
Addition and Subtraction

How fast do we add (or subtract) two numbers n and m?

How fast can we add (or subtract) two numbers n and m?

Definition. Let A(d) denote the number of steps required to
add two numbers with  d bits.

Theorem. A(d) ⇣ d.
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Homework

(3) The value of f(n) =
nX

k=1

1/k can be estimated by com-

paring it’s value to an integral. For example, by comparing
the sum of the areas of the rectangles indicated in the graph
below with the area under the graph of y = 1/x, one obtains
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Z 10

1
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x
dx = log 10.

(c) Prove that f(n) ⇠ log n.

Theorem. M(d) ⌧ d (log d) log log d.

Theorem. For every " > 0, we have M(d) ⌧" d
1+".

Theorem. Given distinct numbers x0, x1, . . . , xk and num-
bers y0, y1, . . . , yk, there is a unique polynomial f of degree
 k such that f(xj) = yj for all j.

Lagrange Interpolation:
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“Computational Complexity”

Definition. Let A(d) denote the maximal number of steps re-

quired to add two numbers with  d bits.

How many steps does it take to multiply a d bit number by 6?

How many steps does it take to divide a d bit number by 6?

(if it is divisible by 6)

O(d) for these last two questions
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Division

Problem: Given two positive integers n and m, determine

the quotient q and the remainder r when n is divided by m.

These should be integers satisfying

n = mq + r and 0  r < m.

Definition. Let M
0
(d) denote an upper bound on the number

of steps required to multiply two numbers with  d bits. Let

D
0
(d) denote an upper bound on the number of steps required

to obtain q and r given n and m each have  d binary digits.

Theorem. Suppose M
0
(d) has the form df(d) where f(d) is

an increasing function of d. Then D
0
(d) ⌧ M

0
(d).

We need only compute 1/m to su�cient accuracy.

Suppose n and m have  s digits. If 1/m = 0.d1d2d3d4...

(base 2) with d1, . . . , ds known, then

n

m
=

1

2s
(n ⇥ d1d2 . . . ds) + ✓, where 0  ✓  1.

Write this in the form

n

m
=

1

2s
(q

0
2

s
+ q

00
) + ✓,

so n = mq
0
+✓

0
where 0  ✓

0
< 2m. Try q = q

0
and q = q

0
+1.
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Newton’s Method

Say we want to compute 1/m. Take a function f(x) which

has root 1/m. If x
0

is an approximation to the root, then

how can we get a better approximation? Take f(x) = m �
1/x. Starting with x

0
= x0, this leads to the approximations

xn+1 = 2xn � mx
2

n
.

Note that if xn = (1 � ")/m, then xn+1 = (1 � "
2
)/m.
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Algorithm from Knuth, Vol. 2, pp. 295-6

Algorithm R. Let v in binary be v = (0.v1v2v3 . . . )2, with

v1 = 1. The algorithm outputs z satisfying

|z � 1/v|  2
�n

.

R1. [Initialize] Set z  1

4
b32/(4v1 + 2v2 + v3)c and k 0.

R2. [Newton iteration] (At this point, z  2 has the binary

form (⇤⇤.⇤⇤ · · · ⇤)2 with 2
k
+1 places after the radix point.)

Calculate z
2

exactly. Then calculate Vkz
2

exactly, where

Vk = (0.v1v2 . . . v
2k+1+3

)2. Then set z  2z � Vkz
2

+ r,

where 0  r < 2
�2

k+1�1
is added if needed to “round up”

z so that it is a multiple of 2
�2

k+1�1
. Finally, set k k+1.

R3. [End Test] If 2
k

< n, go back to step R2; otherwise the

algorithm terminates.
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D
0
(d) denote an upper bound on the number of steps required
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0
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Algorithm from Knuth, Vol. 2, pp. 295-6

Algorithm R. Let v in binary be v = (0.v1v2v3 . . . )2, with

v1 = 1. The algorithm outputs z satisfying

|z � 1/v|  2
�n

.

R1. [Initialize] Set z  1

4
b32/(4v1 + 2v2 + v3)c and k 0.

R2. [Newton iteration] (At this point, z  2 has the binary

form (⇤⇤.⇤⇤ · · · ⇤)2 with 2
k
+1 places after the radix point.)

Calculate z
2

exactly. Then calculate Vkz
2

exactly, where

Vk = (0.v1v2 . . . v
2k+1+3

)2. Then set z  2z � Vkz
2

+ r,

where 0  r < 2
�2

k+1�1
is added if needed to “round up”

z so that it is a multiple of 2
�2

k+1�1
. Finally, set k k+1.

R3. [End Test] If 2
k

< n, go back to step R2; otherwise the

algorithm terminates.
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Elementary Number Theory

• Modulo Arithmetic (definition, properties, & di↵erent

notation)

• Computing a
m

(mod n)

• Euler’s Phi Function (definition, formula)

• Euler’s Theorem, Fermat’s Little Theorem, and the

Existence of Inverses

• Computing Inverses (later)

• Chinese Remainder Theorem

• Generators exist modulo 2, 4, p
e
, and 2p
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