Theorem. $A(d) \asymp d$.
Theorem. $S(d) \asymp d$.
Theorem. For every $\varepsilon>0$, we have $M(d) \ll_{\varepsilon} d^{1+\varepsilon}$.
Theorem. $M(d) \ll d(\log d) \log \log d$.
"Computational Complexity"
"Running Time"

Division

Problem: Given two positive integers n and m, determine the quotient q and the remainder r when n is divided by m. These should be integers satisfying

$$
n=m q+r \quad \text { and } \quad 0 \leq r<m
$$

Definition. Let $M^{\prime}(d)$ denote an upper bound on the number of steps required to multiply two numbers with $\leq \boldsymbol{d}$ bits. Let $D^{\prime}(d)$ denote an upper bound on the number of steps required to obtain q and r given n and m each have $\leq d$ binary digits.

Theorem. Suppose $M^{\prime}(d)$ has the form $d f(d)$ where $f(d)$ is an increasing function of d. Then $D^{\prime}(d) \ll M^{\prime}(d)$.

Problem: Given two positive integers n and m, determine the quotient q and the remainder r when n is divided by m. These should be integers satisfying

$$
n=m q+r \quad \text { and } \quad 0 \leq r<m
$$

We need only compute $1 / m$ to sufficient accuracy.

Suppose n and m have $\leq s$ digits. If $1 / m=0 . d_{1} d_{2} d_{3} d_{4} \ldots$ (base 2) with d_{1}, \ldots, d_{s} known, then

$$
\frac{n}{m}=\frac{1}{2^{s}}\left(n \times d_{1} d_{2} \ldots d_{s}\right)+\theta, \quad \text { where } 0 \leq \theta \leq 1
$$

Write this in the form

$$
\frac{n}{m}=\frac{1}{2^{s}}\left(q^{\prime} 2^{s}+q^{\prime \prime}\right)+\theta
$$

so $n=m q^{\prime}+\theta^{\prime}$ where $0 \leq \theta^{\prime}<2 m$. Try $q=q^{\prime}$ and $q=q^{\prime}+1$.

Newton's Method

Say we want to compute $1 / m$. Take a function $f(x)$ which has root $1 / m$. If x^{\prime} is an approximation to the root, then how can we get a better approximation? Take

$$
f(x)=m-1 / x
$$

Starting with $x^{\prime}=x_{0}$, this leads to the approximations

$$
x_{n+1}=2 x_{n}-m x_{n}^{2}
$$

Note that if $x_{n}=(1-\varepsilon) / m$, then $x_{n+1}=\left(1-\varepsilon^{2}\right) / m$.

Algorithm from Knuth, Vol. 2, pp. 295-6

Algorithm R. Let v in binary be $v=\left(0 . v_{1} v_{2} v_{3} \ldots\right)_{2}$, with $v_{1}=1$. The algorithm outputs z satisfying

$$
|z-1 / v| \leq 2^{-n} .
$$

$$
z \in[0,2]
$$

R1. [Initialize] Set $z \leftarrow \frac{1}{4}\left\lfloor 32 /\left(4 v_{1}+2 v_{2}+v_{3}\right) /\right.$ and $k \leftarrow 0$.
R2. [Newton iteration] (At this point, $z \leq 2$ has the binary form $(* * . * * \cdots *)_{2}$ with $2^{k}+1$ places after the radix point.) Calculate z^{2} exactly. Then calculate $V_{k} z^{2}$ exactly, where $V_{k}=\left(0 . v_{1} v_{2} \ldots v_{2^{k+1}+3}\right)_{2}$. Then set $z \leftarrow 2 z-V_{k} z^{2}+r$, where $0 \leq r<2^{-2^{k+1}-1}$ is added if needed to "round up" z so that it is a multiple of $2^{-2^{k+1}-1}$. Finally, set $k \leftarrow k+1$.
R3. [End Test] If $2^{k}<n$, go back to step R2; otherwise the algorithm terminates.

Algorithm from Knuth, Vol. 2, pp. 295-6
Algorithm R. Let v in binary be $v=\left(0 . v_{1} v_{2} v_{3} \ldots\right)_{2}$, with $v_{1}=1$. The algorithm outputs z satisfying

$$
|z-1 / v| \leq 2^{-n}
$$

R1. [Initialize] Set $z \leftarrow \frac{1}{4}\left\lfloor 32 /\left(4 v_{1}+2 v_{2}+v_{3}\right)\right\rfloor$ and $k \leftarrow 0$.
R2. [Newton iteration] (At this point, $z \leq 2$ has the binary form $(* * . * * \cdots *)_{2}$ with $2^{k}+1$ places after the radix point.) Calculate z^{2} exactly. Then calculate $V_{k} z^{2}$ exactly, where $V_{k}=\left(0 . v_{1} v_{2} \ldots v_{2^{k+1}+3}\right)_{2}$. Then set $z \leftarrow 2 z-V_{k} z^{2}+r$, where $0 \leq r<2^{-2^{k+1}-1}$ is added if needed to "round up" z so that it is a multiple of $2^{-2^{k+1}-1}$. Finally, set $k \leftarrow k+1$.

R3. [End Test] If $2^{k}<n$, go back to step R2; otherwise the algorithm terminates.

$$
\text { (*) } \quad z_{k} \leq 2 \quad \text { and } \quad\left|z_{k}-1 / v\right| \leq 2^{-2^{k}}
$$

Check me out!

$\begin{aligned} & \text { Algorith } \\ & v_{1}=1.7\end{aligned} \frac{1}{v}-z_{k+1}=v\left(\frac{1}{v}-z_{k}\right)^{2}-z_{k}^{2}\left(v-V_{k}\right)-r$

R1. [Initialize] Set $z \leftarrow \frac{1}{4}\left\lfloor 32 /\left(4 v_{1}+2 v_{2}+v_{3}\right)\right\rfloor$ and $k \leftarrow 0$.
R2. [Newton iteration] (At this point, $z \leq 2$ has the binary form $(* * . * * \cdots *)_{2}$ with $2^{k}+1$ places after the radix point.) Calculate z^{2} exactly. Then calculate $V_{k} z^{2}$ exactly, where $V_{k}=\left(0 . v_{1} v_{2} \ldots v_{2^{k+1}+3}\right)_{2}$. Then set $z \leftarrow 2 z-V_{k} z^{2}+r$, where $0 \leq r<2^{-2^{k+1}-1}$ is added if needed to "round up" z so that it is a multiple of $2^{-2^{k+1}-1}$. Finally, set $k \leftarrow k+1$.

R3. [End Test] If $2^{k}<n$, go back to step R2; otherwise the algorithm terminates.

$$
\text { (*) } \quad z_{k} \leq 2 \quad \text { and } \quad\left|z_{k}-1 / v\right| \leq 2^{-2^{k}}
$$

Algorithm from Knuth, Vol. 2, pp. 295-6
Algorithm R. Let v in binary be $v=\left(0 . v_{1} v_{2} v_{3} \ldots\right)_{2}$, with $v_{1}=1$. The algorithm outputs z satisfying

$$
|z-1 / v| \leq 2^{-n}
$$

R1. [Initialize] Set $z \leftarrow \frac{1}{4}\left\lfloor 32 /\left(4 v_{1}+2 v_{2}+v_{3}\right)\right\rfloor$ and $k \leftarrow 0$.
R2. [Newton iteration] (At this point, $z \leq 2$ has the binary form $(* * . * * \cdots *)_{2}$ with $2^{k}+1$ places after the radix point.) Calculate z^{2} exactly. Then calculate $V_{k} z^{2}$ exactly, where $V_{k}=\left(0 . v_{1} v_{2} \ldots v_{2^{k+1}+3}\right)_{2}$. Then set $z \leftarrow 2 z-V_{k} z^{2}+r$, where $0 \leq r<2^{-2^{k+1}-1}$ is added if needed to "round up" z so that it is a multiple of $2^{-2^{k+1}-1}$. Finally, set $k \leftarrow k+1$.

R3. [End Test] If $2^{k}<n$, go back to step R2; otherwise the algorithm terminates.

$$
\text { (*) } \quad z_{k} \leq 2 \quad \text { and } \quad\left|z_{k}-1 / v\right| \leq 2^{-2^{k}}
$$

Division

Problem: Given two positive integers n and m, determine the quotient q and the remainder r when n is divided by m. These should be integers satisfying

$$
n=m q+r \quad \text { and } \quad 0 \leq r<m
$$

Definition. Let $M^{\prime}(d)$ denote an upper bound on the number of steps required to multiply two numbers with $\leq \boldsymbol{d}$ bits. Let $D^{\prime}(d)$ denote an upper bound on the number of steps required to obtain q and r given n and m each have $\leq d$ binary digits.

Theorem. Suppose $M^{\prime}(d)$ has the form $d f(d)$ where $f(d)$ is an increasing function of d. Then $D^{\prime}(d) \ll M^{\prime}(d)$.

Algorithm from Knuth, Vol. 2, pp. 295-6
Algorithm R. Let v in binary be $v=\left(0 . v_{1} v_{2} v_{3} \ldots\right)_{2}$, with $v_{1}=1$. The algorithm outputs z satisfying

$$
|z-1 / v| \leq 2^{-n}
$$

R1. [Initialize] Set $z \leftarrow \frac{1}{4}\left\lfloor 32 /\left(4 v_{1}+2 v_{2}+v_{3}\right)\right\rfloor$ and $k \leftarrow 0$.
R2. [Newton iteration] (At this point, $z \leq 2$ has the binary form $(* * . * * \cdots *)_{2}$ with $2^{k}+1$ places after the radix point.) Calculate z^{2} exactly. Then calculate $V_{k} z^{2}$ exactly, where $V_{k}=\left(0 . v_{1} v_{2} \ldots v_{2^{k+1}+3}\right)_{2}$. Then set $z \leftarrow 2 z-V_{k} z^{2}+r$, where $0 \leq r<2^{-2^{k+1}-1}$ is added if needed to "round up" z so that it is a multiple of $2^{-2^{k+1}-1}$. Finally, set $k \leftarrow k+1$.

R3. [End Test] If $2^{k}<n$, go back to step R2; otherwise the algorithm terminates.

Running Time:

$$
2 M^{\prime}(4 n)+2 M^{\prime}(2 n)+2 M^{\prime}(n)+\cdots+O(n) \ll M^{\prime}(n)
$$

Division

Problem: Given two positive integers n and m, determine the quotient q and the remainder r when n is divided by m. These should be integers satisfying

$$
n=m q+r \quad \text { and } \quad 0 \leq r<m
$$

Definition. Let $M^{\prime}(d)$ denote an upper bound on the number of steps required to multiply two numbers with $\leq \boldsymbol{d}$ bits. Let $D^{\prime}(d)$ denote an upper bound on the number of steps required to obtain q and r given n and m each have $\leq d$ binary digits.

Theorem. Suppose $M^{\prime}(d)$ has the form $d f(d)$ where $f(d)$ is an increasing function of d. Then $D^{\prime}(d) \ll M^{\prime}(d)$.

Elementary Number Theory

- Modulo Arithmetic (definition, properties, \& different notation)

