
New Syllabus on Web Page

O�ce Hours:

11:00 a.m.-12:00 noon on TTh

12:00 noon-12:30 p.m. on MW

and by appointment

(avoid 12:30-1:10 p.m. on MWF)

Homework (due Friday, 02/14/14):

Page 5: Problem 2 (Show that for every ....)

Page 7: Problems 3 & 4

New Syllabus on Web Page

O�ce Hours:

11:00 a.m.-12:00 noon on TTh

12:00 noon-12:30 p.m. on MW

and by appointment

(avoid 12:30-1:10 p.m. on MWF)

Homework (due Friday, 02/14/14):

Page 5: Problem 2 (Show that for every ....)

Page 7: Problems 3 & 4

09/21/18



Probable Primes and the Like

• The use of Fermat’s Little Theorem

• The example 341 = 11 ⇥ 31.

• The example 561 = 3 ⇥ 11 ⇥ 17

• Some noteworthy estimates:

P2(x)  x1� log log log x
2 log log x and P2(x) � x2/7 8x � x0

⇡(x) �
x

log x
= x1� log log x

log x 8x � 17

P2(2.5 ⇥ 1010) = 21853 and ⇡(2.5 ⇥ 1010) = 1091987405

• Teminology: pseudoprime, probable prime, industrial
grade prime, absolute pseudoprime, Carmichael number

• The equivalence of two di↵erent definitions for absolute
pseudoprimes

• There are infinitely many absolute pseudoprimes

• Strong pseudoprimes. Suppose n is an odd composite
number and write n � 1 = 2sm where m is an odd
integer. Then n is a strong pseudoprime to the base b
if either (i) bm ⌘ 1 (mod n) or (ii) b2jm ⌘ �1 (mod n)
for some j 2 [0, s � 1].

• Strong pseudoprimes base b are pseudoprimes base b.

• Primes p satisfy (i) or (ii) for any b relatively prime to
p.

• There are no n which are strong pseudoprimes to every
base b with 1  b  n and gcd(b, n) = 1. To see this, assume
otherwise. Note that n must be squarefree. Next, consider
a prime divisor q of n, and note n/q > 1. Let c 2 [1, q � 1]
be such that c is not a square modulo q. Let b satisfy b ⌘ 1
(mod n/q) and b ⌘ c (mod q). Then (i) cannot hold modulo
q and (ii) cannot hold modulo n/q.

• 5280 ⌘ 67 (mod 561)

• The number 3215031751 = 151 ⇥ 751 ⇥ 28351 is simul-
taneously a strong pseudoprime to each of the bases 2, 3, 5,
and 7. It’s the only such number  2.5 ⇥ 1010.
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• The number 3215031751 = 151 ⇥ 751 ⇥ 28351 is simul-
taneously a strong pseudoprime to each of the bases 2, 3, 5,
and 7. It’s the only such number  2.5 ⇥ 1010.

Two strong pseudoprimes base 2: 1093
2
and 3511

2

“Computational Complexity”

“Running Time”

Definition. Let A(d) denote the maximal number of steps re-

quired to add two numbers with  d bits.

How many steps does it take to multiply a d bit number by 6?

How many steps does it take to divide a d bit number by 6?

(if it is divisible by 6)

O(d) for these last two questions
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Maple’s “isprime” Routine (Version 5, Release 3)

Comment: Each of isprime(1093ˆ2) and isprime(3511ˆ2) in
Maple V, Release 3, ends up in an infinite loop.
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Maple’s “isprime” Routine (Version 5, Release 3)

Comment: Each of isprime(1093ˆ2) and isprime(3511ˆ2) in
Maple V, Release 3, ends up in an infinite loop.

The help output for isprime:
FUNCTION: isprime - primality test

CALLING SEQUENCE:
isprime(n)

PARAMETERS:
n - integer

SYNOPSIS:
- The function isprime is a probabilistic primality testing routine.

- It returns false if n is shown to be composite within within one strong
pseudo-primality test and one Lucas test and returns true otherwise. If
isprime returns true, n is “very probably” prime - see Knuth “The art of
computer programming”, Vol 2, 2nd edition, Section 4.5.4, Algorithm P
for a reference and H. Reisel, “Prime numbers and computer methods for
factorization”. No counter example is known and it has been conjectured
that such a counter example must be hundreds of digits long.

SEE ALSO: nextprime, prevprime, ithprime
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The Lucas-Lehmer Primality Test

Fix integers P and Q. Let D = P 2 � 4Q. Define recursively
un and vn by

u0 = 0, u1 = 1, un+1 = Pun � Qun�1 for n � 1,

v0 = 2, v1 = P, and vn+1 = Pvn � Qvn�1 for n � 1.

If p is an odd prime and p - PQ and D(p�1)/2 ⌘ �1 (mod p),
then p|up+1.

Idea: Given a large positive integer n, if n is prime, there is
a 50-50 chance that a D will satisfy D(p�1)/2 ⌘ �1 (mod n).
Play with P and Q until you find such a D with n - PQ.
Compute un+1 quickly and check if n|un+1. If not, then n is
composite. If so, then it is likely n is prime.

How do we compute un+1 quickly?

Why does p|up+1 if p is a prime?

Why should we think n is likely a prime if n|un+1?
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How do we compute un+1 quickly?

Why does p|up+1 if p is an odd prime?

Why should we think n is likely a prime if n|un+1?
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