Homework (due Friday, 09/21/18):
Page 7: Problems 3 \& 4

Probable Primes and the Like

- Strong pseudoprimes. Suppose n is an odd composite number and write $n-1=2^{s} m$ where m is an odd integer. Then n is a strong pseudoprime to the base b if either (i) $b^{m} \equiv 1(\bmod n)$ or (ii) $b^{2^{j} m} \equiv-1(\bmod n)$ for some $j \in[0, s-1]$.
- There are no n which are strong pseudoprimes to every base b with $1 \leq b \leq n$ and $\operatorname{gcd}(b, n)=1$.
- Strong pseudoprimes. Suppose n is an odd composite number and write $n-1=2^{s} m$ where m is an odd integer. Then n is a strong pseudoprime to the base b if either (i) $b^{m} \equiv 1(\bmod n)$ or (ii) $b^{2^{j} m} \equiv-1(\bmod n)$ for some $j \in[0, s-1]$.
Two strong pseudoprimes base 2: 1093^{2} and 3511^{2}
$\left[>n:=3511^{2}\right.$

$$
n:=12327121
$$

$>$ ifactor $(n-1)$;

$$
(2)^{4}(3)^{3}(5)(13)(439)
$$

- Strong pseudoprimes. Suppose n is an odd composite number and write $n-1=2^{s} m$ where m is an odd integer. Then n is a strong pseudoprime to the base b if either (i) $b^{m} \equiv 1(\bmod n)$ or (ii) $b^{2^{j} m} \equiv-1(\bmod n)$ for some $j \in[0, s-1]$.
Two strong pseudoprimes base 2: $1093{ }^{2}$ and 3511^{2}
$>n:=1093^{2}$

$$
n:=1194649
$$

$>$ ifactor $(n-1)$;

$$
(2)^{3}(3)(7)(13)(547)
$$

- Strong pseudoprimes. Suppose n is an odd composite number and write $n-1=2^{s} m$ where m is an odd integer. Then n is a strong pseudoprime to the base b if either (i) $b^{m} \equiv 1(\bmod n)$ or (ii) $b^{2^{j} m} \equiv-1(\bmod n)$ for some $j \in[0, s-1]$.
Two strong pseudoprimes base 2: 1093^{2} and 3511^{2}

$$
\begin{aligned}
& >n:=1093^{2} \\
& \gg \text { ifactor }(n-1) \\
& >m:=\frac{n-1}{8} \\
& =>2^{m} \bmod n ; \\
& =>2^{2 \cdot m} \bmod n ;
\end{aligned}
$$

$$
n:=1194649
$$

$$
(2)^{3}(3)(7)(13)(547)
$$

$$
m:=149331
$$

$$
823592
$$

Maple's "isprime" Routine (Version 5, Release 3)

Comment: Each of isprime (1093 ${ }^{\wedge} 2$) and isprime (3511 ${ }^{\wedge} 2$) in Maple V, Release 3, ends up in an infinite loop.
> isprime(785678197);
true
$>$ isprime $\left(1093^{2}\right)$;
false
$>$ isprime $\left(3511^{2}\right)$;
false

Maple's "isprime" Routine (Version 5, Release 3)

Comment: Each of isprime (1093^2) and isprime (3511^2) in Maple V, Release 3, ends up in an infinite loop.

The help output for isprime:

FUNCTION: isprime - primality test
CALLING SEQUENCE:
isprime(n)
PARAMETERS:
n - integer
SYNOPSIS:

- The function isprime is a probabilistic primality testing routine.
- It returns false if n is shown to be composite within within one strong pseudo-primality test and one Lucas test and returns true otherwise. If isprime returns true, n is "very probably" prime - see Knuth "The art of computer programming", Vol 2, 2nd edition, Section 4.5.4, Algorithm P for a reference and H. Reisel, "Prime numbers and computer methods for factorization". No counter example is known and it has been conjectured

FUNCTION: isprime - primality test
CALLING SEQUENCE:
isprime(n)
PARAMETERS:
n-integer

SYNOPSIS:

- The function isprime is a probabilistic primality testing routine.
- It returns false if n is shown to be composite within within one strong pseudo-primality test and one Lucas test and returns true otherwise. If isprime returns true, n is "very probably" prime - see Knuth "The art of computer programming", Vol 2, 2nd edition, Section 4.5.4, Algorithm P for a reference and H. Reisel, "Prime numbers and computer methods for factorization". No counter example is known and it has been conjectured that such a counter example must be hundreds of digits long.
SEE ALSO: nextprime, prevprime, ithprime

The Lucas-Lehmer Primality Test

Fix integers P and Q. Let $D=P^{2}-4 Q$. Define recursively u_{n} and v_{n} by

$$
\begin{gathered}
u_{0}=0, \quad u_{1}=1, \quad u_{n+1}=P u_{n}-Q u_{n-1} \text { for } n \geq 1 \\
v_{0}=2, \quad v_{1}=P, \quad \text { and } \quad v_{n+1}=P v_{n}-Q v_{n-1} \text { for } n \geq 1
\end{gathered}
$$

If p is an odd prime and $p \nmid P Q$ and $D^{(p-1) / 2} \equiv-1(\bmod p)$, then $p \mid u_{p+1}$.

Idea: Given a large positive integer n, if n is prime, there is a $50-50$ chance that a D will satisfy $D^{(p-1) / 2} \equiv-1(\bmod n)$. Play with P and Q until you find such a D with $n \nmid P Q$. Compute u_{n+1} quickly and check if $n \mid u_{n+1}$. If not, then n is composite. If so, then it is likely n is prime.

The Lucas-Lehmer Primality Test

Fix integers P and Q. Let $D=P^{2}-4 Q$. Define recursively u_{n} and v_{n} by

$$
\begin{gathered}
u_{0}=0, \quad u_{1}=1, \quad u_{n+1}=P u_{n}-Q u_{n-1} \text { for } n \geq 1 \\
v_{0}=2, \quad v_{1}=P, \quad \text { and } \quad v_{n+1}=P v_{n}-Q v_{n-1} \text { for } n \geq 1
\end{gathered}
$$

If p is an odd prime and $p \nmid P Q$ and $D^{(p-1) / 2} \equiv-1(\bmod p)$, then $p \mid u_{p+1}$.

Compute u_{n+1} quickly and check if $n \mid u_{n+1}$. If not, then n is composite. If so, then it is likely n is prime.

How do we compute u_{n+1} quickly?
Why does $p \mid u_{p+1}$ if p is an odd prime?
Why should we think n is likely a prime if $n \mid u_{n+1}$?

Fix integers P and Q. Let $D=P^{2}-4 Q$. Define recursively u_{n} and v_{n} by

$$
\begin{gathered}
u_{0}=0, \quad u_{1}=1, \quad u_{n+1}=P u_{n}-Q u_{n-1} \text { for } n \geq 1 \\
v_{0}=2, \quad v_{1}=P, \quad \text { and } \quad v_{n+1}=P v_{n}-Q v_{n-1} \text { for } n \geq 1
\end{gathered}
$$

If p is an odd prime and $p \nmid P Q$ and $D^{(p-1) / 2} \equiv-1(\bmod p)$, then $p \mid u_{p+1}$.

How do we compute u_{n+1} quickly?
Compute u_{n} modulo p by using

$$
\left(\begin{array}{cc}
u_{n+1} & v_{n+1} \\
u_{n} & v_{n}
\end{array}\right)=M^{n}\left(\begin{array}{cc}
1 & P \\
0 & 2
\end{array}\right) \quad \text { where } \quad M=\left(\begin{array}{cc}
P & -Q \\
1 & 0
\end{array}\right)
$$

Fix integers P and Q. Let $D=P^{2}-4 Q$. Define recursively u_{n} and v_{n} by

$$
u_{0}=0, \quad u_{1}=1, \quad u_{n+1}=P u_{n}-Q u_{n-1} \text { for } n \geq 1
$$

$$
v_{0}=2, \quad v_{1}=P, \quad \text { and } \quad v_{n+1}=P v_{n}-Q v_{n-1} \text { for } n \geq 1
$$

If p is an odd prime and $p \nmid P Q$ and $D^{(p-1) / 2} \equiv-1(\bmod p)$, then $p \mid u_{p+1}$.

Why does $p \mid u_{p+1}$ if p is an odd prime?

$$
\begin{gathered}
u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad \text { and } \quad v_{n}=\alpha^{n}+\beta^{n} \quad \text { for } n \geq 0, \\
\text { where } \alpha=(P+\sqrt{D}) / 2 \text { and } \beta=(P-\sqrt{D}) / 2 \\
2^{n-1} u_{n}=\binom{n}{1} P^{n-1}+\binom{n}{3} P^{n-3} D+\binom{n}{5} P^{n-5} D^{2}+\cdots
\end{gathered}
$$

