Elementary Number Theory

- Modulo Arithmetic (definition, properties, \& different notation)
- Computing $a^{m}(\bmod n)$
- Euler's Phi Function (definition, formula)
- Euler's Theorem, Fermat's Little Theorem, and the Existence of Inverses
- Computing Inverses (later)
- Chinese Remainder Theorem
- Generators exist modulo $2,4, p^{e}$, and $2 p^{e}$

Algorithm from Knuth, Vol. 2, p. 320

Algorithm A (Modern Euclidean algorithm). Given nonnegative integers u and v, this algorithm finds their greatest common divisor.

A1. [Check $v=0]$ If $v=0$, the algorithm terminates with u as the answer.

A2. [Take $u \bmod v]$ Set $r \leftarrow u \bmod v, u \leftarrow v, v \leftarrow r$, and return to A1. (The operations of this step decrease the value of v, but they leave $\operatorname{gcd}(u, v)$ unchanged.)

Theorem (Lamé). Let $\phi=(1+\sqrt{5}) / 2$. Let $0 \leq u, v<N$ in Algorithm A. Then the number of times step A2 is repeated is $\leq\left\lfloor\log _{\phi}(\sqrt{5} N)\right\rfloor-2$.

Algorithm from Knuth, Vol. 2, p. 320

Algorithm A (Modern Euclidean algorithm). Given nonnegative integers u and v, this algorithm finds their greatest common divisor.

A1. [Check $v=0]$ If $v=0$, the algorithm terminates with u as the answer.

A2. [Take $u \bmod v]$ Set $r \leftarrow u \bmod v, u \leftarrow v, v \leftarrow r$, and return to A1. (The operations of this step decrease the value of v, but they leave $\operatorname{gcd}(u, v)$ unchanged.)

Theorem. The running time for computing the greatest common divisor of two positive integers $\leq N$ is
$\ll \log N(\log \log N)^{2} \log \log \log N$.

Theorem. Given integers a and b, not both 0 , there exist integers u and v such that $a u+b v=\operatorname{gcd}(a, b)$.

Example. $u=567$ and $v=245$

Comment: The average value of $\operatorname{gcd}(u, v)$ is $\asymp \log N$ but "usually" it's much smaller.

Probable Primes and the Like

- The use of Fermat's Little Theorem
- The example $341=11 \times 31$
- The example $561=3 \times 11 \times 17$

