Theorem (Granville, Schinzel, F.): An algorithm exists for determining if a given nonreciprocal polynomial $f(x) \in \mathbb{Z}[x]$ is irreducible and that runs in time $O_{r,H}(\log n (\log \log n)^2 |\log \log \log n|).$

• If f has no cyclotomic factor but has a reciprocal factor, then the algorithm will give an explicit reciprocal factor.

f does not have a cyclotomic factor

We want to compute $\gcd(f,g)$ where $g(x) = x^{\deg f} f(1/x) \neq f(x)$.

Theorem (Granville, Schinzel, F.): There is an algorithm which takes as input two polynomials f(x) and g(x) in $\mathbb{Z}[x]$, each of degree < n and height < Hand having < r+1 nonzero terms, with at least one of f(x) and g(x) free of any cyclotomic factors, and outputs the value of $gcd_{\mathbb{Z}}(f(x), g(x))$ and runs in time $O_{r,H}(\log n)$.

$$f(x) = \sum_{j=1}^{k} b_j x^{d_j} \rightarrow F_1(\vec{x}) = \sum_{j=1}^{k} b_j x_j$$

Theorem (Granville, Schinzel, F.): There is an algorithm which takes as input two polynomials f(x) and g(x) in $\mathbb{Z}[x]$, each of degree < n and height < Hand having < r+1 nonzero terms, with at least one of f(x) and g(x) free of any cyclotomic factors, and outputs the value of $gcd_{\mathbb{Z}}(f(x), g(x))$ and runs in time $O_{r,H}(\log n)$.

$$egin{aligned} F_1(x^{d_1},\ldots,x^{d_k}) &= f(x) \ F_2(x^{d_1},\ldots,x^{d_k}) &= g(x) \end{aligned}$$

Lemma (Bombieri and Zannier): Let

$$F_1, F_2 \in \mathbb{Q}[x_1, \ldots, x_k]$$

be coprime polynomials. There exists a number $c_1(F_1, F_2)$ with the following property. If $\overrightarrow{u} = \langle u_1, \dots, u_k \rangle \in \mathbb{Z}^k$, $\xi \neq 0$ is algebraic and

$$F_1(\xi^{u_1},\ldots,\xi^{u_k})=F_2(\xi^{u_1},\ldots,\xi^{u_k})=0,$$

then either ξ is a root of unity or there exists a non-zero vector $\overrightarrow{v} \in \mathbb{Z}^k$ having length at most c_1 and orthogonal to \overrightarrow{u} .

$$egin{align} f(x) &= \sum_{j=1}^k a_j x^{d_j} &
ightarrow &F_1(\overrightarrow{x}) = \sum_{j=1}^k a_j x_j \ g(x) &= \sum_{j=1}^k b_j x^{d_j} &
ightarrow &F_2(\overrightarrow{x}) = \sum_{j=1}^k b_j x_j \ \end{array}$$

There exists a number $c_1(\overrightarrow{a}, \overrightarrow{b}, k)$ with the following property. If $f(\xi) = g(\xi) = 0$, then there exists a non-zero vector $\overrightarrow{v} \in \mathbb{Z}^k$ having length at most c_1 and orthogonal to \overrightarrow{u} .

$$\overrightarrow{u} = \langle d_1, \ldots, d_k
angle$$

Note: It is important that c_1 is computable.

Idea: The lattice of vectors orthogonal to \overrightarrow{v} is (k-1)-dimensional so that there exists a vector $\langle e_1, \ldots, e_{k-1} \rangle$ and a matrix \mathcal{M} in \mathbb{Z}^{k-1} satisfying

$$egin{pmatrix} d_1 \ d_2 \ dots \ d_k \end{pmatrix} = \mathcal{M} \cdot egin{pmatrix} e_1 \ e_2 \ dots \ e_{k-1} \end{pmatrix}.$$

So

$$d_i = \sum_{j=1}^{k-1} m_{ij} e_j,$$

with the $m_{ij} \in \mathbb{Z}$ bounded.

$$egin{aligned} d_i &= \sum_{j=1}^{k-1} m_{ij} e_j \qquad x^{d_i} = \prod_{j=1}^{k-1} \left(x^{e_j}
ight)^{m_{ij}} \ f(x) &= \sum_{i=1}^{k} a_i x^{d_i} = \sum_{i=1}^{k} a_i \prod_{j=1}^{k-1} \left(x^{e_j}
ight)^{m_{ij}} \end{aligned}$$

$$F_1^{(2)}(y_1,\ldots,y_{k-1}) = \sum_{i=1}^{\kappa} a_i \prod_{j=1}^{\kappa-1} y_j^{m_{ij}}$$

$$g(x) = \sum_{i=1}^{k} b_i x^{d_i} = \sum_{i=1}^{k} b_i \prod_{j=1}^{k-1} (x^{e_j})^{m_{ij}}$$

$$d_i = \sum_{j=1}^{k-1} m_{ij} e_j \qquad x^{d_i} = \prod_{j=1}^{k-1} (x^{e_j})^{m_{ij}}$$

$$F_1^{(2)}(x^{e_1},\ldots,x^{e_{k-1}})=f(x)$$

$$F_1^{(2)}(y_1,\ldots,y_{k-1}) = \sum_{i=1}^k a_i \prod_{j=1}^{k-1} y_j^{m_{ij}}$$

$$g(x) = \sum_{i=1}^k b_i x^{d_i} = \sum_{i=1}^k b_i \prod_{j=1}^{k-1} (x^{e_j})^{m_{ij}}$$

$$egin{aligned} d_i &= \sum_{j=1}^{k-1} m_{ij} e_j \qquad x^{d_i} = \prod_{j=1}^{k-1} \left(x^{e_j}
ight)^{m_{ij}} \ F_1^{(2)} ig(x^{e_1}, \ldots, x^{e_{k-1}} ig) &= f(x) \ F_1^{(2)} ig(y_1, \ldots, y_{k-1} ig) &= \sum_{i=1}^k a_i \prod_{j=1}^{k-1} y_j^{m_{ij}} \ g(x) &= \sum_{i=1}^k b_i x^{d_i} = \sum_{i=1}^k b_i \prod_{j=1}^{k-1} \left(x^{e_j}
ight)^{m_{ij}} \ F_2^{(2)} ig(y_1, \ldots, y_{k-1} ig) &= \sum_{i=1}^k b_i \prod_{j=1}^{k-1} y_j^{m_{ij}} \end{aligned}$$

$$egin{aligned} d_i &= \sum_{j=1}^{k-1} m_{ij} e_j \qquad x^{d_i} = \prod_{j=1}^{k-1} \left(x^{e_j}
ight)^{m_{ij}} \ F_1^{(2)} ig(x^{e_1}, \dots, x^{e_{k-1}} ig) &= f(x) \ F_1^{(2)} ig(y_1, \dots, y_{k-1} ig) &= \sum_{i=1}^k a_i \prod_{j=1}^{k-1} y_j^{m_{ij}} \end{aligned}$$

$$F_2^{(2)}(x^{e_1},\ldots,x^{e_{k-1}})=g(x)$$

$$F_2^{(2)}(y_1,\ldots,y_{k-1}) = \sum_{i=1}^k b_i \prod_{j=1}^{k-1} y_j^{m_{ij}}$$

$$F_1^{(2)}(x^{e_1},\ldots,x^{e_{k-1}})=f(x)$$

$$F_1^{(2)}(y_1,\ldots,y_{k-1}) = \sum_{i=1}^k a_i \prod_{j=1}^{k-1} y_j^{m_{ij}}$$

$$F_2^{(2)}(x^{e_1},\ldots,x^{e_{k-1}})=g(x)$$

$$F_2^{(2)}(y_1,\ldots,y_{k-1}) = \sum_{i=1}^{\kappa} b_i \prod_{j=1}^{\kappa-1} y_j^{m_{ij}}$$

$$egin{align} F_1^{(2)}ig(x^{e_1},\dots,x^{e_{k-1}}ig) &= f(x) \ F_2^{(2)}ig(x^{e_1},\dots,x^{e_{k-1}}ig) &= g(x) \ f(x) &= \sum_{j=1}^k a_j x^{d_j} \
ightarrow F_1(\overrightarrow{x}) &= \sum_{j=1}^k a_j x_j \ g(x) &= \sum_{j=1}^k b_j x^{d_j} \
ightarrow F_2(\overrightarrow{x}) &= \sum_{j=1}^k b_j x_j \ F_1ig(x^{d_1},\dots,x^{d_k}ig) &= f(x) \ F_2ig(x^{d_1},\dots,x^{d_k}ig) &= g(x) \ \end{array}$$

Lemma (Bombieri and Zannier): Let

$$F_1, F_2 \in \mathbb{Q}[x_1, \ldots, x_k]$$

be coprime polynomials. There exists a number $c_1(F_1,F_2)$ with the following property. If $\overrightarrow{u}=\langle u_1,\ldots,u_k\rangle\in\mathbb{Z}^k,$ $\xi\neq 0$ is algebraic and

$$F_1(\xi^{u_1},\ldots,\xi^{u_k})=F_2(\xi^{u_1},\ldots,\xi^{u_k})=0,$$

then either ξ is a root of unity or there exists a non-zero vector $\overrightarrow{v} \in \mathbb{Z}^k$ having length at most c_1 and orthogonal to \overrightarrow{u} .

$$egin{aligned} F_1^{(2)}ig(x^{e_1},\dots,x^{e_{k-1}}ig) &= f(x) \ F_2^{(2)}ig(x^{e_1},\dots,x^{e_{k-1}}ig) &= g(x) \ f(x) &= \sum_{j=1}^k a_j x^{d_j} \; o \; F_1(\overrightarrow{x}) &= \sum_{j=1}^k a_j x_j \ g(x) &= \sum_{j=1}^k b_j x^{d_j} \; o \; F_2(\overrightarrow{x}) &= \sum_{j=1}^k b_j x_j \ F_1ig(x^{d_1},\dots,x^{d_k}ig) &= f(x) \ F_2ig(x^{d_1},\dots,x^{d_k}ig) &= g(x) \end{aligned}$$

$$F_1(x^{d_1},\ldots,x^{d_k})=f(x)$$

$$F_2(x^{d_1},\ldots,x^{d_k})=g(x)$$

$$F_1^{(2)}(x^{e_1},\ldots,x^{e_{k-1}})=f(x)$$

$$F_2^{(2)}(x^{e_1},\ldots,x^{e_{k-1}})=g(x)$$

$$F_1(x^{d_1},\ldots,x^{d_k})=f(x)$$

$$F_2(x^{d_1},\ldots,x^{d_k})=g(x)$$

$$F_1^{(2)}(x^{e_1},\ldots,x^{e_{k-1}})=f(x)$$

$$F_2^{(2)}(x^{e_1},\ldots,x^{e_{k-1}})=g(x)$$

$$egin{aligned} & F_1^{(k)}(x^{ ext{some exponent}}) = f(x) \ & F_2^{(k)}(x^{ ext{same exponent}}) = g(x) \end{aligned}$$

$$egin{aligned} F_1ig(x^{d_1},\dots,x^{d_k}ig) &= f(x) \ F_2ig(x^{d_1},\dots,x^{d_k}ig) &= g(x) \ F_1^{(2)}ig(x^{e_1},\dots,x^{e_{k-1}}ig) &= f(x) \ F_2^{(2)}ig(x^{e_1},\dots,x^{e_{k-1}}ig) &= g(x) \ \end{pmatrix} \ & \Longrightarrow egin{aligned} F_1^{(k)}ig(x^{ ext{some exponent}}ig) &= f(x) \ F_2^{(k)}ig(x^{ ext{same exponent}}ig) &= g(x) \end{aligned}$$

The exponents and coefficients in $F_1^{(j)}$ and $F_2^{(j)}$ remain bounded.

$$F_1(x^{d_1},\ldots,x^{d_k})=f(x)$$

$$F_2(x^{d_1},\ldots,x^{d_k})=g(x)$$

$$F_1^{(2)}(x^{e_1},\ldots,x^{e_{k-1}})=f(x)$$

$$F_2^{(2)}(x^{e_1},\ldots,x^{e_{k-1}})=g(x)$$

$$egin{aligned} & F_1^{(k)}(x^{ ext{some exponent}}) = f(x) \ & F_2^{(k)}(x^{ ext{same exponent}}) = g(x) \end{aligned}$$

Compute
$$\gcd(F_1^{(k)}(x), F_2^{(k)}(x)).$$

$$F_1(x^{d_1},\ldots,x^{d_k})=f(x)$$

$$F_2(x^{d_1},\ldots,x^{d_k})=g(x)$$

$$F_1^{(2)}(x^{e_1},\ldots,x^{e_{k-1}})=f(x)$$

$$F_2^{(2)}(x^{e_1},\ldots,x^{e_{k-1}})=g(x)$$

$$egin{aligned} & F_1^{(k)}(x^{ ext{some exponent}}) = f(x) \ & F_2^{(k)}(x^{ ext{same exponent}}) = g(x) \end{aligned}$$

Note we are not saying such $F_1^{(k)}(x)$ and $F_2^{(k)}(x)$ exist.

Lemma (Bombieri and Zannier): Let

$$F_1, F_2 \in \mathbb{Q}[x_1, \ldots, x_k]$$

be coprime polynomials. There exists a number $c_1(F_1, F_2)$ with the following property. If $\overrightarrow{u} = \langle u_1, \dots, u_k \rangle \in \mathbb{Z}^k$, $\xi \neq 0$ is algebraic and

$$F_1(\xi^{u_1},\ldots,\xi^{u_k})=F_2(\xi^{u_1},\ldots,\xi^{u_k})=0,$$

then either ξ is a root of unity or there exists a non-zero vector $\overrightarrow{v} \in \mathbb{Z}^k$ having length at most c_1 and orthogonal to \overrightarrow{u} .

One additional item for the Final Exam (and future Comps)

Let $f(x) \in \mathbb{R}[x]$ with $f(0) \neq 0$. Write

$$f(x)=\sum_{j=0}^n a_j x^j=a_n\prod_{j=1}^n (x-lpha_j)$$

and

$$w(x) = a_n \prod_{\substack{1 \leq j \leq n \ |lpha_j| > 1}} (x - lpha_j) \prod_{\substack{1 \leq j \leq n \ |lpha_j| \leq 1}} (lpha_j x - 1).$$

Recall that

$$M(f) = |a_n| \prod_{1 \leq j \leq n} \max\{|lpha_j|, 1\} \quad ext{ and } \quad \|f\| = \sqrt{\sum_{j=0}^n a_j^2} \,.$$

Prove the following:

- (a) Explain why $w(x)\widetilde{w}(x)=f(x)\widetilde{f}(x)$.
- (b) Prove $M(f) \le ||f||$.
- (c) For $f(x) \in \mathbb{R}[x]$, prove $\|f\| \leq 2^{\deg f} M(f)$.
- (d) Let f(x) and g(x) be polynomials in $\mathbb{Z}[x]$ such that g(x)|f(x). Prove $||g|| \leq 2^{\deg g} ||f||$.