Homework (due Friday, 09/21/18):
Page 7: Problems 3 \& 4

Probable Primes and the Like

- The use of Fermat's Little Theorem
- The example $341=11 \times 31$
- The example $561=3 \times 11 \times 17$
- Some noteworthy estimates:

$$
\begin{gathered}
P_{2}(x) \leq x^{1-\frac{\log \log \log x}{2 \log \log x}} \quad \text { and } \quad C(x) \leq x^{1-\frac{\log \log \log x}{\log \log x}} \\
C(x) \geq x^{2 / 7} \quad \forall x \geq x_{0} \\
\pi(x) \geq \frac{x}{\log x}=x^{1-\frac{\log \log x}{\log x}} \quad \forall x \geq 17
\end{gathered}
$$

$P_{2}\left(2.5 \times 10^{10}\right)=21853$ and $\pi\left(2.5 \times 10^{10}\right)=1091987405$

Probable Primes and the Like

Definition. A Carmichael number is a composite $n \in \mathbb{Z}^{+}$for which $a^{n-1} \equiv 1(\bmod n)$ for all integers a relatively prime to n.

Theorem: A composite $n \in \mathbb{Z}^{+}$is a Carmichael number if and only if both (i) n is squarefree, and (ii) for every prime p dividing $n,(p-1) \mid(n-1)$.

Theorem. A composite $n \in \mathbb{Z}^{+}$is a Carmichael number if and only if $a^{n} \equiv a(\bmod n)$ for all integers a.

Theorem. A composite $n \in \mathbb{Z}^{+}$is a Carmichael number if and only if n is odd and $a^{n-1} \equiv 1(\bmod n)$ for all integers a relatively prime to n.

Theorem. A composite $n \in \mathbb{Z}^{+}$is a Carmichael number if and only if n is odd and $a^{n} \equiv a(\bmod n)$ for all integers a.

Probable Primes and the Like

- There are infinitely many absolute pseudoprimes
- Strong pseudoprimes. Suppose n is an odd composite number and write $n-1=2^{s} m$ where m is an odd integer. Then n is a strong pseudoprime to the base b if either (i) $b^{m} \equiv 1(\bmod n)$ or (ii) $b^{2^{j} m} \equiv-1(\bmod n)$ for some $j \in[0, s-1]$.
- Strong pseudoprimes base b are pseudoprimes base b.

Probable Primes and the Like

- Strong pseudoprimes. Suppose n is an odd composite number and write $n-1=2^{s} m$ where m is an odd integer. Then n is a strong pseudoprime to the base b if either (i) $b^{m} \equiv 1(\bmod n)$ or (ii) $b^{2^{j} m} \equiv-1(\bmod n)$ for some $j \in[0, s-1]$.
- Strong pseudoprimes base b are pseudoprimes base b.

```
\(>2^{340} \bmod 341\)
    1
    \(>\) ifactor (340)
    \((2)^{2}(5)(17)\)
    \(>2^{85} \bmod 341\)
    32
    \(>2^{170} \bmod 341\)
    1
```


Probable Primes and the Like

- Strong pseudoprimes. Suppose n is an odd composite number and write $n-1=2^{s} m$ where m is an odd integer. Then n is a strong pseudoprime to the base b if either (i) $b^{m} \equiv 1(\bmod n)$ or (ii) $b^{2^{j} m} \equiv-1(\bmod n)$ for some $j \in[0, s-1]$.
- Strong pseudoprimes base b are pseudoprimes base b.
- Primes p satisfy (i) or (ii) for any b relatively prime to p.
- There are no n which are strong pseudoprimes to every base b with $1 \leq b \leq n$ and $\operatorname{gcd}(b, n)=1$.

Probable Primes and the Like

- Strong pseudoprimes. Suppose n is an odd composite number and write $n-1=2^{s} m$ where m is an odd integer. Then n is a strong pseudoprime to the base b if either (i) $b^{m} \equiv 1(\bmod n)$ or (ii) $b^{2^{j} m} \equiv-1(\bmod n)$ for some $j \in[0, s-1]$.
- There are no n which are strong pseudoprimes to every base b with $1 \leq b \leq n$ and $\operatorname{gcd}(b, n)=1$.

Assume otherwise. Note that n must be squarefree. Next, consider a prime divisor q of n, and note $n / q>1$. Let $c \in[1, q-1]$ be such that c is not a square modulo q. Let b satisfy $b \equiv 1(\bmod n / q)$ and $b \equiv c(\bmod q)$. Then (i) cannot hold modulo q and (ii) cannot hold modulo n / q.

- $5^{280} \equiv 67(\bmod 561)$

Probable Primes and the Like

- Strong pseudoprimes. Suppose n is an odd composite number and write $n-1=2^{s} m$ where m is an odd integer. Then n is a strong pseudoprime to the base b if either (i) $b^{m} \equiv 1(\bmod n)$ or (ii) $b^{2^{j} m} \equiv-1(\bmod n)$ for some $j \in[0, s-1]$.
- There are no n which are strong pseudoprimes to every base b with $1 \leq b \leq n$ and $\operatorname{gcd}(b, n)=1$.
- $5^{280} \equiv 67(\bmod 561)$
- The number $3215031751=151 \times 751 \times 28351$ is simultaneously a strong pseudoprime to each of the bases 2 , 3,5 , and 7 . It's the only such number $\leq 2.5 \times 10^{10}$.

$$
\begin{gathered}
b^{p-1} \equiv 1(\bmod p) \quad \Longrightarrow \quad b^{(p-1) / 2} \equiv \pm 1(\bmod p) \\
x^{2} \equiv 1(\bmod p) \quad \Longrightarrow \quad x \equiv \pm 1(\bmod p)
\end{gathered}
$$

What about for composite n (instead of $p)$?
If $b^{n-1} \equiv 1(\bmod n)$ with n odd and composite, then what is the probability that $b^{(n-1) / 2} \equiv \pm 1(\bmod n) ?$

$$
\begin{gathered}
b^{n-1} \equiv 1(\bmod n) \Longrightarrow b^{(n-1) / 2} \equiv ? ?(\bmod n) \\
x^{2} \equiv 1(\bmod n)
\end{gathered}
$$

What if $n=p^{k}$ with p an odd prime?

$$
x^{2} \equiv 1\left(\bmod p^{k}\right) \quad \Longrightarrow \quad x \equiv \pm 1\left(\bmod p^{k}\right)
$$

