other factors of f(x) modulo pk (to avoid the difficulty suggested by Swinnerton-Dyer’s
example).

We describe a lattice for this approach. Let ` = deg h. We need only consider the case that
` < n. Fix an integer m ∈ {`, `+ 1, . . . , n− 1}. We will successively consider such m beginning
with ` and working our way up until we find h0(x). In the end, m will correspond to the degree
of h0(x); and if no such h0(x) is found for ` ≤ m ≤ n − 1, then we can deduce that f(x) is
irreducible. We associate with each polynomial

w(x) = amx
m + · · ·+ a1x+ a0 ∈ Z[x],

a vector b = (a0, a1, . . . , am) ∈ Zm+1. Observe that ‖b‖ = ‖w(x)‖. Let L be the lattice in Zm+1

spanned by the vectors associated with

wj(x) =

{
pkxj−1 for 1 ≤ j ≤ `

h(x)xj−`−1 for `+ 1 ≤ j ≤ m+ 1.

It is not difficult to see that these vectors form a basis. Furthermore, the polynomials associated
with the vectors in L correspond precisely to the polynomials in Z[x] of degree ≤ m that are
divisible by h(x) modulo pk. In particular, if m ≥ deg h0, the vector, say b0, associated with
h0(x) is in L. Observe that if k is large enough and deg h0 > `, the coefficients of h(x) are
“presumably” large and the value of ‖b0‖ is “seemingly” small. We will show that in fact if k is
large enough and m = deg h0 and b1, . . . ,bm+1 is a reduced basis for L, then b̂1 = b0, where
b̂1 corresponds to the vector obtained by dividing the components of b1 by the greatest common
divisor of these components (i.e., the polynomial associated with b̂1 is the polynomial associated
with b1 with its content removed).

• What does L have to do with f(x)? The lattice L seemingly has little to do with f(x) as its
definition only depends on h(x). Fix h0(x) as above. We show that h0(x) is the only irreducible

Computational Number Theory Notes 35

polynomial in Z[x] which is associated with a short vector in L (for k large). For this purpose,
suppose g0(x) is an irreducible polynomial in Z[x] divisible by h(x) but different from h0(x) and
that R is the resultant of h0(x) and g0(x). Note that since h0(x) and g0(x) are irreducible in Z[x],
we have R 6= 0. The definition of the resultant implies that if R is large, then ‖g0(x)‖ must be
large (since we are viewing h0(x) as fixed). So suppose R is not large. There are polynomials u(x)
and v(x) in Z[x] such that

h0(x)u(x) + g0(x)v(x) = R.

We wish to take advantage now of the fact that the left-hand side above is divisible by h(x) modulo
pk, but at the same time we want to keep in mind that unique factorization does not exist modulo
pk. Since h(x) is monic of degree ` ≥ 1, the left-hand side is of the form h(x)w(x) modulo pk

where we can now easily deduce that every coefficient of w(x) is divisible by pk. This implies
pk|R. Hence, given k is large, we deduce R is large, giving us the desired conclusion that ‖g0(x)‖
is large.

The above argument does more. If m = deg h0(x) and b ∈ L, then viewing g0(x) ∈ L as the
polynomial associated with b, we deduce from the above that either ‖g0(x)‖ is large or R = 0. In
the latter case, since h0(x) is irreducible and deg g0 ≤ m = deg h0, we obtain that b̂ = b0.

• How large is large? We take b = b1 above (i.e., g(x) is the polynomial associated with the
first vector in a reduced basis). Recall that Landau’s inequality gives

‖h0(x)‖ ≤ 2m‖f(x)‖.

On the other hand, by considering the vectors associated with g0(x) (that is, b1) and h0(x) in
L ⊆ Zm+1, we deduce from (10) that

‖g0(x)‖ ≤ 2m/2‖h0(x)‖.

Thus,
‖g0(x)‖ ≤ 23m/2‖f(x)‖.

We want this bound on ‖g0(x)‖ to assure that R = 0 so that b̂ = b0.
To see how large pk needs to be, we recall the Sylvester form of the resultant [17]. We are

interested in the resultant R of g0(x) and h0(x) where we may suppose that deg g0 ≤ m and
deg h0 ≤ m. From Hadamard’s inequality and Landau’s inequality, we deduce

|R| ≤ ‖g0(x)‖m‖h0(x)‖m ≤ ‖g0(x)‖m
(
2m‖f(x)‖

)m
= 2m2‖g0(x)‖m‖f(x)‖m.

Our upper bound on ‖g0(x)‖ now implies

|R| ≤ 25m2/2‖f(x)‖2m.

Hence, we see that if
pk > 25m2/2‖f(x)‖2m,

then the vector b1 in a reduced basis for the lattice L, where m = deg h0(x), is such that the
polynomial corresponding to b̂1 is h0(x).

Computational Number Theory Notes 36

Resources and Further Reading
[1] Manindra Agrawal, Neeraj Kayal and Nitin Saxena, PRIMES is in P, Ann. of Math. 160

(2004), 781–793.

[2] Peter Borwein, Computational Excursions in Analysis and Number Theory, CMS (Canadian
Mathematical Society) Books in Mathematics, Springer-Verlag, New York, 2002.

[3] John Brillhart, Derick H. Lehmer, John Selfridge, Bryant Tuckerman and Sam Wagstaff,
Jr., Factorizations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers, Contemporary
Mathematics, Volume 22, American Math. Soc., Providence 1983. (This book is available
free on-line to AMS members.)

[4] Richard Crandall and Carl Pomerance, Prime Numbers, A Computational Perspective,
Springer-Verlag, New York 2001.

[5] Henri Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin
1993.

[6] Keith Geddes, Stephen Czapor and George Labahn, Algorithms for Computer Algebra,
Kluwer, Boston 1992.

[7] Donald Knuth, The Art of Computer Programming, Volumes I-III, Addison-Wesley, Reading
1973.

[8] Jeff C. Lagarias, The computational complexity of simultaneous Diophantine approximation
problems, Proceedings of the 23rd IEEE Symposium on Foundations of Computer Science
(1983), 32–39.

[9] Arjen Lenstra, Hendrik Lenstra, Jr., and László Lovász, Factoring polynomials with rational
coefficients, Math. Ann. 261 (1982), 515–534.

[10] Arjen Lenstra and Hendrik Lenstra, Jr., editors, The development of the number field sieve,
Lecture Notes in Math., Volume 1554, Springer-Verlag, Berlin 1991.

[11] László Lovász, An Algorithmic Theory of Numbers, Graphs and Convexity, Society for In-
dustrial and Applied Mathematics, Philadelphia 1986.

[12] Maurice Mignotte, Mathematics for Computer Algebra, Springer-Verlag, New York 1992.

[13] Michael Pohst and Hans Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge
University Press, Cambridge 1989.

[14] John M. Pollard, The fast Fourier transform in a finite field, Math. Comp. 25 (1971), 365–374.

[15] Hans Riesel, Prime Numbers and Computer Methods for Factorization, Birkhäuser, Boston
1985.

[16] Arnold Schönhage and Volker Strassen, Schnelle Multiplikation grosser Zahlen, Computing
7 (1971), 281–292.

Computational Number Theory Notes 37

[17] James Victor Uspensky, Theory of Equations, McGraw-Hill, New York 1948.

[18] Chee Keng Yap, Fundamental Problems of Algorithmic Algebra, Oxford Univ. Press, Cam-
bridge 1999.

