Homework (due Friday, 09/21/18):

Page 7: Problems 3 & 4

Probable Primes and the Like

- Strong pseudoprimes. Suppose n is an odd composite number and write n − 1 = 2^sm where m is an odd integer. Then n is a strong pseudoprime to the base b if either (i) b^m ≡ 1 (mod n) or (ii) b^{2^jm} ≡ −1 (mod n) for some j ∈ [0, s − 1].
- There are no n which are strong pseudoprimes to every base b with $1 \le b \le n$ and gcd(b, n) = 1.

Strong pseudoprimes. Suppose n is an odd composite number and write n − 1 = 2^sm where m is an odd integer. Then n is a strong pseudoprime to the base b if either (i) b^m ≡ 1 (mod n) or (ii) b^{2^jm} ≡ −1 (mod n) for some j ∈ [0, s − 1].

Two strong pseudoprimes base 2: 1093^2 and 3511^2

>
$$n := 3511^2$$

 $n := 12327121$
> *ifactor*($n - 1$);
(2)⁴ (3)³ (5) (13) (439)

Strong pseudoprimes. Suppose n is an odd composite number and write n − 1 = 2^sm where m is an odd integer. Then n is a strong pseudoprime to the base b if either (i) b^m ≡ 1 (mod n) or (ii) b^{2^jm} ≡ −1 (mod n) for some j ∈ [0, s − 1].

Two strong pseudoprimes base 2: 1093^2 and 3511^2

>
$$n := 1093^2$$

 $n := 1194649$
> *ifactor*($n - 1$);
(2)³ (3) (7) (13) (547)

⊨

• Strong pseudoprimes. Suppose n is an odd composite number and write $n - 1 = 2^s m$ where m is an odd integer. Then n is a strong pseudoprime to the base b if either (i) $b^m \equiv 1 \pmod{n}$ or (ii) $b^{2^j m} \equiv -1 \pmod{n}$ for some $j \in [0, s - 1]$.

Two strong pseudoprimes base 2: 1093^2 and 3511^2

Maple's "isprime" Routine (Version 5, Release 3)

Comment: Each of $isprime(1093^2)$ and $isprime(3511^2)$ in Maple V, Release 3, ends up in an infinite loop.

true

- isprime(785678197);
 isprime(1093²);
 isprime(3511²);

false

false

Maple's "isprime" Routine (Version 5, Release 3)

Comment: Each of $isprime(1093^2)$ and $isprime(3511^2)$ in Maple V, Release 3, ends up in an infinite loop.

The help output for isprime:

FUNCTION: isprime - primality test

CALLING SEQUENCE:

isprime(n)

PARAMETERS:

n - integer

SYNOPSIS:

- The function is prime is a probabilistic primality testing routine.

- It returns false if n is shown to be composite within within one strong pseudo-primality test and one Lucas test and returns true otherwise. If isprime returns true, n is "very probably" prime - see Knuth "The art of computer programming", Vol 2, 2nd edition, Section 4.5.4, Algorithm P for a reference and H. Reisel, "Prime numbers and computer methods for factorization". No counter example is known and it has been conjectured

FUNCTION: isprime - primality test

CALLING SEQUENCE:

isprime(n)

PARAMETERS:

n - integer

SYNOPSIS:

- The function is prime is a probabilistic primality testing routine.

- It returns false if n is shown to be composite within within one strong pseudo-primality test and one Lucas test and returns true otherwise. If isprime returns true, n is "very probably" prime - see Knuth "The art of computer programming", Vol 2, 2nd edition, Section 4.5.4, Algorithm P for a reference and H. Reisel, "Prime numbers and computer methods for factorization". No counter example is known and it has been conjectured that such a counter example must be hundreds of digits long.

SEE ALSO: nextprime, prevprime, ithprime

$$u_0=0, \quad u_1=1, \quad u_{n+1}=Pu_n-Qu_{n-1} ext{ for } n\geq 1,$$

 $v_0=2, \quad v_1=P, \quad ext{and} \quad v_{n+1}=Pv_n-Qv_{n-1} ext{ for } n\geq 1.$ If p is an odd prime and $p \nmid PQ$ and $D^{(p-1)/2}\equiv -1 \pmod{p},$ then $p|u_{p+1}.$

Idea: Given a large positive integer n, if n is prime, there is a 50-50 chance that a D will satisfy $D^{(p-1)/2} \equiv -1 \pmod{n}$. Play with P and Q until you find such a D with $n \nmid PQ$. Compute u_{n+1} quickly and check if $n|u_{n+1}$. If not, then n is composite. If so, then it is likely n is prime.

$$u_0=0, \quad u_1=1, \quad u_{n+1}=Pu_n-Qu_{n-1} ext{ for } n\geq 1,$$

 $v_0=2, \quad v_1=P, \quad ext{and} \quad v_{n+1}=Pv_n-Qv_{n-1} ext{ for } n\geq 1.$ If p is an odd prime and $p \nmid PQ$ and $D^{(p-1)/2}\equiv -1 \pmod{p},$ then $p|u_{p+1}.$

Compute u_{n+1} quickly and check if $n|u_{n+1}$. If not, then n is composite. If so, then it is likely n is prime.

How do we compute u_{n+1} quickly?

Why does $p|u_{p+1}$ if p is an odd prime?

Why should we think n is likely a prime if $n|u_{n+1}$?

$$u_0=0, \quad u_1=1, \quad u_{n+1}=Pu_n-Qu_{n-1} ext{ for } n\geq 1,$$

 $v_0=2, \quad v_1=P, \quad ext{and} \quad v_{n+1}=Pv_n-Qv_{n-1} ext{ for } n\geq 1.$ If p is an odd prime and $p \nmid PQ$ and $D^{(p-1)/2}\equiv -1 \pmod{p},$ then $p|u_{p+1}.$

How do we compute u_{n+1} quickly?

Compute u_n modulo p by using

$$egin{pmatrix} u_{n+1} & v_{n+1} \ u_n & v_n \end{pmatrix} = M^n egin{pmatrix} 1 & P \ 0 & 2 \end{pmatrix} \quad ext{where} \quad M = egin{pmatrix} P & -Q \ 1 & 0 \end{pmatrix}.$$

$$u_0=0, \quad u_1=1, \quad u_{n+1}=Pu_n-Qu_{n-1} ext{ for } n\geq 1,$$

 $v_0=2, \quad v_1=P, \quad ext{and} \quad v_{n+1}=Pv_n-Qv_{n-1} ext{ for } n\geq 1.$ If p is an odd prime and $p \nmid PQ$ and $D^{(p-1)/2}\equiv -1 \pmod{p},$ then $p|u_{p+1}.$

Why does $p|u_{p+1}$ if p is an odd prime?

$$u_n = rac{lpha^n - eta^n}{lpha - eta} \quad ext{and} \quad v_n = lpha^n + eta^n \quad ext{ for } n \geq 0,$$

where
$$\alpha = (P + \sqrt{D})/2$$
 and $\beta = (P - \sqrt{D})/2$

$$2^{n-1}u_n = {n \choose 1}P^{n-1} + {n \choose 3}P^{n-3}D + {n \choose 5}P^{n-5}D^2 + \cdots$$